1
|
Sikiric P, Sever M, Krezic I, Vranes H, Kalogjera L, Smoday IM, Vukovic V, Oroz K, Coric L, Skoro M, Kavelj I, Zubcic S, Sikiric S, Beketic Oreskovic L, Oreskovic I, Blagaic V, Brcic K, Strbe S, Staresinic M, Boban Blagaic A, Skrtic A, Seiwerth S. New studies with stable gastric pentadecapeptide protecting gastrointestinal tract. significance of counteraction of vascular and multiorgan failure of occlusion/occlusion-like syndrome in cytoprotection/organoprotection. Inflammopharmacology 2024:10.1007/s10787-024-01499-8. [PMID: 38980576 DOI: 10.1007/s10787-024-01499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Since the early 1990s, when Robert's and Szabo's cytoprotection concept had already been more than one decade old, but still not implemented in therapy, we suggest the stable gastric pentadecapeptide BPC 157 as the most relevant mediator of the cytoprotection concept. Consequently, it can translate stomach and gastrointestinal mucosal maintenance, epithelium, and endothelium cell protection to the therapy of other tissue healing (organoprotection), easily applicable, as native and stable in human gastric juice for more than 24 h. These overwhelm current clinical evidence (i.e., ulcerative colitis, phase II, no side effects, and no lethal dose (LD1) in toxicology studies), as BPC 157 therapy effectively combined various tissue healing and lesions counteraction. BPC 157 cytoprotection relevance and vascular recovery, activation of collateral pathways, membrane stabilizer, eye therapy, wound healing capability, brain-gut and gut-brain functioning, tumor cachexia counteraction, muscle, tendon, ligament, and bone disturbances counteraction, and the heart disturbances, myocardial infarction, heart failure, pulmonary hypertension, arrhythmias, and thrombosis counteraction appeared in the recent reviews. Here, as concept resolution, we review the counteraction of advanced Virchow triad circumstances by activation of the collateral rescuing pathways, depending on injury, activated azygos vein direct blood flow delivery, to counteract occlusion/occlusion-like syndromes starting with the context of alcohol-stomach lesions. Counteraction of major vessel failure (congested inferior caval vein and superior mesenteric vein, collapsed azygos vein, collapsed abdominal aorta) includes counteraction of the brain (intracerebral and intraventricular hemorrhage), heart (congestion, severe arrhythmias), lung (hemorrhage), and congestion and lesions in the liver, kidney, and gastrointestinal tract, intracranial (superior sagittal sinus), portal and caval hypertension, aortal hypotension, and thrombosis, peripherally and centrally.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Skoro
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | | | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Klara Brcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
2
|
Sikiric P, Boban Blagaic A, Strbe S, Beketic Oreskovic L, Oreskovic I, Sikiric S, Staresinic M, Sever M, Kokot A, Jurjevic I, Matek D, Coric L, Krezic I, Tvrdeic A, Luetic K, Batelja Vuletic L, Pavic P, Mestrovic T, Sjekavica I, Skrtic A, Seiwerth S. The Stable Gastric Pentadecapeptide BPC 157 Pleiotropic Beneficial Activity and Its Possible Relations with Neurotransmitter Activity. Pharmaceuticals (Basel) 2024; 17:461. [PMID: 38675421 PMCID: PMC11053547 DOI: 10.3390/ph17040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as such) and its possible relations with neurotransmitter activity. We attempt to resolve the shortage of the pleiotropic beneficial effects of BPC 157, given the general standard neurotransmitter criteria, in classic terms. We substitute the lack of direct conclusive evidence (i.e., production within the neuron or present in it as a precursor molecule, released eliciting a response on the receptor on the target cells on neurons and being removed from the site of action once its signaling role is complete). This can be a network of interconnected evidence, previously envisaged in the implementation of the cytoprotection effects, consistent beneficial particular evidence that BPC 157 therapy counteracts dopamine, serotonin, glutamate, GABA, adrenalin/noradrenalin, acetylcholine, and NO-system disturbances. This specifically includes counteraction of those disturbances related to their receptors, both blockade and over-activity, destruction, depletion, tolerance, sensitization, and channel disturbances counteraction. Likewise, BPC 157 activates particular receptors (i.e., VGEF and growth hormone). Furthermore, close BPC 157/NO-system relations with the gasotransmitters crossing the cell membrane and acting directly on molecules inside the cell may envisage particular interactions with receptors on the plasma membrane of their target cells. Finally, there is nerve-muscle relation in various muscle disturbance counteractions, and nerve-nerve relation in various encephalopathies counteraction, which is also exemplified specifically by the BPC 157 therapy application.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Danijel Matek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Kresimir Luetic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Pavic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Mestrovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivica Sjekavica
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Tepes M, Krezic I, Vranes H, Smoday IM, Kalogjera L, Zizek H, Vukovic V, Oroz K, Kovac KK, Madzar Z, Rakic M, Miskic B, Sikiric S, Barisic I, Strbe S, Antunovic M, Novosel L, Kavelj I, Vlainic J, Dobric I, Staresinic M, Skrtic A, Seiwerth S, Blagaic AB, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 Therapy: Effect on Reperfusion Following Maintained Intra-Abdominal Hypertension (Grade III and IV) in Rats. Pharmaceuticals (Basel) 2023; 16:1554. [PMID: 38004420 PMCID: PMC10675657 DOI: 10.3390/ph16111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Given in reperfusion, the use of stable gastric pentadecapeptide BPC 157 is an effective therapy in rats. It strongly counteracted, as a whole, decompression/reperfusion-induced occlusion/occlusion-like syndrome following the worst circumstances of acute abdominal compartment and intra-abdominal hypertension, grade III and grade IV, as well as compression/ischemia-occlusion/occlusion-like syndrome. Before decompression (calvariectomy, laparotomy), rats had long-lasting severe intra-abdominal hypertension, grade III (25 mmHg/60 min) (i) and grade IV (30 mmHg/30 min; 40 mmHg/30 min) (ii/iii), and severe occlusion/occlusion-like syndrome. Further worsening was caused by reperfusion for 60 min (i) or 30 min (ii/iii). Severe vascular and multiorgan failure (brain, heart, liver, kidney, and gastrointestinal lesions), widespread thrombosis (peripherally and centrally) severe arrhythmias, intracranial (superior sagittal sinus) hypertension, portal and caval hypertension, and aortal hypotension were aggravated. Contrarily, BPC 157 therapy (10 µg/kg, 10 ng/kg sc) given at 3 min reperfusion times eliminated/attenuated venous hypertension (intracranial (superior sagittal sinus), portal, and caval) and aortal hypotension and counteracted the increases in organ lesions and malondialdehyde values (blood ˃ heart, lungs, liver, kidney ˃ brain, gastrointestinal tract). Vascular recovery promptly occurred (i.e., congested inferior caval and superior mesenteric veins reversed to the normal vessel presentation, the collapsed azygos vein reversed to a fully functioning state, the inferior caval vein-superior caval vein shunt was recovered, and direct blood delivery returned). BPC 157 therapy almost annihilated thrombosis and hemorrhage (i.e., intracerebral hemorrhage) as proof of the counteracted general stasis and Virchow triad circumstances and reorganized blood flow. In conclusion, decompression/reperfusion-induced occlusion/occlusion-like syndrome counteracted by BPC 157 therapy in rats is likely for translation in patients. It is noteworthy that by rapidly counteracting the reperfusion course, it also reverses previous ischemia-course lesions, thus inducing complete recovery.
Collapse
Affiliation(s)
- Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, 31000 Osijek, Croatia;
- PhD Program Translational Research in Biomedicine-TRIBE, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Katarina Kasnik Kovac
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Zrinko Madzar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Mislav Rakic
- Department of Abdominal Surgery, Clinical Hospital Dubrava, 10040 Zagreb, Croatia;
| | - Blazenka Miskic
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, 31000 Osijek, Croatia;
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Marko Antunovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Luka Novosel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Josipa Vlainic
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Institute Ruder Boskovic, 10000 Zagreb, Croatia;
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| |
Collapse
|
4
|
Kalogjera L, Krezic I, Smoday IM, Vranes H, Zizek H, Yago H, Oroz K, Vukovic V, Kavelj I, Novosel L, Zubcic S, Barisic I, Beketic Oreskovic L, Strbe S, Sever M, Sjekavica I, Skrtic A, Boban Blagaic A, Seiwerth S, Sikiric P. Stomach perforation-induced general occlusion/occlusion-like syndrome and stable gastric pentadecapeptide BPC 157 therapy effect. World J Gastroenterol 2023; 29:4289-4316. [PMID: 37545637 PMCID: PMC10401663 DOI: 10.3748/wjg.v29.i27.4289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Using rat stomach perforation as a prototypic direct lesion applied in cytoprotection research, we focused on the first demonstration of the severe occlusion/ occlusion-like syndrome induced by stomach perforation. The revealed stomach-induced occlusion/occlusion-like syndrome corresponds to the previously described occlusion/occlusion-like syndromes in rats suffering multicausal pathology and shared severe vascular and multiorgan failure. This general point was particularly reviewed. As in all the described occlusion/occlusion-like syndromes with permanent occlusion of major vessels, peripheral and central, and other similar noxious procedures that severely affect endothelium function, the stable gastric pentadecapeptide BPC 157 was resolving therapy.
AIM To reveal the stomach perforation-induced general occlusion/occlusion-like syndrome and BPC 157 therapy effect.
METHODS The procedure included deeply anesthetized rats, complete calvariectomy, laparotomy at 15 min thereafter, and stomach perforation to rapidly induce vascular and multiorgan failure occlusion/occlusion-like syndrome. At 5 min post-perforation time, rats received therapy [BPC 157 (10 µg or 10 ng/kg) or saline (5 mL/kg, 1 mL/rat) (controls)] into the perforated defect in the stomach). Sacrifice was at 15 min or 60 min post-perforation time. Assessment (gross and microscopy; volume) included: Brain swelling, peripheral vessels (azygos vein, superior mesenteric vein, portal vein, inferior caval vein) and heart, other organs lesions (i.e., stomach, defect closing or widening); superior sagittal sinus, and peripherally the portal vein, inferior caval vein, and abdominal aorta blood pressures and clots; electrocardiograms; and bleeding time from the perforation(s).
RESULTS BPC 157 beneficial effects accord with those noted before in the healing of the perforated defect (raised vessel presentation; less bleeding, defect contraction) and occlusion/occlusion-like syndromes counteraction. BPC 157 therapy (into the perforated defect), induced immediate shrinking and contraction of the whole stomach (unlike considerable enlargement by saline application). Accordingly, BPC 157 therapy induced direct blood delivery via the azygos vein, and attenuated/eliminated the intracranial (superior sagittal sinus), portal and caval hypertension, and aortal hypotension. Thrombosis, peripherally (inferior caval vein, portal vein, abdominal aorta) and centrally (superior sagittal sinus) BPC 157 therapy markedly reduced/annihilated. Severe lesions in the brain (swelling, hemorrhage), heart (congestion and arrhythmias), lung (hemorrhage and congestion), and marked congestion in the liver, kidney, and gastrointestinal tract were markedly reduced.
CONCLUSION We revealed stomach perforation as a severe occlusion/occlusion-like syndrome, peripherally and centrally, and rapid counteraction by BPC 157 therapy. Thereby, further BPC 157 therapy may be warranted.
Collapse
Affiliation(s)
- Luka Kalogjera
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Haidi Yago
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Luka Novosel
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Lidija Beketic Oreskovic
- Division of Oncology and Radiotherapy, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb 10000, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Ivica Sjekavica
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, Zagreb 10000, Croatia
| | | | - Sven Seiwerth
- Department of Pathology, School of Medicine, Zagreb 10000, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| |
Collapse
|
5
|
Premuzic Mestrovic I, Smoday IM, Kalogjera L, Krezic I, Zizek H, Vranes H, Vukovic V, Oroz K, Skorak I, Brizic I, Hriberski K, Novosel L, Kavelj I, Barisic I, Beketic Oreskovic L, Zubcic S, Strbe S, Mestrovic T, Pavic P, Staresinic M, Skrtic A, Boban Blagaic A, Seiwerth S, Sikiric P. Antiarrhythmic Sotalol, Occlusion/Occlusion-like Syndrome in Rats, and Stable Gastric Pentadecapeptide BPC 157 Therapy. Pharmaceuticals (Basel) 2023; 16:977. [PMID: 37513889 PMCID: PMC10383471 DOI: 10.3390/ph16070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
We focused on the first demonstration that antiarrhythmics, particularly class II and class III antiarrhythmic and beta-blocker sotalol can induce severe occlusion/occlusion-like syndrome in rats. In this syndrome, as in similar syndromes with permanent occlusion of major vessels, peripheral and central, and other similar noxious procedures that severely disable endothelium function, the stable gastric pentadecapeptide BPC 157-collateral pathways activation, was a resolving therapy. After a high dose of sotalol (80 mg/kg intragastrically) in 180 min study, there were cause-consequence lesions in the brain (swelling, intracerebral hemorrhage), congestion in the heart, lung, liver, kidney, and gastrointestinal tract, severe bradycardia, and intracranial (superior sagittal sinus), portal and caval hypertension, and aortal hypotension, and widespread thrombosis, peripherally and centrally. Major vessels failed (congested inferior caval and superior mesenteric vein, collapsed azygos vein). BPC 157 therapy (10 µg, 10 ng/kg given intragastrically at 5 min or 90 min sotalol-time) effectively counteracted sotalol-occlusion/occlusion-like syndrome. In particular, eliminated were heart dilatation, and myocardial congestion affecting coronary veins and arteries, as well as myocardial vessels; eliminated were portal and caval hypertension, lung parenchyma congestion, venous and arterial thrombosis, attenuated aortal hypotension, and centrally, attenuated intracranial (superior sagittal sinus) hypertension, brain lesions and pronounced intracerebral hemorrhage. Further, BPC 157 eliminated and/or markedly attenuated liver, kidney, and gastrointestinal tract congestion and major veins congestion. Therefore, azygos vein activation and direct blood delivery were essential for particular BPC 157 effects. Thus, preventing such and similar events, and responding adequately when that event is at risk, strongly advocates for further BPC 157 therapy.
