1
|
Schapansky J, Morissette M, Odero G, Albensi B, Glazner G. Neuregulin β1 enhances peak glutamate-induced intracellular calcium levels through endoplasmic reticulum calcium release in cultured hippocampal neuronsThis article is one of a selection of papers published in a special issue celebrating the 125th anniversary of the Faculty of Medicine at the University of Manitoba. Can J Physiol Pharmacol 2009; 87:883-91. [DOI: 10.1139/y09-082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modulation of intracellular free calcium levels is the primary second messenger system of the neuronal glutamatergic system, playing a role in regulation of all major cellular processes. The protein neuregulin (NRG) β1 acts as an extracellular signaling ligand in neurons, rapidly regulating currents through ionotropic glutamate receptors. The effect NRG may have on glutamate-induced changes in intracellular free calcium concentrations has not been examined, however. In this study, cultured embryonic rat hippocampal neurons were treated with NRGβ1 to determine a possible effect on glutamate-induced intracellular calcium levels. Long-term (24 h), but not short-term (1 h), incubation with NRGβ1 resulted in a significantly greater glutamate-mediated acute peak elevation of intracellular calcium levels than occurred in vehicle-treated neurons. Long-term NRGβ1 incubation significantly enhanced calcium increase induced by specific stimulation of metabotropic glutamate receptors, but did not significantly alter the N-methyl d-aspartate (NMDA)- or KCl-induced calcium increase and paradoxically decreased the effect of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) treatment on intracellular calcium. Metabotropic glutamate receptors cause increased intracellular free calcium via release of calcium from intracellular stores; thus this system was examined in more detail. NRGβ1 treatment significantly (greater than 2-fold) enhanced calcium release from endoplasmic reticulum stores after stimulation of ryanodine receptors with caffeine, but did not significantly increase calcium release from endoplasmic reticulum mediated by inositol trisphosphate (IP3) receptors. In addition, ryanodine receptor inhibition with ruthenium red prevented the glutamate-induced increase in intracellular calcium levels in NRGβ1-treated neurons. These data show that long-term NRGβ1 treatment can enhance glutamate-induced peak intracellular calcium levels through metabotropic glutamate receptor activation by increasing endoplasmic reticulum calcium release through ryanodine receptors.
Collapse
Affiliation(s)
- Jason Schapansky
- Division of Neurodegenerative Disorders, St. Boniface General Hospital Research Centre, Department of Pharmacology, University of Manitoba, 4052–351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Marc Morissette
- Division of Neurodegenerative Disorders, St. Boniface General Hospital Research Centre, Department of Pharmacology, University of Manitoba, 4052–351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Gary Odero
- Division of Neurodegenerative Disorders, St. Boniface General Hospital Research Centre, Department of Pharmacology, University of Manitoba, 4052–351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Benedict Albensi
- Division of Neurodegenerative Disorders, St. Boniface General Hospital Research Centre, Department of Pharmacology, University of Manitoba, 4052–351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Gordon Glazner
- Division of Neurodegenerative Disorders, St. Boniface General Hospital Research Centre, Department of Pharmacology, University of Manitoba, 4052–351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
2
|
Rao SP, Sikdar SK. Acute treatment with 17beta-estradiol attenuates astrocyte-astrocyte and astrocyte-neuron communication. Glia 2007; 55:1680-9. [PMID: 17886293 DOI: 10.1002/glia.20564] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Astrocytes are now recognized as dynamic signaling elements in the brain. Bidirectional communication between neurons and astrocytes involves integration of neuronal inputs by astrocytes and release of gliotransmitters that modulate neuronal excitability and synaptic transmission. The ovarian steroid hormone, 17beta-estradiol, in addition to its rapid actions on neuronal electrical activity can rapidly alter astrocyte intracellular calcium concentration ([Ca2+]i) through a membrane-associated estrogen receptor. Using calcium imaging and electrophysiological techniques, we investigated the functional consequences of acute treatment with estradiol on astrocyte-astrocyte and astrocyte-neuron communication in mixed hippocampal cultures. Mechanical stimulation of an astrocyte evoked a [Ca2+]i rise in the stimulated astrocyte, which propagated to the surrounding astrocytes as a [Ca2+]i wave. Following acute treatment with estradiol, the amplitude of the [Ca2+]i elevation in astrocytes around the stimulated astrocyte was attenuated. Further, estradiol inhibited the [Ca2+]i rise in individual astrocytes in response to the metabotropic glutamate receptor agonist, trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid. Mechanical stimulation of astrocytes induced [Ca2+]i elevations and electrophysiological responses in adjacent neurons. Estradiol rapidly attenuated the astrocyte-evoked glutamate-mediated [Ca2+]i rise and slow inward current in neurons. Also, the incidence of astrocyte-induced increase in spontaneous postsynaptic current frequency was reduced in the presence of estradiol. The effects of estradiol were stereo-specific and reversible following washout. These findings may indicate that the regulation of neuronal excitability and synaptic transmission by astrocytes is sensitive to rapid estradiol-mediated hormonal control.
