1
|
Thomas DC, Bellani D, Piermatti J, Kodaganallur Pitchumani P. Systemic Factors Affecting Prognosis of Dental Implants. Dent Clin North Am 2024; 68:555-570. [PMID: 39244244 DOI: 10.1016/j.cden.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Clinicians who place and restore implants are always concerned about the success and longevity of the same. There are several local and systemic factors that affect osseointegration and the health of the peri-implant tissues. In this study, we review the systemic factors that can affect implant survival, osseointegration, and long-term success. The study highlights the importance of delineating, and taking into consideration these systemic factors from the planning phase to the restorative phase of dental implants. A thorough medical history, including prescription and over-the-counter medications, is vital, as there may be numerous factors that could directly or indirectly influence the prognosis of dental implants.
Collapse
Affiliation(s)
- Davis C Thomas
- Department of Diagnostic Sciences, Center for Temporomandibular Disorders and Orofacial Pain, Rutgers School of Dental Medicine, Newark, NJ, USA.
| | | | - Jack Piermatti
- Nova Southeastern University College of Dental Medicine, FL, USA
| | | |
Collapse
|
2
|
Bingül MB, Gul M, Dündar S, Sökmen K, Artas G, Polat ME, Tanrisever M, Ozcan EC. Effect of Different Administered Doses of Capsaicin and Titanium Implant Osseointegration. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1094. [PMID: 39064523 PMCID: PMC11279083 DOI: 10.3390/medicina60071094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: This study aimed to evaluate the histological and biochemical effects of capsaicin on implant osseointegration and oxidative stress. Materials and Methods: Male Wistar albino rats weighing between 250 and 300 g were used in this study. Twenty-four rats were randomly divided into three equal groups: implant + control (n = 8), implant + capsaicin-1 (n = 8), and implant + capsaicin-2 (n = 8). Additionally, 2.5 mm diameter and 4 mm length titanium implants were surgically integrated into the corticocancellous bone parts of the femurs. In the treatment groups, rats were injected intraperitoneally with 25 mg/kg (implant + capsaicin-1) and 50 mg/kg (implant + capsaicin-2) of capsaicin. No additional applications were made in the control group. Three rats in total died during and after the experiment as a result of the analyses performed on 21 animals. Results: The highest total antioxidant status value was found in capsaicin dose 2, according to the analysis. The control group had the highest total oxidant status and oxidative stress index values, while group 2 of capsaicin had the lowest. After analysis, we found that there was no observed positive effect on osteointegration in this study (p > 0.05), although the bone implant connection was higher in the groups treated with capsaicin. Conclusions: A positive effect on osteointegration was not observed in this study. This may be due to osteoclast activation. However, it was found that it has a positive effect on oxidative stress. Osteoclast activation may be the cause of this phenomenon. Capsaicin was found to have a positive effect on oxidative stress (p < 0.05). It was also observed to have a positive effect on oxidative stress.
Collapse
Affiliation(s)
- Muhammet Bahattin Bingül
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Harran University, Sanliurfa 63300, Turkey; (M.B.B.); (M.E.P.)
| | - Mehmet Gul
- Department of Periodontology, Faculty of Dentistry, Harran University, Sanliurfa 63300, Turkey
| | - Serkan Dündar
- Department of Periodontology, Faculty of Dentistry, Firat University, Elazig 23119, Turkey;
| | - Kevser Sökmen
- Department of Periodontology, Faculty of Dentistry, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey;
| | - Gökhan Artas
- Department of Medical, Faculty of Medicine, Pathology Firat University, Elazig 23119, Turkey;
| | - Mehmet Emrah Polat
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Harran University, Sanliurfa 63300, Turkey; (M.B.B.); (M.E.P.)