Collapse
Affiliation(s)
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Skorak
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Brizic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Klaudija Hriberski
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Novosel
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | | | - Slavica Zubcic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Mestrovic
- Department of Surgery, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Pavic
- Department of Surgery, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Sikiric P, Gojkovic S, Krezic I, Smoday IM, Kalogjera L, Zizek H, Oroz K, Vranes H, Vukovic V, Labidi M, Strbe S, Baketic Oreskovic L, Sever M, Tepes M, Knezevic M, Barisic I, Blagaic V, Vlainic J, Dobric I, Staresinic M, Skrtic A, Jurjevic I, Boban Blagaic A, Seiwerth S. Stable Gastric Pentadecapeptide BPC 157 May Recover Brain-Gut Axis and Gut-Brain Axis Function. Pharmaceuticals (Basel) 2023; 16:ph16050676. [PMID: 37242459 DOI: 10.3390/ph16050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Conceptually, a wide beneficial effect, both peripherally and centrally, might have been essential for the harmony of brain-gut and gut-brain axes' function. Seen from the original viewpoint of the gut peptides' significance and brain relation, the favorable stable gastric pentadecapeptide BPC 157 evidence in the brain-gut and gut-brain axes' function might have been presented as a particular interconnected network. These were the behavioral findings (interaction with main systems, anxiolytic, anticonvulsive, antidepressant effect, counteracted catalepsy, and positive and negative schizophrenia symptoms models). Muscle healing and function recovery appeared as the therapeutic effects of BPC 157 on the various muscle disabilities of a multitude of causes, both peripheral and central. Heart failure was counteracted (including arrhythmias and thrombosis), and smooth muscle function recovered. These existed as a multimodal muscle axis impact on muscle function and healing as a function of the brain-gut axis and gut-brain axis as whole. Finally, encephalopathies, acting simultaneously in both the periphery and central nervous system, BPC 157 counteracted stomach and liver lesions and various encephalopathies in NSAIDs and insulin rats. BPC 157 therapy by rapidly activated collateral pathways counteracted the vascular and multiorgan failure concomitant to major vessel occlusion and, similar to noxious procedures, reversed initiated multicausal noxious circuit of the occlusion/occlusion-like syndrome. Severe intracranial (superior sagittal sinus) hypertension, portal and caval hypertensions, and aortal hypotension were attenuated/eliminated. Counteracted were the severe lesions in the brain, lungs, liver, kidney, and gastrointestinal tract. In particular, progressing thrombosis, both peripherally and centrally, and heart arrhythmias and infarction that would consistently occur were fully counteracted and/or almost annihilated. To conclude, we suggest further BPC 157 therapy applications.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - May Labidi
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Marko Sever
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijan Tepes
- Department of Clinical Medicine, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vladimir Blagaic
- Department of Obstetrics and Gynecology, Clinical Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Josipa Vlainic
- Laboratory for Advanced Genomics, Division of Molecular Medicine, lnstitute Ruder Boskovic, 10000 Zagreb, Croatia
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Stable Gastric Pentadecapeptide BPC 157 and Striated, Smooth, and Heart Muscle. Biomedicines 2022; 10:biomedicines10123221. [PMID: 36551977 PMCID: PMC9775659 DOI: 10.3390/biomedicines10123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
First, we review the definitively severed myotendinous junction and recovery by the cytoprotective stable gastric pentadecapeptide BPC 157 therapy, its healing that might combine both transected and detached tendon and transected muscle, ligament and bone injuries, applied alone, as native peptide therapy, effective in rat injury, given intraperitoneally or in drinking water or topically, at the site of injury. As a follow up, we reviewed that with the BPC 157 therapy, its cytoprotective ability to organize simultaneous healing of different tissues of and full recovery of the myotendinous junction might represent the particular muscle therapy against distinctive etiopathology muscle disabilities and weakness. In this, BPC 157 therapy might recover many of muscle disabilities (i.e., succinylcholine, vascular occlusion, spinal cord compression, stroke, traumatic brain injury, severe electrolyte disturbances, neurotoxins, neuroleptics, alcohol, serotonin syndrome and NO-system blockade and tumor-cachexia). These might provide practical realization of the multimodal muscle-axis impact able to react depending on the condition and the given agent(s) and the symptoms distinctively related to the prime injurious cause symptoms in the wide healing concept, the concept of cytoprotection, in particular. Further, the BPC 157 therapy might be the recovery for the disabled heart functioning, and disabled smooth muscle functioning (various sphincters function recovery). Finally, BPC 157, native and stable in human gastric juice, might be a prototype of anti-ulcer cytoprotective peptide for the muscle therapy with high curing potential (very safe profile (lethal dose not achieved), with suited wide effective range (µg-ng regimens) and ways of application).
Collapse
|
8
|
Stable Gastric Pentadecapeptide BPC 157 as Useful Cytoprotective Peptide Therapy in the Heart Disturbances, Myocardial Infarction, Heart Failure, Pulmonary Hypertension, Arrhythmias, and Thrombosis Presentation. Biomedicines 2022; 10:biomedicines10112696. [PMID: 36359218 PMCID: PMC9687817 DOI: 10.3390/biomedicines10112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022] Open
Abstract
In heart disturbances, stable gastric pentadecapeptide BPC 157 especial therapy effects combine the therapy of myocardial infarction, heart failure, pulmonary hypertension arrhythmias, and thrombosis prevention and reversal. The shared therapy effect occurred as part of its even larger cytoprotection (cardioprotection) therapy effect (direct epithelial cell protection; direct endothelium cell protection) that BPC 157 exerts as a novel cytoprotection mediator, which is native and stable in human gastric juice, as well as easily applicable. Accordingly, there is interaction with many molecular pathways, combining maintained endothelium function and maintained thrombocytes function, which counteracted thrombocytopenia in rats that underwent major vessel occlusion and deep vein thrombosis and counteracted thrombosis in all vascular studies; the coagulation pathways were not affected. These appeared as having modulatory effects on NO-system (NO-release, NOS-inhibition, NO-over-stimulation all affected), controlling vasomotor tone and the activation of the Src-Caveolin-1-eNOS pathway and modulatory effects on the prostaglandins system (BPC 157 counteracted NSAIDs toxicity, counteracted bleeding, thrombocytopenia, and in particular, leaky gut syndrome). As an essential novelty noted in the vascular studies, there was the activation of the collateral pathways. This might be the upgrading of the minor vessel to take over the function of the disabled major vessel, competing with and counteracting the Virchow triad circumstances devastatingly present, making possible the recruitment of collateral blood vessels, compensating vessel occlusion and reestablishing the blood flow or bypassing the occluded or ruptured vessel. As a part of the counteraction of the severe vessel and multiorgan failure syndrome, counteracted were the brain, lung, liver, kidney, gastrointestinal lesions, and in particular, the counteraction of the heart arrhythmias and infarction.
Collapse
|
9
|
Smoday IM, Petrovic I, Kalogjera L, Vranes H, Zizek H, Krezic I, Gojkovic S, Skorak I, Hriberski K, Brizic I, Kubat M, Strbe S, Barisic I, Sola M, Lovric E, Lozic M, Boban Blagaic A, Skrtic A, Seiwerth S, Sikiric P. Therapy Effect of the Stable Gastric Pentadecapeptide BPC 157 on Acute Pancreatitis as Vascular Failure-Induced Severe Peripheral and Central Syndrome in Rats. Biomedicines 2022; 10:biomedicines10061299. [PMID: 35740321 PMCID: PMC9220115 DOI: 10.3390/biomedicines10061299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
We revealed the therapy effect of the stable gastric pentadecapeptide BPC 157 (10 μg/kg, 10 ng/kg ig or po) with specific activation of the collateral rescuing pathways, the azygos vein, on bile duct ligation in particular, and acute pancreatitis as local disturbances (i.e., improved gross and microscopy presentation, decreased amylase level). Additionally, we revealed the therapy’s effect on the acute pancreatitis as vascular failure and multiorgan failure, both peripherally and centrally following “occlusion-like” syndrome, major intoxication (alcohol, lithium), maintained severe intra-abdominal hypertension, and myocardial infarction, or occlusion syndrome, and major vessel occlusion. The application-sacrifice periods were ligation times of 0–30 min, 0–5 h, 0–24 h (cured periods, early regimen) and 4.30 h–5 h, 5 h–24 h (cured periods, delayed regimen). Otherwise, bile duct-ligated rats commonly presented intracranial (superior sagittal sinus), portal and caval hypertension and aortal hypotension, gross brain swelling, hemorrhage and lesions, heart dysfunction, lung lesions, liver and kidney failure, gastrointestinal lesions, and severe arterial and venous thrombosis, peripherally and centrally. Unless antagonized with the key effect of BPC 157 regimens, reversal of the inferior caval and superior mesenteric vein congestion and reversal of the failed azygos vein activated azygos vein-recruited direct delivery to rescue the inferior-superior caval vein pathway; these were all antecedent to acute pancreatitis major lesions (i.e., acinar, fat necrosis, hemorrhage). These lesions appeared in the later period, but were markedly attenuated/eliminated (i.e., hemorrhage) in BPC 157-treated rats. To summarize, while the innate vicious cycle may be peripheral (bile duct ligation), or central (rapidly developed brain disturbances), or peripheral and central, BPC 157 resolved acute pancreatitis and its adjacent syndrome.
Collapse
Affiliation(s)
- Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Igor Petrovic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Skorak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Klaudija Hriberski
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Brizic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Milovan Kubat
- Department of Forensic Medicine and Criminology, School of Medicne, 10000 Zagreb, Croatia;
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Marija Sola
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (S.S.)
| | - Marin Lozic
- Department of Pediatric and Preventive Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (S.S.)
- Correspondence: (A.S.); (P.S.); Tel.: +385-1-4566-980 (A.S.); +385-1-4566-833 (P.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
- Correspondence: (A.S.); (P.S.); Tel.: +385-1-4566-980 (A.S.); +385-1-4566-833 (P.S.)
| |
Collapse
|
10
|
Stable Gastric Pentadecapeptide BPC 157 May Counteract Myocardial Infarction Induced by Isoprenaline in Rats. Biomedicines 2022; 10:biomedicines10020265. [PMID: 35203478 PMCID: PMC8869603 DOI: 10.3390/biomedicines10020265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
We revealed that the stable gastric pentadecapeptide BPC 157, a useful peptide therapy against isoprenaline myocardial infarction, as well as against isoprenaline myocardial reinfarction, may follow the counteraction of the recently described occlusion-like syndrome, induced peripherally and centrally, which was described for the first time in isoprenaline-treated rats. BPC 157 (10 ng/kg, 10 µg/kg i.p.), L-NAME (5 mg/kg i.p.), and L-arginine (200 mg/kg i.p.) were given alone or together at (i) 30 min before or, alternatively, (ii) at 5 min after isoprenaline (75 or 150 mg/kg s.c.). At 30 min after isoprenaline 75 mg/kg s.c., we noted an early multiorgan failure (brain, heart, lung, liver, kidney and gastrointestinal lesions), thrombosis, intracranial (superior sagittal sinus) hypertension, portal and caval hypertension, and aortal hypotension, in its full presentation (or attenuated by BPC 157 therapy (given at 5 min after isoprenaline) via activation of the azygos vein). Further, we studied isoprenaline (75 or 150 mg/kg s.c.) myocardial infarction (1 challenge) and reinfarction (isoprenaline at 0 h and 24 h, 2 challenges) in rats (assessed at the end of the subsequent 24 h period). BPC 157 reduced levels of all necrosis markers, CK, CK-MB, LDH, and cTnT, and attenuated gross (no visible infarcted area) and histological damage, ECG (no ST-T ischemic changes), and echocardiography (preservation of systolic left ventricular function) damage induced by isoprenaline. Its effect was associated with a significant decrease in oxidative stress parameters and likely maintained NO system function, providing that BPC 157 interacted with eNOS and COX2 gene expression in a particular way and counteracted the noxious effect of the NOS-blocker, L-NAME.
Collapse
|
11
|
Tepes M, Gojkovic S, Krezic I, Zizek H, Vranes H, Madzar Z, Santak G, Batelja L, Milavic M, Sikiric S, Kocman I, Simonji K, Samara M, Knezevic M, Barisic I, Lovric E, Strbe S, Kokot A, Sjekavica I, Kolak T, Skrtic A, Seiwerth S, Boban Blagaic A, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 Therapy for Primary Abdominal Compartment Syndrome in Rats. Front Pharmacol 2021; 12:718147. [PMID: 34966273 PMCID: PMC8710746 DOI: 10.3389/fphar.2021.718147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the stable gastric pentadecapeptide BPC 157 was shown to counteract major vessel occlusion syndromes, i.e., peripheral and/or central occlusion, while activating particular collateral pathways. We induced abdominal compartment syndrome (intra-abdominal pressure in thiopental-anesthetized rats at 25 mmHg (60 min), 30 mmHg (30 min), 40 mmHg (30 min), and 50 mmHg (15 min) and in esketamine-anesthetized rats (25 mmHg for 120 min)) as a model of multiple occlusion syndrome. By improving the function of the venous system with BPC 157, we reversed the chain of harmful events. Rats with intra-abdominal hypertension (grade III, grade IV) received BPC 157 (10 µg or 10 ng/kg sc) or saline (5 ml) after 10 min. BPC 157 administration recovered the azygos vein via the inferior–superior caval vein rescue pathway. Additionally, intracranial (superior sagittal sinus), portal, and caval hypertension and aortal hypotension were reduced, as were the grossly congested stomach and major hemorrhagic lesions, brain swelling, venous and arterial thrombosis, congested inferior caval and superior mesenteric veins, and collapsed azygos vein; thus, the failed collateral pathway was fully recovered. Severe ECG disturbances (i.e., severe bradycardia and ST-elevation until asystole) were also reversed. Microscopically, transmural hyperemia of the gastrointestinal tract, intestinal mucosa villi reduction, crypt reduction with focal denudation of superficial epithelia, and large bowel dilatation were all inhibited. In the liver, BPC 157 reduced congestion and severe sinusoid enlargement. In the lung, a normal presentation was observed, with no alveolar membrane focal thickening and no lung congestion or edema, and severe intra-alveolar hemorrhage was absent. Moreover, severe heart congestion, subendocardial infarction, renal hemorrhage, brain edema, hemorrhage, and neural damage were prevented. In conclusion, BPC 157 cured primary abdominal compartment syndrome.