Collapse
Affiliation(s)
- Shilpa P Rao
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
3
|
Yoshida Y, Kumagai H, Ohkubo Y, Tsuchiya R, Morita M, Miyakawa H, Kudo Y. Effects of bifemelane on the calcium level and ATP release of the human origin astrocyte clonal cell. J Pharmacol Sci 2006; 102:121-8. [PMID: 16974067 DOI: 10.1254/jphs.fp0060471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The effect of bifemelane hydrochloride (bifemelane) was examined on human origin astrocyte clonal cells (Kings-1). Bifemelane (125 - 1,000 microM) induced a dose-dependent increase in the intracellular calcium concentration ([Ca(2+)](i)). In the highest concentration (1,000 microM), the drug caused the second large increase in [Ca(2+)](i) during the washing. The increase that occurred during the administration partially remained in the Ca(2+)-free medium and was blocked by 2-aminoethoxydiphenyl borate (2-APB), an IP(3)-receptor blocker, indicating that the source of Ca(2+) for the increase could be ascribed to the intracellular store. The increase in [Ca(2+)](i) was not observed during washing with Ca(2+)-free medium, but was observed when the washing was performed with Ca(2+)-containing medium. Bifemelane caused a dose-dependent ATP release, but histamine and carbachol, which induced a large increase in [Ca(2+)](i), had no effects on the ATP release. The effects on the [Ca(2+)](i) were blocked by pretreatment with pyridoxal phosphate-6-azophenyl-2',4' disulfonic acid, a P2-receptor antagonist. Although the mechanisms of ATP release induced by the drug have not been elucidated yet, the present results demonstrate that the increase in [Ca(2+)](i) induced by bifemelane is not due to its direct effect on the cells, but is dependent upon the ATP released from the cells.
Collapse
Affiliation(s)
- Yoshitoku Yoshida
- School of Life Science, Tokyo University of Pharmacy and Life Science, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Talos DM, Follett PL, Folkerth RD, Fishman RE, Trachtenberg FL, Volpe JJ, Jensen FE. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex. J Comp Neurol 2006; 497:61-77. [PMID: 16680761 PMCID: PMC2987718 DOI: 10.1002/cne.20978] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This report is the second of a two-part evaluation of developmental differences in alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit expression in cell populations within white matter and cortex. In part I, we reported that, in rat, developmental expression of Ca2+-permeable (GluR2-lacking) AMPARs correlated at the regional and cellular level with increased susceptibility to hypoxia/ischemia (H/I), suggesting an age-specific role of these receptors in the pathogenesis of brain injury. Part II examines the regional and cellular progression of AMPAR subunits in human white matter and cortex from midgestation through early childhood. Similarly to the case in the rodent, there is a direct correlation between selective vulnerability to H/I and expression of GluR2-lacking AMPARs in human brain. For midgestational cases aged 20-24 postconceptional weeks (PCW) and for premature infants (25-37 PCW), we found that radial glia, premyelinating oligodendrocytes, and subplate neurons transiently expressed GluR2-lacking AMPARs. Notably, prematurity represents a developmental window of selective vulnerability for white matter injury, such as periventricular leukomalacia (PVL). During term (38-42 PCW) and postterm neonatal (43-46 PCW) periods, age windows characterized by increased susceptibility to cortical injury and seizures, GluR2 expression was low in the neocortex, specifically on cortical pyramidal and nonpyramidal neurons. This study indicates that Ca2+-permeable AMPAR blockade may represent an age-specific therapeutic strategy for potential use in humans. Furthermore, these data help to validate specific rodent maturational stages as appropriate models for evaluation of H/I pathophysiology.