Collapse
Affiliation(s)
- Marijan Tepes
- Department of Surgery, General Hospital Nasice, Nasice, Croatia
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, Osijek, Croatia
- PhD Program Translational Research in Biomedicine—TRIBE, School of Medicine, University of Split, Split, Croatia
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zrinko Madzar
- Clinical Department of Surgery, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Goran Santak
- Department of Surgery, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Lovorka Batelja
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivica Kocman
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Karol Simonji
- Internal Diseases Clinic, Faculty of Veterinary Medicine Zagreb, Zagreb, Croatia
| | - Mariam Samara
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivica Sjekavica
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, Zagreb, Croatia
| | - Toni Kolak
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
- *Correspondence: Predrag Sikiric, ; Anita Skrtic,
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- *Correspondence: Predrag Sikiric, ; Anita Skrtic,
| |
Collapse
|
12
|
Deek SA. BPC 157 as Potential Treatment for COVID-19. Med Hypotheses 2021; 158:110736. [PMID: 34798584 PMCID: PMC8575535 DOI: 10.1016/j.mehy.2021.110736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
The emergence of coronavirus disease (COVID-19) in China at the end of 2019 has caused a large global outbreak. COVID-19 is largely seen as a thrombotic and vascular disease targeting endothelial cells (ECs) throughout the body that can provoke the breakdown of central vascular functions. This explains the complications and multi-organ failure seen in COVID-19 patients including acute respiratory distress syndrome, cardiovascular complications, liver damage, and neurological damage. Acknowledging the comorbidities and potential organ injuries throughout the course of COVID-19 is therefore crucial in the clinical management of patients. Here we discuss BPC 157, based primarily on animal model data, as a novel agent that can improve the clinical management of COVID-19. BPC 157 is a peptide that has demonstrated anti-inflammatory, cytoprotective, and endothelial-protective effects in different organ systems in different species. BPC 157 activated endothelial nitric oxide synthase (eNOS) is associated with nitric oxide (NO) release, tissue repair and angiomodulatory properties which can lead to improved vascular integrity and immune response, reduced proinflammatory profile, and reduced critical levels of the disease. As a result, discussion of its use as a potential prophylactic and complementary treatment is critical. All examined treatments, although potentiality effective against COVID-19, need either appropriate drug development or clinical trials in humans to be suitable for clinical use.
Collapse
Affiliation(s)
- Sarah A Deek
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 78712 Austin, TX, USA.
| |
Collapse
|
13
|
Over-Dose Lithium Toxicity as an Occlusive-like Syndrome in Rats and Gastric Pentadecapeptide BPC 157. Biomedicines 2021; 9:biomedicines9111506. [PMID: 34829735 PMCID: PMC8615292 DOI: 10.3390/biomedicines9111506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
Due to endothelial impairment, high-dose lithium may produce an occlusive-like syndrome, comparable to permanent occlusion of major vessel-induced syndromes in rats; intracranial, portal, and caval hypertension, and aortal hypotension; multi-organ dysfunction syndrome; brain, heart, lung, liver, kidney, and gastrointestinal lesions; arterial and venous thrombosis; and tissue oxidative stress. Stable gastric pentadecapeptide BPC 157 may be a means of therapy via activating loops (bypassing vessel occlusion) and counteracting major occlusion syndromes. Recently, BPC 157 counteracted the lithium sulfate regimen in rats (500 mg/kg/day, ip, for 3 days, with assessment at 210 min after each administration of lithium) and its severe syndrome (muscular weakness and prostration, reduced muscle fibers, myocardial infarction, and edema of various brain areas). Subsequently, BPC 157 also counteracted the lithium-induced occlusive-like syndrome; rapidly counteracted brain swelling and intracranial (superior sagittal sinus) hypertension, portal hypertension, and aortal hypotension, which otherwise would persist; counteracted vessel failure; abrogated congestion of the inferior caval and superior mesenteric veins; reversed azygos vein failure; and mitigated thrombosis (superior mesenteric vein and artery), congestion of the stomach, and major hemorrhagic lesions. Both regimens of BPC 157 administration also counteracted the previously described muscular weakness and prostration (as shown in microscopic and ECG recordings), myocardial congestion and infarction, in addition to edema and lesions in various brain areas; marked dilatation and central venous congestion in the liver; large areas of congestion and hemorrhage in the lung; and degeneration of proximal and distal tubules with cytoplasmic vacuolization in the kidney, attenuating oxidative stress. Thus, BPC 157 therapy overwhelmed high-dose lithium intoxication in rats.
Collapse
|
14
|
Gojkovic S, Krezic I, Vranes H, Zizek H, Drmic D, Batelja Vuletic L, Milavic M, Sikiric S, Stilinovic I, Simeon P, Knezevic M, Kolak T, Tepes M, Simonji K, Strbe S, Nikolac Gabaj N, Barisic I, Oreskovic EG, Lovric E, Kokot A, Skrtic A, Boban Blagaic A, Seiwerth S, Sikiric P. Robert's Intragastric Alcohol-Induced Gastric Lesion Model as an Escalated General Peripheral and Central Syndrome, Counteracted by the Stable Gastric Pentadecapeptide BPC 157. Biomedicines 2021; 9:1300. [PMID: 34680419 PMCID: PMC8533388 DOI: 10.3390/biomedicines9101300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
We redefined Robert's prototypical cytoprotection model, namely the intragastric administration of 96% alcohol in order to generate a general peripheral and central syndrome similar to that which occurs when major central or peripheral veins are occluded in animal models. With this redefinition, we used Robert's model to examine the cytoprotective effects of the stable gastric pentadecapeptide BPC 157. The intragastric administration of alcohol induced gastric lesions, intracranial (superior sagittal sinus) hypertension, severe brain swelling and lesions, portal and vena caval hypertension, aortal hypotension, severe thrombosis, inferior vena cava and superior mesenteric vein congestion, azygos vein failure (as a failed collateral pathway), electrocardiogram disturbances, and heart, lung, liver and kidney lesions. The use of BPC 157 therapy (10 µg/kg or 10 ng/kg given intraperitoneally 1 min after alcohol) counteracted these deficits rapidly. Specifically, BPC 157 reversed brain swelling and superior mesenteric vein and inferior vena caval congestion, and helped the azygos vein to recover, which improved the collateral blood flow pathway. Microscopically, BPC 157 counteracted brain (i.e., intracerebral hemorrhage with degenerative changes of cerebral and cerebellar neurons), heart (acute subendocardial infarct), lung (parenchymal hemorrhage), liver (congestion), kidney (congestion) and gastrointestinal (epithelium loss, hemorrhagic gastritis) lesions. In addition, this may have taken place along with the activation of specific molecular pathways. In conclusion, these findings clarify and extend the theory of cytoprotection, offer an approach to its practical application, and establish BPC 157 as a prospective cytoprotective treatment.
Collapse
Affiliation(s)
- Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Lovorka Batelja Vuletic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Irma Stilinovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Paris Simeon
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Toni Kolak
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Karol Simonji
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Nora Nikolac Gabaj
- Department of Chemistry, University Clinical Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Emma Grace Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| |
Collapse
|
15
|
Knezevic M, Gojkovic S, Krezic I, Zizek H, Vranes H, Malekinusic D, Vrdoljak B, Knezevic T, Horvat Pavlov K, Drmic D, Staroveski M, Djuzel A, Rajkovic Z, Kolak T, Lovric E, Milavic M, Sikiric S, Barisic I, Tepes M, Tvrdeic A, Patrlj L, Strbe S, Sola M, Situm A, Kokot A, Boban Blagaic A, Skrtic A, Seiwerth S, Sikiric P. Complex Syndrome of the Complete Occlusion of the End of the Superior Mesenteric Vein, Opposed with the Stable Gastric Pentadecapeptide BPC 157 in Rats. Biomedicines 2021; 9:1029. [PMID: 34440233 PMCID: PMC8394093 DOI: 10.3390/biomedicines9081029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Background. Gastric pentadecapeptide BPC 157 therapy in rats compensated irremovable occlusion of various vessels and counteracted the consequent multiorgan dysfunction syndromes by activation of the corresponding collateral bypassing loops. Thus, we used BPC 157 therapy against the irremovable occlusion of the end of the superior mesenteric vein. Methods. Assessments, for 30 min (gross recording, venography, ECG, pressure, microscopy, biochemistry, and oxidative stress) include the portal and caval hypertension, aortal hypotension, and centrally, the superior sagittal sinus hypertension, systemic arterial and venous thrombosis, ECG disturbances, MDA-tissue increase, and heart, lung, liver, kidney and gastrointestinal tract, in particular, and brain (cortex (cerebral, cerebellar), hypothalamus/thalamus, hippocampus) lesions. Rats received BPC 157 medication (10 µg/kg, 10 ng/kg) intraperitoneally at 1 or 15 min ligation time. Results. BPC 157 rapidly activated the superior mesenteric vein-inferior anterior pancreati-coduodenal vein-superior anterior pancreaticoduodenal vein-pyloric vein-portal vein pathway, reestablished superior mesenteric vein and portal vein connection and reestablished blood flow. Simultaneously, toward inferior caval vein, an additional pathway appears via the inferior mesenteric vein united with the middle colic vein, throughout its left colic branch to ascertain alternative bypassing blood flow. Consequently, BPC 157 acts peripherally and centrally, and counteracted the intracranial (superior sagittal sinus), portal and caval hypertension, aortal hypotension, ECG disturbances attenuated, abolished progressing venous and arterial thrombosis. Additionally, BPC 157 counteracted multiorgan dysfunction syndrome, heart, lung, liver, kidney and gastrointestinal tract, and brain lesions, and oxidative stress in tissues. Conclusion. BPC 157 therapy may be specific management also for the superior mesenteric vein injuries.
Collapse
Affiliation(s)
- Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Dominik Malekinusic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Borna Vrdoljak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Tamara Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Katarina Horvat Pavlov
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Miro Staroveski
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Antonija Djuzel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Zoran Rajkovic
- Department of Surgery, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Toni Kolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Leonardo Patrlj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Marija Sola
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Andrej Situm
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (H.V.); (D.M.); (B.V.); (T.K.); (D.D.); (M.S.); (A.D.); (T.K.); (I.B.); (M.T.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.K.); (A.B.B.)
| |
Collapse
|
16
|
Udovicic M, Sever M, Kavur L, Loncaric K, Barisic I, Balenovic D, Zivanovic Posilovic G, Strinic D, Uzun S, Batelja Vuletic L, Sikiric S, Skrtic A, Drmic D, Boban Blagaic A, Lovric Bencic M, Seiwerth S, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 Therapy for Monocrotaline-Induced Pulmonary Hypertension in Rats Leads to Prevention and Reversal. Biomedicines 2021; 9:biomedicines9070822. [PMID: 34356886 PMCID: PMC8301325 DOI: 10.3390/biomedicines9070822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background. Monocrotaline selectively injures the lung's vascular endothelium and induces pulmonary arterial hypertension. The stable gastric pentadecapeptide BPC 157 acts as a prototype cytoprotective agent that maintains endothelium, and its application may be a novel therapy. Besides, BPC 157 prevents and reverses thrombosis formation, maintains platelet function, alleviates peripheral vascular occlusion disturbances, and has anti-arrhythmic and anti-inflammatory effects. Monocrotaline-induced pulmonary arterial hypertension in rats (wall thickness, total vessel area, heart frequency, QRS axis deviation, QT interval prolongation, increase in right ventricle systolic pressure and bodyweight loss) can be counteracted with early or delayed BPC 157 therapy. Methods and Results. After monocrotaline (80 mg/kg subcutaneously), BPC 157 (10 μg/kg or 10 ng/kg, days 1-14 or days 1-30 (early regimens), or days 14-30 (delayed regimen)) was given once daily intraperitoneally (last application 24 h before sacrifice) or continuously in drinking water until sacrifice (day 14 or 30). Without therapy, the outcome was the full monocrotaline syndrome, marked by right-side heart hypertrophy and massive thickening of the precapillary artery's smooth muscle layer, clinical deterioration, and sometimes death due to pulmonary hypertension and right-heart failure during the 4th week after monocrotaline injection. With all BPC 157 regimens, monocrotaline-induced pulmonary arterial hypertension (including all disturbed parameters) was counteracted, and consistent beneficial effects were documented during the whole course of the disease. Pulmonary hypertension was not even developed (early regimens) as quickly as the advanced pulmonary hypertension was rapidly attenuated and then completely eliminated (delayed regimen). Conclusions. Thus, pentadecapeptide BPC 157 prevents and counteracts monocrotaline-induced pulmonary arterial hypertension and cor pulmonale in rats.
Collapse
Affiliation(s)
- Mario Udovicic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Lovro Kavur
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Kristina Loncaric
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Diana Balenovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Gordana Zivanovic Posilovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Dean Strinic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Sandra Uzun
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Lovorka Batelja Vuletic
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
- Correspondence: (A.S.); (P.S.); Tel.: +385-1-4566-980 (A.S.); +385-1-4566-833 (P.S.); Fax: +385-1-4920-050 (A.S. & P.S.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Martina Lovric Bencic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
- Correspondence: (A.S.); (P.S.); Tel.: +385-1-4566-980 (A.S.); +385-1-4566-833 (P.S.); Fax: +385-1-4920-050 (A.S. & P.S.)
| |
Collapse
|
17
|
Knezevic M, Gojkovic S, Krezic I, Zizek H, Malekinusic D, Vrdoljak B, Knezevic T, Vranes H, Drmic D, Staroveski M, Djuzel A, Rajkovic Z, Kolak T, Lovric E, Milavic M, Sikiric S, Tvrdeic A, Patrlj L, Strbe S, Sola M, Situm A, Kokot A, Boban Blagaic A, Skrtic A, Seiwerth S, Sikiric P. Occluded Superior Mesenteric Artery and Vein. Therapy with the Stable Gastric Pentadecapeptide BPC 157. Biomedicines 2021; 9:biomedicines9070792. [PMID: 34356860 PMCID: PMC8301404 DOI: 10.3390/biomedicines9070792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background. We investigated the occluded essential vessel tributaries, both arterial and venous, occluded superior mesenteric vein and artery in rats, consequent noxious syndrome, peripherally and centrally. As therapy, we hypothesized the rapidly activated alternative bypassing pathways, arterial and venous, and the stable gastric pentadecapeptide BPC 157 since it rapidly alleviated venous occlusion syndromes. Methods. Assessments were performed for 30 min (gross recording, venography, ECG, pressure, microscopy, biochemistry, and oxidative stress), including portal hypertension, caval hypertension, aortal hypotension, and centrally, the superior sagittal sinus hypertension; systemic arterial and venous thrombosis, ECG disturbances, MDA-tissue increase, the multiple organs lesions, heart, lung, liver, kidney and gastrointestinal tract, including brain (swelling, and cortex (cerebral, cerebellar), hypothalamus/thalamus, hippocampus lesions). Rats received BPC 157 medication (10 µg/kg, 10 ng/kg) intraperitoneally at 1 min ligation-time. Results. BPC 157 rapidly activated collateral pathways. These collateral loops were the superior mesenteric vein-inferior anterior pancreaticoduodenal vein-superior anterior pancreaticoduodenal vein-pyloric vein-portal vein pathway, an alternative pathway toward inferior caval vein via the united middle colic vein and inferior mesenteric vein through the left colic vein, and the inferior anterior pancreaticoduodenal artery and inferior mesenteric artery. Consequently, BPC 157 counteracted the superior sagittal sinus, portal and caval hypertension, aortal hypotension, progressing venous and arterial thrombosis peripherally and centrally, ECG disturbances attenuated. Markedly, the multiple organs lesions, heart, lung, liver, kidney, and gastrointestinal tract, in particular, as well as brain lesions, and oxidative stress in tissues were attenuated. Conclusions. BPC 157 therapy rapidly recovered rats, which have complete occlusion of the superior mesenteric vein and artery.