Collapse
Affiliation(s)
- Delia M. Talos
- Department of Neurology Children's Hospital Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| | - Pamela L. Follett
- Department of Neurology Children's Hospital Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| | - Rebecca D. Folkerth
- Department of Pathology (Neuropathology), Children's Hospital Boston, Massachusetts 02115
- Department of Pathology, Brigham and Women's Hospital Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| | - Rachel E. Fishman
- Department of Neurology Children's Hospital Boston, Massachusetts 02115
| | | | - Joseph J. Volpe
- Department of Neurology Children's Hospital Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| | - Frances E. Jensen
- Department of Neurology Children's Hospital Boston, Massachusetts 02115
- Program in Neuroscience Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
5
|
Rao SP, Sikdar SK. Astrocytes in 17beta-estradiol treated mixed hippocampal cultures show attenuated calcium response to neuronal activity. Glia 2006; 53:817-26. [PMID: 16565986 DOI: 10.1002/glia.20341] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glial cells in the brain are capable of responding to hormonal signals. The ovarian steroid hormone 17beta-estradiol, in addition to its actions on neurons, can directly affect glial cells. Estrogen receptors have been described on both neurons and astrocytes, suggesting a complex interplay between these two in mediating the effects of the hormone. Astrocytes sense and respond to neuronal activity with a rise in intracellular calcium concentration ([Ca(2+)](i)). Using simultaneous electrophysiology and calcium imaging techniques, we monitored neuronal activity evoked astrocyte ([Ca(2+)](i)) changes in mixed hippocampal cultures loaded with fluo-3 AM. Action potential firing in neurons, elicited by injecting depolarizing current pulses, was associated with ([Ca(2+)](i)) elevations in astrocytes, which could be blocked by 200 microM MCPG and also 1 microM TTX. We compared astrocytic ([Ca(2+)](i)) transients in control and 24-hour estradiol treated cultures. The amplitude of the ([Ca(2+)](i)) transient, the number of responsive astrocytes, and the ([Ca(2+)](i)) wave velocity were all significantly reduced in estradiol treated cultures. ([Ca(2+)](i)) rise in astrocytes in response to local application of the metabotropic glutamate receptor (mGluR) agonist t-ACPD was attenuated in estradiol treated cultures, suggesting functional changes in the astrocyte mGluR following 24-h treatment with estradiol. Since astrocytes can modulate synaptic transmission by release of glutamate, the attenuated ([Ca(2+)](i)) response seen following estradiol treatment could have functional consequences on astrocyte-neuron signaling.
Collapse
Affiliation(s)
- Shilpa P Rao
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
6
|
Yoshida Y, Nakane A, Morita M, Kudo Y. A Novel Effect of Bifemelane, a Nootropic Drug, on Intracellular Ca2+ Levels in Rat Cerebral Astrocytes. J Pharmacol Sci 2006; 100:126-32. [PMID: 16474207 DOI: 10.1254/jphs.fp0050926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We investigated the effects of bifemelane, a nootropic drug, on the intracellular calcium concentration ([Ca2+]i) in rat cerebral astrocytes using a Ca2+ imaging device. At concentrations of 10 - 30 microM, bifemelane induced a slow onset and small increase in the [Ca2+]i, while at higher concentrations (100 - 300 microM), it induced a rapid transient increase in the [Ca2+]i during administration and a second large increase was seen during drug washout. The first peak was observed in Ca2+-free medium, but its onset was significantly delayed, and no second peak was seen. Neither of these effects was seen in cells treated with thapsigargin, a specific inhibitor of endoplasmic reticulum Ca2+-ATPase, in Ca2+-free medium. When thapsigargin-treated astrocytes were returned to normal medium containing Ca2+ (1.8 mM), the [Ca2+]i increased significantly, and this effect was reversely inhibited by bifemelane. We conclude that bifemelane causes the first peak by stimulating release from intracellular Ca2+ stores and the second by capacitive entry through store-operated Ca2+ channels. Although the detail mechanisms of action of the drug are still unknown, bifemelane will be provided as a pharmacological tool for basic studies on astrocytes.