Collapse
Affiliation(s)
- Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Dominik Malekinusic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Borna Vrdoljak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Tamara Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Miro Staroveski
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Antonija Djuzel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Zoran Rajkovic
- Department of Surgery, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Toni Kolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (M.M.); (S.S.); (S.S.)
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (M.M.); (S.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (M.M.); (S.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Leonardo Patrlj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Marija Sola
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Andrej Situm
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (M.M.); (S.S.); (S.S.)
- Correspondence: (A.S.); (P.S.); Tel.: +385-1-4566-980 (A.S.); +385-1-4566-833 (P.S.); Fax: +385-1-492-0050 (A.S. & P.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (M.M.); (S.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
- Correspondence: (A.S.); (P.S.); Tel.: +385-1-4566-980 (A.S.); +385-1-4566-833 (P.S.); Fax: +385-1-492-0050 (A.S. & P.S.)
| |
Collapse
|
18
|
Seiwerth S, Milavic M, Vukojevic J, Gojkovic S, Krezic I, Vuletic LB, Pavlov KH, Petrovic A, Sikiric S, Vranes H, Prtoric A, Zizek H, Durasin T, Dobric I, Staresinic M, Strbe S, Knezevic M, Sola M, Kokot A, Sever M, Lovric E, Skrtic A, Blagaic AB, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 and Wound Healing. Front Pharmacol 2021; 12:627533. [PMID: 34267654 PMCID: PMC8275860 DOI: 10.3389/fphar.2021.627533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Significance: The antiulcer peptide, stable gastric pentadecapeptide BPC 157 (previously employed in ulcerative colitis and multiple sclerosis trials, no reported toxicity (LD1 not achieved)), is reviewed, focusing on the particular skin wound therapy, incisional/excisional wound, deep burns, diabetic ulcers, and alkali burns, which may be generalized to the other tissues healing. Recent Advances: BPC 157 has practical applicability (given alone, with the same dose range, and same equipotent routes of application, regardless the injury tested). Critical Issues: By simultaneously curing cutaneous and other tissue wounds (colocutaneous, gastrocutaneous, esophagocutaneous, duodenocutaneous, vesicovaginal, and rectovaginal) in rats, the potency of BPC 157 is evident. Healing of the wounds is accomplished by resolution of vessel constriction, the primary platelet plug, the fibrin mesh which acts to stabilize the platelet plug, and resolution of the clot. Thereby, BPC 157 is effective in wound healing much like it is effective in counteracting bleeding disorders, produced by amputation, and/or anticoagulants application. Likewise, BPC 157 may prevent and/or attenuate or eliminate, thus, counteract both arterial and venous thrombosis. Then, confronted with obstructed vessels, there is circumvention of the occlusion, which may be the particular action of BPC 157 in ischemia/reperfusion. Future Directions: BPC 157 rapidly increases various genes expression in rat excision skin wound. This would define the healing in the other tissues, that is, gastrointestinal tract, tendon, ligament, muscle, bone, nerve, spinal cord, cornea (maintained transparency), and blood vessels, seen with BPC 157 therapy.
Collapse
Affiliation(s)
- Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jaksa Vukojevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Andrea Petrovic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Andreja Prtoric
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tajana Durasin
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Sola
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, School of Medicine Osijek, University of Osijek, Osijek, Croatia
| | - Marko Sever
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
19
|
BPC 157 Therapy and the Permanent Occlusion of the Superior Sagittal Sinus in Rat: Vascular Recruitment. Biomedicines 2021; 9:biomedicines9070744. [PMID: 34203464 PMCID: PMC8301421 DOI: 10.3390/biomedicines9070744] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
We show the complex syndrome of the occluded superior sagittal sinus, brain swelling and lesions and multiple peripheral organs lesions in rat. Recovery goes centrally and peripherally, with the stable gastric pentadecapeptide BPC 157, which alleviated peripheral vascular occlusion disturbances, rapidly activating alternative bypassing pathways. Assessments were gross recording, venography, ECG, pressure, microscopy, biochemistry. The increased pressure in the superior sagittal sinus, portal and caval hypertension, aortal hypotension, arterial and venous thrombosis, severe brain swelling and lesions (cortex (cerebral, cerebellar), hypothalamus/thalamus, hippocampus), particular veins (azygos, superior mesenteric, inferior caval) dysfunction, heart dysfunction, lung congestion as acute respiratory distress syndrome, kidney disturbances, liver failure, and hemorrhagic lesions in gastrointestinal tract were all assessed. Rats received BPC 157 medication (10 µg/kg, 10 ng/kg) intraperitoneally, intragastrically, or topically to the swollen brain at 1 min ligation-time, or at 15 min, 24 h and 48 h ligation-time. BPC 157 therapy rapidly attenuates the brain swelling, rapidly eliminates the increased pressure in the ligated superior sagittal sinus and the severe portal and caval hypertension and aortal hypotension, and rapidly recruits collateral vessels, centrally ((para)sagittal venous collateral circulation) and peripherally (left superior caval vein azygos vein-inferior caval vein). In conclusion, as shown by all assessments, BPC 157 acts against the permanent occlusion of the superior sagittal sinus and syndrome (i.e., brain, heart, lung, liver, kidney, gastrointestinal lesions, thrombosis), given at 1 min, 15 min, 24 h or 48 h ligation-time. BPC 157 therapy rapidly overwhelms the permanent occlusion of the superior sagittal sinus in rat.
Collapse
|
20
|
Knezevic M, Gojkovic S, Krezic I, Zizek H, Malekinusic D, Vrdoljak B, Vranes H, Knezevic T, Barisic I, Horvat Pavlov K, Drmic D, Staroveski M, Djuzel A, Rajkovic Z, Kolak T, Kocman I, Lovric E, Milavic M, Sikiric S, Tvrdeic A, Patrlj L, Strbe S, Kokot A, Boban Blagaic A, Skrtic A, Seiwerth S, Sikiric P. Occlusion of the Superior Mesenteric Artery in Rats Reversed by Collateral Pathways Activation: Gastric Pentadecapeptide BPC 157 Therapy Counteracts Multiple Organ Dysfunction Syndrome; Intracranial, Portal, and Caval Hypertension; and Aortal Hypotension. Biomedicines 2021; 9:biomedicines9060609. [PMID: 34073625 PMCID: PMC8229949 DOI: 10.3390/biomedicines9060609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric pentadecapeptide BPC 157 therapy counteracts multiple organ dysfunction syndrome in rats, which have permanent occlusion of the superior mesenteric artery close to the abdominal aorta. Previously, when confronted with major vessel occlusion, its effect would rapidly activate collateral vessel pathways and resolve major venous occlusion syndromes (Pringle maneuver ischemia, reperfusion, Budd-Chiari syndrome) in rats. This would overwhelm superior mesenteric artery permanent occlusion, and result in local, peripheral, and central disturbances. Methods: Assessments, for 30 min (gross recording, angiography, ECG, pressure, microscopy, biochemistry, and oxidative stress), included the portal hypertension, caval hypertension, and aortal hypotension, and centrally, the superior sagittal sinus hypertension; systemic arterial and venous thrombosis; ECG disturbances; MDA-tissue increase; and multiple organ lesions and disturbances, including the heart, lung, liver, kidney, and gastrointestinal tract, in particular, as well as brain (cortex (cerebral, cerebellar), hypothalamus/thalamus, hippocampus). BPC 157 therapy (/kg, abdominal bath) (10 µg, 10 ng) was given for a 1-min ligation time. Results: BPC 157 rapidly recruits collateral vessels (inferior anterior pancreaticoduodenal artery and inferior mesenteric artery) that circumvent occlusion and ascertains blood flow distant from the occlusion in the superior mesenteric artery. Portal and caval hypertension, aortal hypotension, and, centrally, superior sagittal sinus hypertension were attenuated or eliminated, and ECG disturbances markedly mitigated. BPC 157 therapy almost annihilated venous and arterial thrombosis. Multiple organ lesions and disturbances (i.e., heart, lung, liver, and gastrointestinal tract, in particular, as well as brain) were largely attenuated. Conclusions: Rats with superior mesenteric artery occlusion may additionally undergo BPC 157 therapy as full counteraction of vascular occlusion-induced multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Dominik Malekinusic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Borna Vrdoljak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Tamara Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Katarina Horvat Pavlov
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Miro Staroveski
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Antonija Djuzel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Zoran Rajkovic
- Department of Surgery, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Toni Kolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Ivica Kocman
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Leonardo Patrlj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
- Correspondence: ; Tel.: +385-1-4566-833; Fax: +385-1-492-0050
| |
Collapse
|
21
|
Sikiric P, Drmic D, Sever M, Klicek R, Blagaic AB, Tvrdeic A, Kralj T, Kovac KK, Vukojevic J, Siroglavic M, Gojkovic S, Krezic I, Pavlov KH, Rasic D, Mirkovic I, Kokot A, Skrtic A, Seiwerth S. Fistulas Healing. Stable Gastric Pentadecapeptide BPC 157 Therapy. Curr Pharm Des 2021; 26:2991-3000. [PMID: 32329684 DOI: 10.2174/1381612826666200424180139] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
This review is focused on the healing of fistulas and stable gastric pentadecapeptide BPC 157. Assuming that the healing of the various wounds is essential also for the gastrointestinal fistulas healing, the healing effect on fistulas in rats, consistently noted with the stable gastric pentadecapeptide BPC 157, may raise several interesting possibilities. BPC 157 is originally an anti-ulcer agent, native to and stable in human gastric juice (for more than 24 h). Likely, it is a novel mediator of Robert's cytoprotection maintaining gastrointestinal mucosal integrity. Namely, it is effective in the whole gastrointestinal tract, and heals various wounds (i.e., skin, muscle, tendon, ligament, bone; ulcers in the entire gastrointestinal tract; corneal ulcer); LD1 is not achieved. It is used in ulcerative colitis clinical trials, and now in multiple sclerosis, and addressed in several reviews. Therefore, it is not surprising that BPC 157 has documented consistent healing of the various gastrointestinal fistulas, external (esophagocutaneous, gastrocutaneous, duodenocutaneous, colocutaneous) and internal (colovesical, rectovaginal). Taking fistulas as a pathological connection, this rescue is verified with the beneficial effects in rats with the various gastrointestinal anastomoses, esophagogastric, jejunoileal, colo-colonic, ileoileal, esophagojejunal, esophagoduodenal, and gastrojejunal. This beneficial effect occurs equally when the gastrointestinal anastomoses are impaired with the application of NSAIDs, cysteamine, large bowel resection, as well as concomitant esophageal, gastric, and duodenal lesions and/or ulcerative colitis presentation, short bowel syndrome progression, liver and brain disturbances presentation. Particular aspects of the BPC 157 healing of the fistulas are especially emphasized.
Collapse
Affiliation(s)
- Predrag Sikiric
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Domagoj Drmic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Marko Sever
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Robert Klicek
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Alenka B Blagaic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Ante Tvrdeic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Tamara Kralj
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Katarina K Kovac
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Jaksa Vukojevic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Marko Siroglavic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Slaven Gojkovic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Katarina H Pavlov
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Domagoj Rasic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Ivan Mirkovic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Salata 11, POB 916, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Kolovrat M, Gojkovic S, Krezic I, Malekinusic D, Vrdoljak B, Kasnik Kovac K, Kralj T, Drmic D, Barisic I, Horvat Pavlov K, Petrovic A, Duzel A, Knezevic M, Mirkovic I, Kokot A, Boban Blagaic A, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 resolves Pringle maneuver in rats, both ischemia and reperfusion. World J Hepatol 2020; 12:184-206. [PMID: 32547687 PMCID: PMC7280862 DOI: 10.4254/wjh.v12.i5.184] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Pringle maneuver [portal triad obstruction(PTO)] provides huge disturbances during ischemia and even more thereafter in reperfusion. Contrarily, a possible solution may be stable gastric pentadecapeptide BPC 157, with already documented beneficial effects in ischemia/reperfusion conditions. Recently, BPC 157, as a cytoprotective agent, successfully resolved vessel occlusions in rats (ischemic colitis; deep vein thrombosis, superior anterior pancreaticoduodenal vein; bile duct cirrhosis) through rapid collateral vessel recruitment to circumvent vessel occlusion. Thereby, medication BPC 157 regimens were administered as a single challenge before and during ischemia or, alternatively, at various time points during reperfusion.
AIM To introduce BPC 157 therapy against pringle maneuver-damage.
METHODS In deeply anesthetised rats, the portal triad was clamped up for 30 min. Rats then underwent reperfusion for either 15 min or 24 h. Medication [(10 µg, 10 ng/kg) regimens, administered as a single challenge] picked (a) ischemia, PTO period [at 5 min before (ip) or at 5 or 30 min of ligation time (as a bath to PTO)] or (b) reperfusion, post-PTO period [at 1 or 15 min (bath during surgery) or 24 h (ip) reperfusion-time]. We provided gross, microscopy, malondialdehyde, serum enzymes, electrocardiogram, portal, caval, and aortal pressure, thrombosis and venography assessments.
RESULTS BPC 157 counteracts electrocardiogram disturbances (increased P wave amplitude, S1Q3T3 QRS pattern and tachycardia). Rapidly presented vascular pathway (portal vein-superior mesenteric vein-inferior mesenteric vein-rectal veins-left ileal vein-inferior caval vein) as the adequate shunting immediately affected disturbed haemodynamics. Portal hypertension and severe aortal hypotension during PTO, as well as portal and caval hypertension and mild aortal hypotension in reperfusion and refractory ascites formation were markedly attenuated (during PTO) or completely abrogated (reperfusion); thrombosis in portal vein tributaries and inferior caval vein or hepatic artery was counteracted during portal triad obstruction PTO. Also, counteraction included the whole vicious injurious circle [i.e., lung pathology (severe capillary congestion), liver (dilated central veins and terminal portal venules), intestine (substantial capillary congestion, submucosal oedema, loss of villous architecture), splenomegaly, right heart (picked P wave values)] regularly perpetuated in ischemia and progressed by reperfusion in Pringle rats.
CONCLUSION BPC 157 resolves pringle maneuver-damage in rats, both for ischemia and reperfusion.