Collapse
Affiliation(s)
- Yoshitoku Yoshida
- School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | | | | | | |
Collapse
|
7
|
Yoshida Y, Tsuchiya R, Matsumoto N, Morita M, Miyakawa H, Kudo Y. Ca2+-Dependent Induction of Intracellular Ca2+ Oscillation in Hippocampal Astrocytes During Metabotropic Glutamate Receptor Activation. J Pharmacol Sci 2005; 97:212-8. [PMID: 15684567 DOI: 10.1254/jphs.fp0040722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We have investigated whether the intracellular calcium concentration ([Ca(2+)](i)) oscillations induced in astrocytes using the metabotropic glutamate-receptor agonist, (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) are Ca(2+)-dependent, using three different Ca(2+) indicators with different affinities for Ca(2+). When rat hippocampal cells in culture were loaded with fura-2 (K(d): 145 nM), two-thirds of the cells showed obvious oscillatory increase in [Ca (2+)](i) during t-ACPD-administration. Those cells were identified as astrocytes by immuno-histochemistry in our previous paper. In cells loaded with fura-2FF (K(d): 25,000 nM), a similar percentage of t-ACPD-responsive cells showed oscillatory [Ca(2+)](i) changes. However, in cells loaded with quin-2 (K(d): 60 nM), t-ACPD induced no oscillatory responses, but some cells showed a small transient increase in the [Ca(2+)](i). The same small transient [Ca(2+)](i) increase was seen in cells loaded with both fura-2FF and BAPTA, a Ca(2+) chelator (K(d): 135 nM). These findings indicate the involvement of [Ca(2+)](i)-dependent regulatory mechanisms in the induction of the t-ACPD-induced oscillatory change in the [Ca(2+)](i) in astrocytes.
Collapse
Affiliation(s)
- Yoshitoku Yoshida
- Molecular Life Science Division, School of Life Science, Tokyo University of Pharmacy and Life Science, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Cai W, Hisatsune C, Nakamura K, Nakamura T, Inoue T, Mikoshiba K. Activity-dependent Expression of Inositol 1,4,5-Trisphosphate Receptor Type 1 in Hippocampal Neurons. J Biol Chem 2004; 279:23691-8. [PMID: 15016804 DOI: 10.1074/jbc.m313296200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are several lines of evidence showing that synaptic activity regulates the level of expression of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in neurons. In this study, we examined the effect of chronic activity blockade on the localization and level of IP3R1 expression in cultured hippocampal neurons. We found that chronic blockade of NMDA receptors (NMDARs), one of the major Ca(2+)-permeable ion channels, increased the number of neurons that express a high level of IP3R1 without any apparent changes in its intracellular localization. Interestingly, this up-regulation was time-dependent; there was no clear change in IP3R1 expression level up to day 5 of the NMDAR blockade, but expression increased at day 6, and the increased expression level persisted for at least a week. The up-regulation of IP3R1 depended on transcription and protein synthesis and required cAMP-dependent protein kinase activity. Moreover, although most of the control neurons did not respond to the metabotropic glutamate receptor (mGluR) stimulation, the 2-amino-5-phosphonopentanoic acid-treated neurons with high IP3R1 expression became sensitive to mGluR stimulation. Furthermore, we also found that hippocampal neurons transiently overexpressing green fluorescent protein-tagged IP3R1 released Ca2+ in response to mGluR and muscarinic acetylcholine receptor stimulation. These findings suggested that chronic NMDAR blockade increased the IP3R1 expression and enhanced sensitivity to mGluR stimulation. The change in IP3R1 expression level in response to alteration of synaptic activity may be an important determinant of the sensitivity of Ca2+ stores to G-protein-coupled receptor stimulation and would help to maintain intracellular Ca2+ homeostasis in hippocampal neurons.
Collapse
Affiliation(s)
- Weihua Cai
- Division of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Morita M, Susuki J, Moto T, Higuchi C, Kudo Y. A Novel Method to Quantify Calcium Response Pattern and Oscillation Using Fura2 and Acridine Orange. J Pharmacol Sci 2004; 94:25-30. [PMID: 14745114 DOI: 10.1254/jphs.94.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
To study calcium imaging data of cell populations that have various response patterns in peak amplitude and frequency of calcium oscillation in response to stimulation, comprehensive characterization based on statistical analysis of each response is important. In cultures of cells that are flat and in contact with each other, it is difficult to distinguish individual cells in calcium imaging data. We have developed a novel method to determine areas corresponding to individual cells in calcium imaging data. Rat neonatal cerebral astrocytes were filled with the calcium indicator Fura2, stained with acridine orange, and illuminated with UV light. The cell nuclei were clearly visualized. In addition, the images of these nuclei were useful for analyzing concentration-dependent alteration of calcium oscillation of cultured astrocytes in response to glutamate. This novel method may be useful for studying factors affecting calcium response patterns of cultured cell populations, including culture conditions, stimulus paradigms, and synthetic compounds.
Collapse
Affiliation(s)
- Mitsuhiro Morita
- Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | |
Collapse
|