Collapse
Affiliation(s)
- Marijan Kolovrat
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Slaven Gojkovic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Ivan Krezic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Dominik Malekinusic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Borna Vrdoljak
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Katarina Kasnik Kovac
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Tamara Kralj
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Domagoj Drmic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Ivan Barisic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Katarina Horvat Pavlov
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Andreja Petrovic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Antonija Duzel
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Mario Knezevic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Ivan Mirkovic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Antonio Kokot
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Alenka Boban Blagaic
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Sven Seiwerth
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Predrag Sikiric
- Departments of Pharmacology and Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
23
|
In relation to NO-System, Stable Pentadecapeptide BPC 157 Counteracts Lidocaine-Induced Adverse Effects in Rats and Depolarisation In Vitro. Emerg Med Int 2020; 2020:6805354. [PMID: 32566305 PMCID: PMC7273470 DOI: 10.1155/2020/6805354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, the pentadecapeptide BPC 157-induced counteraction of bupivacaine cardiotoxicity has been reported. Medication includes (i) lidocaine-induced local anesthesia via intraplantar application and axillary and spinal (L4-L5) intrathecal block, (ii) lidocaine-induced arrhythmias, (iii) convulsions, and (iv) lidocaine-induced HEK293 cell depolarisation. BPC 157 applications (intraplantar, intraperitoneal, and intragastric) were given (i) immediately after lidocaine, (ii) 10 min after, or (iii) 5 min before. The BPC 157/NO-system relationship was verified with NO-agents, the NOS-blocker L-NAME and the NOS-substrate L-arginine, given alone and/or together, in axillary and spinal intrathecal blocks. BPC 157 applied immediately after lidocaine or 5 min before the application of lidocaine considerably ameliorated plantar presentation. BPC 157 medication considerably counteracted lidocaine-induced limb function failure; L-NAME was counteracted; L-arginine exhibited counteraction when given immediately after lidocaine, but prolongation was seen when given later. Given together, prophylactically or therapeutically, L-NAME and L-arginine (L-NAME + L-arginine) counteracted the other's response. BPC 157 maintained its original response when given together with L-NAME or L-arginine. When BPC 157 was given together with L-NAME and L-arginine, its original response reappeared. BPC 157 antagonised the lidocaine-induced bradycardia and eliminated tonic-clonic convulsions. Also, BPC 157 counteracted the lidocaine-induced depolarisation of HEK293 cells. Thus, BPC 157 has antidote activity in its own right against lidocaine and local anesthetics.
Collapse
|
24
|
Sikiric P, Hahm KB, Blagaic AB, Tvrdeic A, Pavlov KH, Petrovic A, Kokot A, Gojkovic S, Krezic I, Drmic D, Rucman, R, Seiwerth S. Stable Gastric Pentadecapeptide BPC 157, Robert's Stomach Cytoprotection/Adaptive Cytoprotection/Organoprotection, and Selye's Stress Coping Response: Progress, Achievements, and the Future. Gut Liver 2020; 14:153-167. [PMID: 31158953 PMCID: PMC7096228 DOI: 10.5009/gnl18490] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
We reviewed again the significance of the stable gastric pentadecapeptide BPC 157 as a likely mediator of Robert's stomach cytoprotection/adaptive cytoprotection and organoprotection and as novel mediator of Selye's stress coping response to reestablish homeostasis. Specific points of BPC 157 therapy and the original concept of Robert's cytoprotection/adaptive cytoprotection/organoprotection are discussed, including the beneficial effects of BPC 157. First, BPC 157 protects stomach cells and maintains gastric integrity against various noxious agents (Robert's killing cell by contact) and is continuously present in the gastric mucosa and gastric juice. Additionally, BPC 157 protects against the adverse effects of alcohol and nonsteroidal anti-inflammatory drugs on the gastric epithelium and other epithelia, that is, skin, liver, pancreas, heart (organoprotection), and brain, thereby suggesting its use in wound healing. Additionally, BPC 157 counteracts gastric endothelial injury that precedes and induces damage to the gastric epithelium and generalizes "gastric endothelial protection" to protection of the endothelium of other vessels (thrombosis, prolonged bleeding, and thrombocytopenia). BPC 157 also has an effect on blood vessels, resulting in vessel recruitment that circumvents vessel occlusion and the development of additional shunting and rapid bypass loops to rapidly reestablish the integrity of blood flow (ischemic/reperfusion colitis, duodenal lesions, cecal perforation, and inferior vena caval occlusion). Lastly, BPC 157 counteracts tumor cachexia, muscle wasting, and increases in pro-inflammatory/procachectic cytokines, such as interleukin-6 and tumor necrosis factor-α, and significantly corrects deranged muscle proliferation and myogenesis through changes in the expression of FoxO3a, p-AKT, p-mTOR, and p-GSK-3β (mitigating cancer cachexia).
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Ki-Baik Hahm
- Digestive Disease Center, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Alenka Boban Blagaic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Ante Tvrdeic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | | | - Andrea Petrovic
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Domagoj Drmic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Rudolf Rucman,
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
25
|
Gojkovic S, Krezic I, Vrdoljak B, Malekinusic D, Barisic I, Petrovic A, Horvat Pavlov K, Kolovrat M, Duzel A, Knezevic M, Kasnik Kovac K, Drmic D, Batelja Vuletic L, Kokot A, Boban Blagaic A, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 resolves suprahepatic occlusion of the inferior caval vein, Budd-Chiari syndrome model in rats. World J Gastrointest Pathophysiol 2020; 11:1-19. [PMID: 32226643 PMCID: PMC7093306 DOI: 10.4291/wjgp.v11.i1.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recently, as a possible therapy resolving solution, pentadecapeptide BPC 157 therapy, has been used in alleviating various vascular occlusion disturbances. BPC 157 was previously reviewed as novel mediator of Robert cytoprotection and endothelium protection in the stomach, and gut-brain axis, beneficial therapy in gastrointestinal tract, with particular reference to vascular recruitment, ulcerative colitis and tumor cachexia, and other tissues healing. Here we raised new hypothesis about BPC 157 therapy in the Budd-Chiari syndrome in rats, rapid bypassing of the suprahepatic inferior caval vein occlusion, and rats recovery with the active and effective pharmacotherapy treatment.
AIM To investigate Budd-Chiari syndrome model (inferior caval vein suprahepatic occlusion) resolution, since BPC 157 resolves various rat vascular occlusion.
METHODS We assessed the activated bypassing pathways between the inferior and superior caval veins and portocaval shunt, counteracted caval/portal hypertension, aortal hypotension, venous/arterial thrombosis, electrocardiogram disturbances, liver and gastrointestinal lesions (i.e., stomach and duodenum hemorrhages, in particular, congestion). Rats with suprahepatic occlusion of the inferior vena cava by ligation were medicated at 1 min, 15 min, 24 h, or 48 h post-ligation. Medication consisted of 10 µg/kg BPC 157, 10 ng BPC 157 or 5 mL/kg saline, administered once as an abdominal bath or intragastric application. Gross and microscopic observations were made, in addition to assessments of electrical activity of the heart (electrocardiogram), portal and caval hypertension, aortal hypotension, thrombosis, hepatomegaly, splenomegaly and venography. Furthermore, levels of nitric oxide, malondialdehyde in the liver and serum enzymes were determined.
RESULTS BPC 157 counteracted increased P wave amplitude, tachycardia and ST-elevation, i.e., right heart failure from acute thrombotic coronary occlusion. The bypassing pathway of the inferior vena cava-azygos (hemiazygos) vein-superior vena cava and portocaval shunt occurred rapidly. Even with severe caval ˃ portal hypertension, BPC 157 antagonized portal and caval hypertension and aortal hypotension, and also reduced refractory ascites. Thrombosis of portal vein tributaries, inferior vena cava, and hepatic and coronary arteries was attenuated. In addition, there was reduced pathology of the lungs (severe capillary congestion) and liver (dilated central veins and terminal portal venules), decreased intestine hemorrhagic lesions (substantial capillary congestion, submucosal edema and architecture loss), and increased liver and spleen weight. During the period of ligation, nitric oxide- and malondialdehyde-levels in the liver remained within normal healthy values, and increases in serum enzymes were markedly reduced.
CONCLUSION BPC 157 counteracts Budd Chiari syndrome in rats.
Collapse
Affiliation(s)
- Slaven Gojkovic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Ivan Krezic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Borna Vrdoljak
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Dominik Malekinusic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Ivan Barisic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Andreja Petrovic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Katarina Horvat Pavlov
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Marijan Kolovrat
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Antonija Duzel
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Mario Knezevic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Katarina Kasnik Kovac
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Domagoj Drmic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Lovorka Batelja Vuletic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Antonio Kokot
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Alenka Boban Blagaic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Sven Seiwerth
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| | - Predrag Sikiric
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
26
|
Gastric pentadecapeptide body protection compound BPC 157 and its role in accelerating musculoskeletal soft tissue healing. Cell Tissue Res 2019; 377:153-159. [PMID: 30915550 DOI: 10.1007/s00441-019-03016-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
There is a current need for a therapy that can alleviate the social and economic burden that presents itself with debilitating and recurring musculoskeletal soft tissue injuries and disorders. Currently, several therapies are emerging and undergoing trials in animal models; these focus on the manipulation and administration of several growth factors implicated with healing. However, limitations include in vivo instability, reliance on biocompatible and robust carriers and restricted application procedures (local and direct). The aim of this paper is therefore to critically review the current literature surrounding the use of BPC 157, as a feasible therapy for healing and functional restoration of soft tissue damage, with a focus on tendon, ligament and skeletal muscle healing. Currently, all studies investigating BPC 157 have demonstrated consistently positive and prompt healing effects for various injury types, both traumatic and systemic and for a plethora of soft tissues. However, to date, the majority of studies have been performed on small rodent models and the efficacy of BPC 157 is yet to be confirmed in humans. Further, over the past two decades, only a handful of research groups have performed in-depth studies regarding this peptide. Despite this, it is apparent that BPC 157 has huge potential and following further development has promise as a therapy to conservatively treat or aid recovery in hypovascular and hypocellular soft tissues such as tendon and ligaments. Moreover, skeletal muscle injury models have suggested a beneficial effect not only for disturbances that occur as a result of direct trauma but also for systemic insults including hyperkalamia and hypermagnesia. Promisingly, there are few studies reporting any adverse reactions to the administration of BPC 157, although there is still a need to understand the precise healing mechanisms for this therapy to achieve clinical realisation.
Collapse
|
27
|
Vukojević J, Siroglavić M, Kašnik K, Kralj T, Stanćić D, Kokot A, Kolarić D, Drmić D, Sever AZ, Barišić I, Šuran J, Bojić D, Patrlj MH, Sjekavica I, Pavlov KH, Vidović T, Vlainić J, Stupnišek M, Seiwerth S, Sikirić P. Rat inferior caval vein (ICV) ligature and particular new insights with the stable gastric pentadecapeptide BPC 157. Vascul Pharmacol 2018; 106:54-66. [PMID: 29510201 DOI: 10.1016/j.vph.2018.02.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/10/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023]
|
28
|
Strinic D, Belosic Halle Z, Luetic K, Nedic A, Petrovic I, Sucic M, Zivanovic Posilovic G, Balenovic D, Strbe S, Udovicic M, Drmic D, Stupnisek M, Lovric Bencic M, Seiwerth S, Sikiric P. BPC 157 counteracts QTc prolongation induced by haloperidol, fluphenazine, clozapine, olanzapine, quetiapine, sulpiride, and metoclopramide in rats. Life Sci 2017; 186:66-79. [PMID: 28797793 DOI: 10.1016/j.lfs.2017.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/27/2017] [Accepted: 08/06/2017] [Indexed: 12/27/2022]
Abstract
AIM Commonly, neuroleptics and prokinetics induce a prolonged QTc interval. In this study, stable gastric pentadecapeptide BPC 157 counteracts the prolongation of the QTc interval in Wistar rats that underwent daily administration of dopamine neuroleptics or prokinetics. Previously, in rats and mice, BPC 157 counteracted neuroleptic-induced catalepsy and gastric ulcers. MAIN METHODS To counteract neuroleptic- or prokinetic-induced prolongation of the QTc interval, rats were given a BPC 157 regimen once daily over seven days (10μg, 10ng/kg ip) immediately after each administrations of haloperidol (0.625, 6.25, 12.5, and 25.0mg/kg ip), fluphenazine (0.5, 5.0mg/kg ip), clozapine (1.0, 10.0mg/kg ip), quetiapine (1.0, 10.0mg/kg ip), sulpiride (1.6, 16.0mg/kg ip), metoclopramide (2.5, 25.0mg/kg ip) or (1.0, 10.0mg/kg ip). Controls simultaneously received saline (5ml/kg ip). To assess the ECG presentation before and after neuroleptic/prokinetic medication, the assessment was at 1, 2, 3, 4, 5, 10, 15, 20 and 30min (first administration) as well as at 30min, 60min and 24h (first administration and subsequent administrations) and the ECG recording started prior to drug administration. KEY FINDINGS Since very early, a prolonged QTc interval has been continually noted with haloperidol, fluphenazine, clozapine, olanzapine, quetiapine, sulpiride, and metoclopramide in rats as a central common effect not seen with domperidone. Consistent counteraction appears with the stable gastric pentadecapeptide BPC 157. Thus, BPC 157 rapidly and permanently counteracts the QTc prolongation induced by neuroleptics and prokinetics. SIGNIFICANCE Pentadecapeptide BPC 157 is suited for counteracting a prolonged QT interval.
Collapse
Affiliation(s)
- Dean Strinic
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Zeljka Belosic Halle
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Kresimir Luetic
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ana Nedic
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Igor Petrovic
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Mario Sucic
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Gordana Zivanovic Posilovic
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Dijana Balenovic
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Sanja Strbe
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Mario Udovicic
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Domagoj Drmic
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Mirjana Stupnisek
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Lovric Bencic
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Sven Seiwerth
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Predrag Sikiric
- Departments of Pharmacology & Pathology, Medical Faculty University of Zagreb, Zagreb, Croatia; Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia.
| |
Collapse
|
29
|
Boussada M, Ali RB, Said AB, Bokri K, Akacha AB, Dziri C, El May MV. Selenium and a newly synthesized Thiocyanoacetamide reduce Doxorubicin gonadotoxicity in male rat. Biomed Pharmacother 2017; 89:1005-1017. [DOI: 10.1016/j.biopha.2017.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 12/29/2022] Open
|
30
|
Sikiric P, Seiwerth S, Rucman R, Kolenc D, Vuletic LB, Drmic D, Grgic T, Strbe S, Zukanovic G, Crvenkovic D, Madzarac G, Rukavina I, Sucic M, Baric M, Starcevic N, Krstonijevic Z, Bencic ML, Filipcic I, Rokotov DS, Vlainic J. Brain-gut Axis and Pentadecapeptide BPC 157: Theoretical and Practical Implications. Curr Neuropharmacol 2017; 14:857-865. [PMID: 27138887 PMCID: PMC5333585 DOI: 10.2174/1570159x13666160502153022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/17/2016] [Accepted: 04/21/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Brain-gut interaction involves, among others, peptidergic growth factors which are native in GI tract and have strong antiulcer potency and thus could from periphery beneficially affect CNS-disorders. We focused on the stable gastric pentadecapeptide BPC 157, an antiulcer peptidergic agent, safe in inflammatory bowel disease trials and now in multiple sclerosis trial, native and stable in human gastric juice. METHODS Review of our research on BPC 157 in terms of brain-gut axis. RESULTS BPC 157 may serve as a novel mediator of Robert's cytoprotection, involved in maintaining of GI mucosa integrity, with no toxic effect. BPC 157 was successful in the therapy of GI tract, periodontitis, liver and pancreas lesions, and in the healing of various tissues and wounds. Stimulated Egr-1 gene, NAB2, FAK-paxillin and JAK-2 pathways are hitherto implicated. Initially corresponding beneficial central influence was seen when BPC 157 was given peripherally and a serotonin release in particular brain areas, mostly nigrostriatal, was changed. BPC 157 modulates serotonergic and dopaminergic systems, beneficially affects various behavioral disturbances that otherwise appeared due to specifically (over)stimulated/damaged neurotransmitters systems. Besides, BPC 157 has neuroprotective effects: protects somatosensory neurons; peripheral nerve regeneration appearent after transection; after traumatic brain injury counteracts the otherwise progressing course, in rat spinal cord compression with tail paralysis, axonal and neuronal necrosis, demyelination, cyst formation and rescues tail function in both short-terms and long-terms; after NSAIDs or insulin overdose or cuprizone encephalopathies were attenuated along with GI, liver and vascular injuries. CONCLUSION BPC 157, a gastric peptide, may serve as remedy in various CNS-disorders.
Collapse
Affiliation(s)
- Predrag Sikiric
- Medical Faculty, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zivanovic-Posilovic G, Balenovic D, Barisic I, Strinic D, Stambolija V, Udovicic M, Uzun S, Drmic D, Vlainic J, Bencic ML, Sindic A, Seiwerth S, Sikiric P. Stable gastric pentadecapeptide BPC 157 and bupivacaine. Eur J Pharmacol 2016; 793:56-65. [PMID: 27815173 DOI: 10.1016/j.ejphar.2016.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
Bupivacaine toxicity following accidental overdose still lacks therapeutic solution. However, there are major arguments for testing BPC 157 against bupivacaine toxicity in vivo in rats, in particular, and then finally, in vitro. These are: the lack of any known BPC 157 toxicity, a lifesaving effect via the mitigation of arrhythmias in rats underwent hyperkalemia or digitalis toxicity, the elimination of hyperkalemia and arrhythmias in rats underwent succinylcholine toxicity and finally, the reduction of potassium-induced depolarization in vitro (in HEK293 cells) in severe hyperkalemia. Most importantly, BPC 157 successfully prevents and counteracts bupivacaine cardiotoxicity; BPC 157 is effective even against the worst outcomes such as a severely prolonged QRS complex. Here, rats injected with bupivacaine (100mg/kg IP) exhibited bradycardia, AV-block, ventricular ectopies, ventricular tachycardia, T-wave elevation and asystole. All of the fatalities had developed T-wave elevation, high-degree AV-block, respiratory arrest and asystole. These were largely counteracted by BPC 157 administration (50µg/kg, 10µg/kg, 10ng/kg, or 10pg/kg IP) given 30min before or 1min after the bupivacaine injection. When BPC 157 was given 6min after bupivacaine administration, and after the development of prolonged QRS intervals (20ms), the fatal outcome was markedly postponed. Additionally, the effect of bupivacaine on cell membrane depolarization was explored by measuring membrane voltages (Vm) in HEK293 cells. Bupivacaine (1mM) alone caused depolarization of the cells, while in combination with BPC 157 (1µm), the bupivacaine-induced depolarization was inhibited. Together, these findings suggest that the stable gastric pentadecapeptide BPC 157 should be a potential antidote for bupivacaine cardiotoxicity.
Collapse
Affiliation(s)
| | - Diana Balenovic
- Department of Internal Medicine, County Hospital "Dr. Ivo Pedisic", Sisak, Croatia
| | - Ivan Barisic
- Department of Internal Medicine, County Hospital "Pozega", Pozega, Croatia
| | - Dean Strinic
- Department of Internal Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vasilije Stambolija
- Department of Anesthesiology and Resuscitation, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Udovicic
- Department of Internal Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sandra Uzun
- Department of Anesthesiology and Resuscitation, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Josipa Vlainic
- Laboratory of Molecular Neuropharmacology, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Martina Lovric Bencic
- Department of Internal Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Aleksandra Sindic
- Department of Physiology and Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
32
|
Hsieh MJ, Liu HT, Wang CN, Huang HY, Lin Y, Ko YS, Wang JS, Chang VHS, Pang JHS. Therapeutic potential of pro-angiogenic BPC157 is associated with VEGFR2 activation and up-regulation. J Mol Med (Berl) 2016; 95:323-333. [PMID: 27847966 DOI: 10.1007/s00109-016-1488-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/20/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
BPC 157, a pentadecapeptide with extensive healing effects, has recently been suggested to contribute to angiogenesis. However, the underlying mechanism is not yet clear. The present study aimed to explore the potential therapeutic effect and pro-angiogenic mechanism of BPC 157. As demonstrated by the chick chorioallantoic membrane (CAM) assay and endothelial tube formation assay, BPC 157 could increase the vessel density both in vivo and in vitro, respectively. BPC 157 could also accelerate the recovery of blood flow in the ischemic muscle of the rat hind limb as detected by laser Doppler scanning, indicating the promotion of angiogenesis. Histological analysis of the hind limb muscle confirmed the increased number of vessels and the enhanced vascular expression of vascular endothelial growth factor receptor 2 (VEGFR2) in rat with BPC 157 treatment. In vitro study using human vascular endothelial cells further confirmed the increased mRNA and protein expressions of VEGFR2 but not VEGF-A by BPC 157. In addition, BPC 157 could promote VEGFR2 internalization in vascular endothelial cells which was blocked in the presence of dynasore, an inhibitor of endocytosis. BPC 157 time dependently activated the VEGFR2-Akt-eNOS signaling pathway which could also be suppressed by dynasore. The increase of endothelial tube formation induced by BPC 157 was also inhibited by dynasore. This study demonstrates the pro-angiogenic effects of BPC 157 that is associated with the increased expression, internalization of VEGFR2, and the activation of VEGFR2-Akt-eNOS signaling pathway. BPC 157 promotes angiogenesis in CAM assay and tube formation assay. BPC 157 accelerates the blood flow recovery and vessel number in rats with hind limb ischemia. BPC 157 up-regulates VEGFR2 expression in rats with hind limb ischemia and endothelial cell culture. BPC 157 promotes VEGFR2 internalization in association with VEGFR2-Akt-eNOS activation. KEY MESSAGE BPC 157 promotes angiogenesis in CAM assay and tube formation assay. BPC 157 accelerates the blood flow recovery and vessel number in rats with hind limb ischemia. BPC 157 up-regulates VEGFR2 expression in rats with hind limb ischemia and endothelial cell culture. BPC 157 promotes VEGFR2 internalization in association with VEGFR2-Akt-eNOS activation.
Collapse
Affiliation(s)
- Ming-Jer Hsieh
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China.,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Lin-kou, Chang Gung University, Tao-Yuan City, Taiwan, Republic Of China
| | - Hsien-Ta Liu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China.,Division of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, Republic Of China.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Nin Wang
- Department of Obstetrics and Gynecology, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, Republic Of China
| | - Hsiu-Yun Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China
| | - Yuling Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China
| | - Yu-Shien Ko
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Lin-kou, Chang Gung University, Tao-Yuan City, Taiwan, Republic Of China
| | - Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan City, Taiwan, Republic Of China
| | - Vincent Hung-Shu Chang
- Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, Republic Of China
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China. .,Department of Physical Medicine and Rehabilitation, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, Republic Of China.
| |
Collapse
|
33
|
Stambolija V, Stambolija TP, Holjevac JK, Murselovic T, Radonic J, Duzel V, Duplancic B, Uzun S, Zivanovic-Posilovic G, Kolenc D, Drmic D, Romic Z, Seiwerth S, Sikiric P. BPC 157: The counteraction of succinylcholine, hyperkalemia, and arrhythmias. Eur J Pharmacol 2016; 781:83-91. [PMID: 27060013 DOI: 10.1016/j.ejphar.2016.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
Abstract
After the demonstration of its life-saving effect in severe hyperkalemia and the recovery of skeletal muscle after injury, pentadecapeptide BPC 157 has been shown to attenuate the local paralytic effect induced by succinylcholine, in addition to systemic muscle disability (and consequent muscle damage). Hyperkalemia, arrhythmias and a rise in serum enzyme values, were counteracted in rats. Assessments were made at 3 and 30min and 1, 3, 5, and 7 days after succinylcholine administration (1.0mg/kg into the right anterior tibial muscle). BPC 157 (10µg/kg, 10ng/kg) (given intraperitoneally 30min before or immediately after succinylcholine or per-orally in drinking water through 24h until succinylcholine administration) mitigated both local and systemic disturbances. BPC 157 completely eliminated hyperkalemia and arrhythmias, markedly attenuated or erradicated behavioral agitation, muscle twitches, motionless resting and completely eliminated post-succinylcholine hyperalgesia. BPC 157 immediately eliminated leg contractures and counteracted both edema and the decrease in muscle fibers in the diaphragm and injected/non-injected anterior tibial muscles. Therefore, the depolarizing neuromuscular blocker effects of succinylcholine were successfully antagonized.
Collapse
Affiliation(s)
- Vasilije Stambolija
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Tamara Murselovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jelena Radonic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Viktor Duzel
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Bozidar Duplancic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sandra Uzun
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Danijela Kolenc
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zeljko Romic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
34
|
Grgic T, Grgic D, Drmic D, Sever AZ, Petrovic I, Sucic M, Kokot A, Klicek R, Sever M, Seiwerth S, Sikiric P. Stable gastric pentadecapeptide BPC 157 heals rat colovesical fistula. Eur J Pharmacol 2016; 780:1-7. [PMID: 26875638 DOI: 10.1016/j.ejphar.2016.02.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 02/07/2023]
Abstract
To establish the effects of BPC 157 on the healing of rat colovesical fistulas, Wistar Albino male rats were randomly assigned to different groups. BPC 157, a stable gastric pentadecapeptide, has been used in clinical applications-specifically, in ulcerative colitis-and was successful in treating both external and internal fistulas. BPC 157 was provided daily, perorally, in drinking water (10µg/kg, 12ml/rat/day) until sacrifice or, alternatively, 10µg/kg or 10ng/kg intraperitoneally, with the first application at 30min after surgery and the last at 24h before sacrifice. Controls simultaneously received an equivolume of saline (5.0ml/kg ip) or water only (12ml/rat/day). Assessment (i.e., colon and vesical defects, fistula leaking, fecaluria and defecation through the fistula, adhesions and intestinal obstruction as healing processes) took place on days 7, 14 and 28. Control colovesical fistulas regularly exhibited poor healing, with both of the defects persisting; continuous fistula leakage; fecaluria and defecation through the fistula; advanced adhesion formation; and intestinal obstruction. By contrast, BPC 157 given perorally or intraperitoneally and in µg- and ng-regimens rapidly improved the whole presentation, with both colon and vesical defects simultaneously ameliorated and eventually healed. The maximal instilled volume was continuously raised until it reached the values of healthy rats, there were no signs of fecaluria and no defecation through the fistula, there was counteraction of advanced adhesion formation or there was an intestinal obstruction. In conclusion, BPC 157 effects appear to be suited to inducing full healing of colocutaneous fistulas in rats.
Collapse
Affiliation(s)
- Tihomir Grgic
- Department of Pharmacology, School of Medicine, University of Zagreb, POB 916, Salata 11, 10000 Zagreb, Croatia
| | - Dora Grgic
- Department of Pharmacology, School of Medicine, University of Zagreb, POB 916, Salata 11, 10000 Zagreb, Croatia
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, POB 916, Salata 11, 10000 Zagreb, Croatia
| | - Anita Zenko Sever
- Department of Pathology, School of Medicine, University of Zagreb, Salata 9, 10000 Zagreb, Croatia
| | - Igor Petrovic
- Department of Pharmacology, School of Medicine, University of Zagreb, POB 916, Salata 11, 10000 Zagreb, Croatia
| | - Mario Sucic
- Department of Pharmacology, School of Medicine, University of Zagreb, POB 916, Salata 11, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Robert Klicek
- Department of Pharmacology, School of Medicine, University of Zagreb, POB 916, Salata 11, 10000 Zagreb, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, POB 916, Salata 11, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Salata 9, 10000 Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, POB 916, Salata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
35
|
Stable gastric pentadecapeptide BPC 157 heals rectovaginal fistula in rats. Life Sci 2016; 148:63-70. [PMID: 26872976 DOI: 10.1016/j.lfs.2016.02.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/22/2016] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
Abstract
AIM Rectovaginal fistula is a devastating condition providing more than 99% of patients for surgical treatment. We hypothesized that rectovaginal fistula may be healed by therapy with stable gastric pentadecapeptide BPC 157, in consistence with its initial clinical application and effect on external fistulas. MAIN METHODS BPC 157 (10μg/kg or 10ng/kg) was given perorally, in drinking water (0.16μg/ml or 0.16ng/ml, 12ml/rat/day) till sacrifice, or alternatively, intraperitoneally, first application at 30min after surgery, last at 24h before sacrifice. Controls simultaneously received an equivolume of saline (5.0ml/kg ip) or water only (12ml/rat/day). The assessment (i.e., rectal and vaginal defect, fistula leakage, defecation through the fistula, adhesions and intestinal obstruction as healing processes) was at day 1, 3, 5, 7, 10, 14 and 21. KEY FINDINGS Regularly, rectovaginal fistulas exhibited poor healing, with both of the defects persisting, continuous fistula leakage, defecation through the fistula, advanced adhesion formation and intestinal obstruction. By contrast, BPC 157 given perorally or intraperitoneally, in μg- and ng-regimens rapidly improved the whole presentation, with both rectal and vaginal defects simultaneously ameliorated and eventually healed. The maximal instilled volume was continuously raised till the values of healthy rats were achieved, there were no signs of defecation through the fistula. A counteraction of advanced adhesion formation and intestinal obstruction was achieved. Microscopic improvement was along with macroscopic findings. SIGNIFICANCE BPC 157 effects appear to be suited to induce a full healing of rectovaginal fistulas in rats.
Collapse
|
36
|
Zemba M, Cilic AZ, Balenovic I, Cilic M, Radic B, Suran J, Drmic D, Kokot A, Stambolija V, Murselovic T, Holjevac JK, Uzun S, Djuzel V, Vlainic J, Seiwerth S, Sikiric P. BPC 157 antagonized the general anaesthetic potency of thiopental and reduced prolongation of anaesthesia induced by L-NAME/thiopental combination. Inflammopharmacology 2015; 23:329-36. [PMID: 26563892 DOI: 10.1007/s10787-015-0249-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023]
Abstract
AIM We hypothesized that certain effects of the general anaesthetic thiopental are dependent on NO-related mechanisms, which were consequently counteracted by stable gastric pentadecapeptide BPC 157. MAIN METHODS (1) All rats intraperitoneally received thiopental (20, 30, 40, and 50 mg/kg) while medication BPC 157 (10 μg/kg, 10 ng/kg, and 10 pg/kg) was given intraperitoneally at 5 min before thiopental. (2) To determine NO-related mechanisms, all rats received intraperitoneally thiopental 40 mg/kg while BPC 157 (10 μg/kg), L-NAME (10 mg/kg) and L-arginine (30 mg/kg) were applied alone and/or combined. BPC 157 was given at 25 min before thiopental while L-NAME, L-arginine, alone and/or combined, were applied at 20 min before thiopental. KEY FINDINGS (1) BPC 157 own effect on thiopental anaesthesia: BPC 157 (10 ng/kg and 10 μg/kg) caused a significant antagonism of general anaesthesia produced by thiopental with a parallel shift of the dose-response curve to the right. (2) L-NAME-L-arginine-BPC 157 interrelations: L-NAME: Thiopental-induced anaesthesia duration was tripled. L-arginine: Usual thiopental anaesthesia time was not influenced. Active only when given with L-NAME or BPC 157: potentiating effects of L-NAME were lessened, not abolished; shortening effect of BPC 157: abolished. BPC 157 and L-NAME: Potentiating effects of L-NAME were abolished. BPC 157 and L-NAME and L-arginine: BPC 157 +L-NAME +L-arginine rats exhibited values close to those in BPC 157 rats. SIGNIFICANCE Thiopental general anaesthesia is simultaneously manipulated in both ways with NO system activity modulation, L-NAME (prolongation) and BPC 157 (shortening/counteraction) and L-arginine (interference with L-NAME and BPC 157).
Collapse
Affiliation(s)
- Mladen Zemba
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Andrea Zemba Cilic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Igor Balenovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Matija Cilic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Bozo Radic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Jelena Suran
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Vasilije Stambolija
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Tamara Murselovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Jadranka Katancic Holjevac
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Sandra Uzun
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Viktor Djuzel
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Josipa Vlainic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, PO Box 916, 10000, Zagreb, Croatia.
| |
Collapse
|
37
|
Chen Y, Tang Y, Zhang YC, Huang XH, Xie YQ, Xiang Y. A metabolomic study of rats with doxorubicin-induced cardiomyopathy and Shengmai injection treatment. PLoS One 2015; 10:e0125209. [PMID: 25938766 PMCID: PMC4418690 DOI: 10.1371/journal.pone.0125209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/23/2015] [Indexed: 01/06/2023] Open
Abstract
Doxorubicin-induced cardiomyopathy (DOX-CM) is a severe complication of doxorubicin (DOX) chemotherapy. Characterized by cumulative and irreversible myocardial damage, its pathogenesis has not been fully elucidated. Shengmai Injection (SMI), a Traditional Chinese Medicine, may alleviate myocardial injury and improve heart function in the setting of DOX-CM. As a result of its multi-component and multi-target nature and comprehensive regulation, the pharmacological mechanisms underlying SMI’s effects remain obscure. The emerging field of metabolomics provides a potential approach with which to explore the pathogenesis of DOX-CM and the benefits of SMI treatment. DOX-CM was induced in rats via intraperitoneal injections of DOX. Cardiac metabolic profiling was performed via gas chromatography/mass spectrometry and ultra-performance liquid chromatography/tandem mass spectrometry. A bioinformatics analysis was conducted via Ingenuity Pathway Analysis (IPA). Eight weeks following DOX treatment, significant cardiac remodeling, dysfunction and metabolic perturbations were observed in the rats with DOX-CM. The metabolic disturbances primarily involved lipids, amino acids, vitamins and energy metabolism, and may have been indicative of both an energy metabolism disorder and oxidative stress secondary to DOX chemotherapy. However, SMI improved cardiac structure and function, as well as the metabolism of the rats with DOX-CM. The metabolic alterations induced via SMI, including the promotion of glycogenolysis, glycolysis, amino acid utilization and antioxidation, suggested that SMI exerts cardioprotective effects by improving energy metabolism and attenuating oxidative stress. Moreover, the IPA revealed that important signaling molecules and enzymes interacted with the altered metabolites. These findings have provided us with new insights into the pathogenesis of DOX-CM and the effects of SMI, and suggest that the combination of metabolomic analysis and IPA may represent a promising tool with which to explore and better understand both heart disease and TCM therapy.
Collapse
Affiliation(s)
- Yu Chen
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yong Tang
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ya-Chen Zhang
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- * E-mail:
| | - Xiao-Hong Huang
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu-Quan Xie
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yin Xiang
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
38
|
Stupnisek M, Kokot A, Drmic D, Hrelec Patrlj M, Zenko Sever A, Kolenc D, Radic B, Suran J, Bojic D, Vcev A, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 Reduces Bleeding and Thrombocytopenia after Amputation in Rats Treated with Heparin, Warfarin, L-NAME and L-Arginine. PLoS One 2015; 10:e0123454. [PMID: 25897838 PMCID: PMC4405609 DOI: 10.1371/journal.pone.0123454] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/03/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BPC 157 is a stable gastric pentadecapeptide recently implicated with a role in hemostasis. While NO is largely implicated in hemostatic mechanisms, in tail-amputation-models under heparin- and warfarin-administration, both the NO-synthase (NOS)-blocker, L-NAME (prothrombotic) and the NOS-substrate L-arginine (antithrombotic), were little investigated. Objective. To investigate the effect of L-NAME and L-arginine on hemostatic parameters, and to reveal the effects of BPC 157 on the L-NAME- and L-arginine-induced hemostatic actions under different pathological condition: tail amputation without or with anticoagulants, heparin or warfarin. METHODS Tail amputation, and/or i.v.-heparin (10 mg/kg), i.g.-warfarin (1.5 mg/kg/day for 3 days) were used in rats. Treatment includes BPC 157, L-NAME, L-arginine, per se and their combination. RESULTS After (tail) amputation, with or without i.v.-heparin or i.g.-warfarin, BPC 157 (10 μg/kg, 10 ng/kg, i.p., i.v. (heparin), 10 μg/kg i.g. (warfarin)) always reduced bleeding time and/or haemorrhage and counteracted thrombocytopenia. As for L-NAME and/or L-arginine, we noted: L-arginine (100 mg/kg i.p.)-rats: more bleeding, less/no thrombocytopenia; L-NAME (5 mg/kg i.p.)-rats: less bleeding (amputation only), but present thrombocytopenia; L-NAME+L-arginine-rats also exhibited thrombocytopenia: L-NAME counteracted L-arginine-increased bleeding, L-arginine did not counteract L-NAME-thrombocytopenia. All animals receiving BPC 157 in addition (BPC 157 μg+L-NAME; BPC 157 μg+L-arginine, BPC 157 μg+L-NAME+L-arginine), exhibited decreased haemorrhage and markedly counteracted thrombocytopenia. CONCLUSIONS L-NAME (thrombocytopenia), L-arginine (increased haemorrhage) counteraction and BPC 157 (decreased haemorrhage, counteracted thrombocytopenia) with rescue against two different anticoagulants, implicate a BPC 157 modulatory and balancing role with rescued NO-hemostatic mechanisms.
Collapse
Affiliation(s)
- Mirjana Stupnisek
- Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Antonio Kokot
- Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Masa Hrelec Patrlj
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Zenko Sever
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Danijela Kolenc
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Bozo Radic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jelena Suran
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Bojic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Aleksandar Vcev
- Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- * E-mail:
| |
Collapse
|
39
|
Andreadou I, Mikros E, Ioannidis K, Sigala F, Naka K, Kostidis S, Farmakis D, Tenta R, Kavantzas N, Bibli SI, Gikas E, Skaltsounis L, Kremastinos DT, Iliodromitis EK. Oleuropein prevents doxorubicin-induced cardiomyopathy interfering with signaling molecules and cardiomyocyte metabolism. J Mol Cell Cardiol 2014; 69:4-16. [DOI: 10.1016/j.yjmcc.2014.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 11/30/2022]
|
40
|
Matouk AI, Taye A, Heeba GH, El-Moselhy MA. Quercetin augments the protective effect of losartan against chronic doxorubicin cardiotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:443-450. [PMID: 23770454 DOI: 10.1016/j.etap.2013.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 05/10/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
The present study aimed to examine whether the co-administration of quercetin (QRN) and losartan (LOS) can produce additional protective effects against chronic DOX cardiotoxicity. Cardiotoxicity in rats was induced by intraperitoneal injection of doxorubicin (DOX) in a cumulative dose of 15mg/kg for two weeks. Results revealed that DOX administration exhibited elevated serum levels of TNF-α, creatine kinase (CK-MB), lactate dehydrogenase (LDH) in addition to increased myocardial lipid peroxide (MDA) and nitric oxide (NO) alongside attenuating cardiac antioxidant defense system of superoxide dismutase (SOD) and catalase (CAT) activities. DOX produced leukocyte infiltration and myocardial lesions. Pretreatment with QRN (10mg/kg, orally) solely or in combination with LOS (0.7mg/kg, orally) for 6 weeks markedly ameliorated all these biochemical characteristics, and substantially reduced the myocardium peroxidative damage. The protective effects obtained by LOS were more pronounced by its combination with QRN. Our results suggest that quercetin potentially augmented the cardioprotective effect of losartan against chronic DOX cardiotoxicity via its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Asmaa I Matouk
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ashraf Taye
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Gehan H Heeba
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed A El-Moselhy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
41
|
Jandric I, Vrcic H, Jandric Balen M, Kolenc D, Brcic L, Radic B, Drmic D, Seiwerth S, Sikiric P. Salutary effect of gastric pentadecapeptide BPC 157 in two different stress urinary incontinence models in female rats. Med Sci Monit Basic Res 2013; 19:93-102. [PMID: 23478678 PMCID: PMC3940704 DOI: 10.12659/msmbr.883828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Since an originally anti-ulcer stable gastric pentadecapeptide BPC 157 (PL 14736) was shown to promote healing of injured striated muscle and smooth muscle in the gastrointestinal tract, we explored its therapeutic potentials for leak point pressure (LPP) recovery in rat stress urinary incontinence (SUI) after transabdominal urethrolysis (TU) and prolonged vaginal dilatation (VD). Material/Methods During a 7-day period, TU-rats and VD-rats (or healthy rats) received BPC 157, either (i) intraperitoneally, 10 μg/kg or 10 ng/kg, once daily (first administration 30 min after surgery, last 24 h before LPP-testing and sacrifice), or (ii) per-orally, 10 μg/kg in drinking water (0.16 μg/mL, 12 mL/rat/day). Vesicourethral segments were harvested for immunohistochemical evaluation. Results All BPC 157 regimens counteracted decrease of LPP values in TU-rats and VD-rats. Additionally, BPC 157-TU rats (μg-intraperitoneally or per-orally) and BPC 157-VD rats (μg intraperitoneally) reached LPP values originally noted in healthy rats. Conversely, in healthy rats, BPC 157 did not alter LPP. Immunohistochemical studies revealed higher desmin (delineates striated organization of skeletal muscle), smooth muscle actin, and CD34 (angiogenic marker) positivity within the urethral wall in BPC 157-treated rats vs. controls, as well as overall preserved muscle/connective tissue ratio assessed with Mallory’s trichrome staining. Conclusions Pentadecapeptide BPC 157, applied parenterally or per-orally, appears to ameliorate the SUI in rat models, improving the otherwise detrimental course of healing after VD and TU, which may be analogous to human injury. These beneficial effects may possibly be selectively used in future strategies for treatment of SUI.
Collapse
Affiliation(s)
- Ivan Jandric
- General Hospital "Dr. Josip Bencevic", Slavonski Brod, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barisic I, Balenovic D, Klicek R, Radic B, Nikitovic B, Drmic D, Udovicic M, Strinic D, Bardak D, Berkopic L, Djuzel V, Sever M, Cvjetko I, Romic Z, Sindic A, Bencic ML, Seiwerth S, Sikiric P. Mortal hyperkalemia disturbances in rats are NO-system related. The life saving effect of pentadecapeptide BPC 157. ACTA ACUST UNITED AC 2013; 181:50-66. [PMID: 23327997 DOI: 10.1016/j.regpep.2012.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 11/23/2012] [Accepted: 12/17/2012] [Indexed: 02/07/2023]
Abstract
We demonstrate the full counteracting ability of stable gastric pentadecapeptide BPC 157 against KCl-overdose (intraperitoneal (i), intragastric (ii), in vitro (iii)), NO-system related. (i) We demonstrated potential (/kg) of: BPC 157 (10ng, 10μg ip, complete counteraction), l-arginine (100mg ip, attenuation) vs. L-NAME (5mg ip, deadly aggravation), given alone and/or combined, before or after intraperitoneal KCl-solution application (9mEq/kg). Therapy was confronted with promptly unrelenting hyperkalemia (>12mmol/L), arrhythmias (and muscular weakness, hypertension, low pressure in lower esophageal and pyloric sphincter) with an ultimate and a regularly inevitable lethal outcome within 30min. Previously, we established BPC 157-NO-system interaction; now, a huge life-saving potential. Given 30min before KCl, all BPC 157 regimens regained sinus rhythm, had less prolongation of QRS, and had no asystolic pause. BPC 157 therapy, given 10min after KCl-application, starts the rescue within 5-10min, completely restoring normal sinus rhythm at 1h. Likewise, other hyperkalemia-disturbances (muscular weakness, hypertension, low sphincteric pressure) were also counteracted. Accordingly with NO-system relation, deadly aggravation by L-NAME: l-arginine brings the values to the control levels while BPC 157 always completely nullified lesions, markedly below those of controls. Combined with l-arginine, BPC 157 exhibited no additive effect. (ii) Intragastric KCl-solution application (27mEq/kg) - (hyperkalemia 7mmol/L): severe stomach mucosal lesions, sphincter failure and peaked T waves were fully counteracted by intragastric BPC 157 (10ng, 10μg) application, given 30min before or 10min after KCl. (iii). In HEK293 cells, hyperkalemic conditions (18.6mM potassium concentrations), BPC 157 directly affects potassium conductance, counteracting the effect on membrane potential and depolarizations caused by hyperkalemic conditions.
Collapse
Affiliation(s)
- Ivan Barisic
- Department of Pharmacology, University of Zagreb, Medical School, Salata 11, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cesarec V, Becejac T, Misic M, Djakovic Z, Olujic D, Drmic D, Brcic L, Rokotov DS, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 and the esophagocutaneous fistula healing therapy. Eur J Pharmacol 2012; 701:203-12. [PMID: 23220707 DOI: 10.1016/j.ejphar.2012.11.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 02/07/2023]
Abstract
Esophagocutaneous fistulas are a failure of the NO-system, due to NO-synthase blockage by the NOS-blocker L-NAME consequently counteracted by l-arginine and gastric pentadecapeptide BPC 157 (l-arginine <BPC 157), precipitating a therapeutic benefit. Previously, there was an established BPC 157-NO-system interaction. BPC 157 GEPPPGKPADDAGLV, MW 1419 (LD1 not achieved), is a safe and stable anti-ulcer peptide, successful in inflammatory bowel disease trials, counteracting esophagitis, sphincter failure, gastrointestinal and skin ulcers, gastrocutaneous or colocutaneous fistulas. We treated rats with established cervical esophagocutaneous fistulas throughout four days (both open skin and esophageal defects, with significant leakage) with BPC 157 (parenterally and perorally) and L-NAME (blocking NO genesis) and l-arginine (NO-substrate) alone or in combination. RT-PCR investigated eNOS, iNOS, COX-2 mRNA levels in the fistulas. We evidenced a closely inter-related process of unhealed skin, esophageal defects, unhealed fistulas (up regulated eNOS, iNOS and COX2 mRNA levels), usually lethal, particularly NO-system related and therapy dependent. Generally, the course of fistula healing was accelerated either to a greater extent (with BPC 157 (in particular, less eNOS gene expression) completely counteracting L-NAME effects, in L-NAME+BPC 157 and L-NAME+l-arginine+BPC 157 groups), or to a lesser extent (with l-arginine). Conversely, the process was aggravated, rapidly and prominently (with L-NAME). In particular, BPC 157 was effective either given per-orally/intraperitoneally, in μg- and ng-regimens. Shortly, defects started to heal, with less fistula leakage and no mortality at day 4. Failure of pyloric and lower esophageal sphincter pressure was restored, with practically no esophagitis.
Collapse
Affiliation(s)
- Vedran Cesarec
- Department of Pharmacology, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Andoh T, Yoshida T, Lee JB, Kuraishi Y. Cathepsin E induces itch-related response through the production of endothelin-1 in mice. Eur J Pharmacol 2012; 686:16-21. [DOI: 10.1016/j.ejphar.2012.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/26/2012] [Accepted: 04/05/2012] [Indexed: 11/30/2022]
|
45
|
Stupnisek M, Franjic S, Drmic D, Hrelec M, Kolenc D, Radic B, Bojic D, Vcev A, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 reduces bleeding time and thrombocytopenia after amputation in rats treated with heparin, warfarin or aspirin. Thromb Res 2011; 129:652-9. [PMID: 21840572 DOI: 10.1016/j.thromres.2011.07.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/26/2011] [Accepted: 07/20/2011] [Indexed: 02/07/2023]
Abstract
Recently, in rat abdominal aorta terminoterminal-anastomosis the stable gastric pentadecapeptide BPC 157 prevents obstructive thrombus formation and rapidly destroys already formed obstructive thrombus. Also, BPC 157 wound healing may signify the clot as conductive matrix or "scaffold" to speed up wound healing process, and decrease bleeding. Here, in rats, BPC 157 (10 μg/kg, 10 ng/kg) improved always reduced bleeding time and amount of bleeding after (tail) amputation only, heparin (250 mg/kg, 25mg/kg, 10mg/kg i.v.), warfarin (1.5mg/kg i.g. once daily for 3 consecutive days), aspirin (0.1g/kg i.g. (once daily/3 consecutive days) or 1.0 g/kg i.p. once), and amputation associated with those agents application. BPC 157 counteracting regimens (i.v., i.p., i.g. (immediately after any challenge)) correspondingly follow the route of bleeding-agents application. All heparin-, warfarin-, and aspirin-rats and normal-rats that received BPC 157 exhibited lesser fall in platelets count. BPC 157 attenuated over-increased APTT-, TT-values in 10mg/kg heparin-rats, but did not influence heparin activity (anti-Xa test). Indicatively, unless counteracted in BPC 157 rats, excessive bleeding-acute thrombocytopenia (<20% of initial values in heparin-rats) approaches substantial fall in platelets count known in type II HIT. Also, BPC 157 markedly prolongs the survival time (heparin-rats, 25mg/kg, right foot amputation).
Collapse
Affiliation(s)
- Mirjana Stupnisek
- Department of Pharmacology and Pathology Medical Faculty University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ilic S, Drmic D, Zarkovic K, Kolenc D, Brcic L, Radic B, Djuzel V, Blagaic AB, Romic Z, Dzidic S, Kalogjera L, Seiwerth S, Sikiric P. Ibuprofen hepatic encephalopathy, hepatomegaly, gastric lesion and gastric pentadecapeptide BPC 157 in rats. Eur J Pharmacol 2011; 667:322-9. [PMID: 21645505 DOI: 10.1016/j.ejphar.2011.05.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 05/12/2011] [Accepted: 05/22/2011] [Indexed: 02/07/2023]
Abstract
Chronic ibuprofen (0.4 g/kg intraperitoneally, once daily for 4 weeks) evidenced a series of pathologies, not previously reported in ibuprofen-dosed rats, namely hepatic encephalopathy, gastric lesions, hepatomegaly, increased AST and ALT serum values with prolonged sedation/unconsciousness, and weight loss. In particular, ibuprofen toxicity was brain edema, particularly in the cerebellum, with the white matter being more affected than in gray matter. In addition, damaged and red neurons, in the absence of anti-inflammatory reaction was observed, particularly in the cerebral cortex and cerebellar nuclei, but was also present although to a lesser extent in the hippocampus, dentate nucleus and Purkinje cells. An anti-ulcer peptide shown to have no toxicity, the stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419, 10 μg, 10 ng/kg) inhibited the pathology seen with ibuprofen (i) when given intraperitoneally, immediately after ibuprofen daily or (ii) when given in drinking water (0.16 μg, 0.16 ng/ml). Counteracted were all adverse effects, such as hepatic encephalopathy, the gastric lesions, hepatomegaly, increased liver serum values. In addition, BPC 157 treated rats showed no behavioral disturbances and maintained normal weight gain. Thus, apart from efficacy in inflammatory bowel disease and various wound treatments, BPC 157 was also effective when given after ibuprofen.
Collapse
Affiliation(s)
- Spomenko Ilic
- Department of Pharmacology and Pathology Medical Faculty University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ilic S, Drmic D, Franjic S, Kolenc D, Coric M, Brcic L, Klicek R, Radic B, Sever M, Djuzel V, Filipovic M, Djakovic Z, Stambolija V, Blagaic AB, Zoricic I, Gjurasin M, Stupnisek M, Romic Z, Zarkovic K, Dzidic S, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 and its effects on a NSAID toxicity model: diclofenac-induced gastrointestinal, liver, and encephalopathy lesions. Life Sci 2011; 88:535-42. [PMID: 21295044 DOI: 10.1016/j.lfs.2011.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
Abstract
AIMS We attempted to fully antagonize the extensive toxicity caused by NSAIDs (using diclofenac as a prototype). MAIN METHODS Herein, we used the stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419), an anti-ulcer peptide shown to be efficient in inflammatory bowel disease clinical trials (PL 14736) and various wound treatments with no toxicity reported. This peptide was given to antagonize combined gastrointestinal, liver, and brain toxicity induced by diclofenac (12.5mg/kg intraperitoneally, once daily for 3 days) in rats. KEY FINDINGS Already considered a drug that can reverse the toxic side effects of NSAIDs, BPC 157 (10 μg/kg, 10 ng/kg) was strongly effective throughout the entire experiment when given (i) intraperitoneally immediately after diclofenac or (ii) per-orally in drinking water (0.16 μg/mL, 0.16 ng/mL). Without BPC 157 treatment, at 3h following the last diclofenac challenge, we encountered a complex deleterious circuit of diclofenac toxicity characterized by severe gastric, intestinal and liver lesions, increased bilirubin, aspartate transaminase (AST), alanine transaminase (ALT) serum values, increased liver weight, prolonged sedation/unconsciousness (after any diclofenac challenge) and finally hepatic encephalopathy (brain edema particularly located in the cerebral cortex and cerebellum, more in white than in gray matter, damaged red neurons, particularly in the cerebral cortex and cerebellar nuclei, Purkinje cells and less commonly in the hippocampal neurons). SIGNIFICANCE The very extensive antagonization of diclofenac toxicity achieved with BPC 157 (μg-/ng-regimen, intraperitoneally, per-orally) may encourage its further use as a therapy to counteract diclofenac- and other NSAID-induced toxicity.
Collapse
Affiliation(s)
- Spomenko Ilic
- Department of Pharmacology and Pathology Medical Faculty, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Keltai K, Cervenak L, Makó V, Doleschall Z, Zsáry A, Karádi I. Doxorubicin selectively suppresses mRNA expression and production of endothelin-1 in endothelial cells. Vascul Pharmacol 2010; 53:209-14. [PMID: 20709190 DOI: 10.1016/j.vph.2010.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 08/05/2010] [Accepted: 08/07/2010] [Indexed: 01/03/2023]
Abstract
Doxorubicin (DXR) is a widely used cytostatic agent, but its administration is limited by its cardiovascular side effects. The endothelium is one of the largest organs in the human body and due to its direct contact with blood; it is exposed to the toxic effects of DXR. The aim of this study was to investigate in endothelial cells the effects of DXR on the expression of genes involved in cardiovascular diseases. We used in vitro cultured human umbilical vein endothelial cells (HUVEC) as a model; gene expression was assessed by SuperArray and qPCR. Out of the 96 representative genes of cardiovascular importance, the expression of only the ET-1 gene changed significantly. ET-1 mRNA expression was 10.9% of the untreated control (p=0.0049). This result was confirmed by qPCR (2.41% of control, p=0.0022). DXR also suppressed ET-1 production at protein level (p=0.0116). Both the early decrease in endothelial ET-1 production in the presence of DXR and the high plasma level of DXR during chemotherapy may influence the toxic effects of the drug.
Collapse
Affiliation(s)
- Katalin Keltai
- Semmelweis University, 3rd Dept of Medicine, 4. Kutvolgyi u., Budapest H-1125, Hungary.
| | | | | | | | | | | |
Collapse
|
49
|
Tudor M, Jandric I, Marovic A, Gjurasin M, Perovic D, Radic B, Blagaic AB, Kolenc D, Brcic L, Zarkovic K, Seiwerth S, Sikiric P. Traumatic brain injury in mice and pentadecapeptide BPC 157 effect. ACTA ACUST UNITED AC 2009; 160:26-32. [PMID: 19931318 DOI: 10.1016/j.regpep.2009.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 01/18/2023]
Abstract
Gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, an anti-ulcer peptide, efficient in inflammatory bowel disease trials (PL 14736), no toxicity reported, improved muscle crush injury. After an induced traumatic brain injury (TBI) in mice by a falling weight, BPC 157 regimens (10.0microg, 10.0ng/kgi.p.) demonstrated a marked attenuation of damage with an improved early outcome and a minimal postponed mortality throughout a 24h post-injury period. Ultimately, the traumatic lesions (subarachnoidal and intraventricular haemorrhage, brain laceration, haemorrhagic laceration) were less intense and consecutive brain edema had considerably improved. Given prophylactically (30 min before TBI) the improved conscious/unconscious/death ratio in TBI-mice was after force impulses of 0.068 Ns, 0.093 Ns, 0.113 Ns, 0.130 Ns, 0.145 Ns, and 0.159 Ns. Counteraction (with a reduction of unconsciousness, lower mortality) with both microg- and ng-regimens included the force impulses of 0.068-0.145 Ns. A higher regimen presented effectiveness also against the maximal force impulse (0.159 Ns). Furthermore, BPC 157 application immediately prior to injury was beneficial in mice subjected to force impulses of 0.093 Ns-TBI. For a more severe force impulse (0.130 Ns, 0.145 Ns, or 0159 Ns), the time-relation to improve the conscious/unconscious/death ratio was: 5 min (0.130 Ns-TBI), 20 min (0.145 Ns-TBI) or 30 min (0.159 Ns-TBI).
Collapse
Affiliation(s)
- Mario Tudor
- Department of Pharmacology, Medical Faculty University of Zagreb, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gjurasin M, Miklic P, Zupancic B, Perovic D, Zarkovic K, Brcic L, Kolenc D, Radic B, Seiwerth S, Sikiric P. Peptide therapy with pentadecapeptide BPC 157 in traumatic nerve injury. ACTA ACUST UNITED AC 2009; 160:33-41. [PMID: 19903499 DOI: 10.1016/j.regpep.2009.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 09/23/2009] [Accepted: 11/01/2009] [Indexed: 12/22/2022]
Abstract
We focused on the healing of rat transected sciatic nerve and improvement made by stable gastric pentadecapeptide BPC 157 (10 microg, 10ng/kg) applied shortly after injury (i) intraperitoneally/intragastrically/locally, at the site of anastomosis, or after (ii) non-anastomozed nerve tubing (7 mm nerve segment resected) directly into the tube. Improvement was shown clinically (autotomy), microscopically/morphometrically and functionally (EMG, one or two months post-injury, walking recovery (sciatic functional index (SFI)) at weekly intervals). BPC 157-rats exhibited faster axonal regeneration: histomorphometrically (improved presentation of neural fascicles, homogeneous regeneration pattern, increased density and size of regenerative fibers, existence of epineural and perineural regeneration, uniform target orientation of regenerative fibers, and higher proportion of neural vs. connective tissue, all fascicles in each nerve showed increased diameter of myelinated fibers, thickness of myelin sheet, number of myelinated fibers per area and myelinated fibers as a percentage of the nerve transected area and the increased blood vessels presentation), electrophysiologically (increased motor action potentials), functionally (improved SFI), the autotomy absent. Thus, BPC 157 markedly improved rat sciatic nerve healing.
Collapse
Affiliation(s)
- Miroslav Gjurasin
- Department of Pharmacology, Medical Faculty, University of Zagreb Medical School, Salata 11, POB 916, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | |
Collapse
|