| | - Murat Tanrisever
- Department of Surgery, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey;
| | - Erhan Cahit Ozcan
- Department of Esthetic, Faculty of Medicine, Plastic and Reconstructive Surgery, Elazig 44090, Turkey;
| |
Collapse
|
3
|
Su Z, Guo C, Gui X, Wu L, Zhang B, Qin Y, Tan Z, Zhou C, Wei W, Fan Y, Zhang X. 3D printing of customized bioceramics for promoting bone tissue regeneration by regulating sympathetic nerve behavior. J Mater Chem B 2024; 12:4217-4231. [PMID: 38596904 DOI: 10.1039/d4tb00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Numerous studies have shown that there are multiple neural activities involved in the process of bone resorption and bone regeneration, and promoting osteogenesis by promoting neural network reconstruction is an effective strategy for repairing critical size bone defects. However, traumatic bone defects often cause activation of the sympathetic nervous system (SNS) in the damaged area, releasing excess catecholamines (CAs), resulting in a decrease in the rate of bone formation. Herein, a 3D-printed scaffold loaded with propranolol (PRN) is proposed to reduce CA concentrations in bone defect areas and promote bone regeneration through drug release. For this purpose, PRN-loaded methacrylated gelatin (GelMA) microspheres were mixed with low-concentration GelMA and perfused into a 3D-printed porous hydroxyapatite (HAp) scaffold. By releasing PRN, which can block β-adrenergic receptors, it hinders the activation of sympathetic nerves and inhibits the release of excess CA by the SNS. At the same time, the composite scaffold recruits bone marrow mesenchymal stem cells (BMSCs) and promotes the differentiation of BMSCs in the direction of osteoblasts, which effectively promotes bone regeneration in the rabbit femoral condyle defect model. The results of the study showed that the release of PRN from the composite scaffold could effectively hinder the activation of sympathetic nerves and promote bone regeneration, providing a new strategy for the treatment of bone defects.
Collapse
Affiliation(s)
- Zixuan Su
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xingyu Gui
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Lina Wu
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Boqing Zhang
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yuxiang Qin
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Changchun Zhou
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Wei Wei
- Department of Emergency, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yujiang Fan
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Xingdong Zhang
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
4
|
Zhang Y, Bai J, Li L, Yang H, Yang Y, Lv H. Research for correlation between heart rate variability parameters and bone mineral density in patients of type 2 diabetes mellitus. J Endocrinol Invest 2023; 46:79-88. [PMID: 35925468 DOI: 10.1007/s40618-022-01886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE The relationship of CAN and BMD, fracture risk is still unclear in T2DM. The aim of the present study is to investigate the correlation between heart rate variability (HRV) and BMD in T2DM. METHODS The study included 276 patients with T2DM aged ≥ 50 years, and Cardiovascular Autonomic Reflex Tests (CARTs) were applied to divide patients into two groups: CAN ( ±). 24 h Ambulatory ECG was assessed for HRV, BMD was measured by dual-energy X-ray bone densitometry, and FRAX scores were calculated for 10-year hip fracture risk (HF1) and major osteoporotic fracture risk (MOF). Adjusted regression analysis was performed to investigate influence factors for BMD and fracture risk. ROC curve was used to analyze the optimal cut-off point of LF/HF for screening osteoporosis. RESULTS Baseline data showed significant differences in the duration of T2DM, insulin resistance index (HOMA-IR), 25-hydroxyvitamin D[25(OH)D], femoral neck BMD, hip BMD, lumbar BMD, HF1, and MOF between the CAN ( +) and CAN (-) groups. The proportion of patients with osteoporosis increased as the degree of CAN lesion increased. Correlation analysis showed that LF/HF was significantly correlated with BMD, especially with hip (r = - 0.534, p < 0.001). Regression analysis showed that LF/HF was a risk factor for reduced BMD and increased fracture risk. The optimal cut-point value for LF/HF to predict osteoporosis by ROC curve analysis was 3.17. CONCLUSIONS CAN is associated with reduced BMD and increased fracture risk in patients with T2DM, and LF/HF may have the potential to be a predictor of diabetic osteoporosis and have some clinical value in early diagnosis of diabetic osteoporosis and non-traumatic fractures in T2DM.
Collapse
Affiliation(s)
- Y Zhang
- Department of Endocrinology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - J Bai
- Department of Endocrinology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - L Li
- Department of Endocrinology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - H Yang
- Department of Endocrinology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Y Yang
- Department of Endocrinology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - H Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Lanzhou, 730000, Gansu, People's Republic of China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
5
|
Daljeet M, Warunek S, Covell DA, Monegro A, Giangreco T, Al-Jewair T. Association between obstructive sleep apnea syndrome and bone mineral density in adult orthodontic populations. Cranio 2022:1-11. [PMID: 36368042 DOI: 10.1080/08869634.2022.2142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine the association between obstructive sleep apnea syndrome (OSAS) and predicted bone mineral density (BMD) in adults presenting for orthodontic treatment. METHODS This retrospective cross-sectional study included 38 adults divided into OSAS and non-OSAS groups. Using pre-treatment CBCT images, radiographic density (RD) of left and right lateral regions of the 1st cervical vertebrae and dens of the 2nd cervical vertebrae were measured as an indicator for BMD. RESULTS When controlling for age, sex, and BMI, the mean RD was significantly lower in the OSAS group compared to the non-OSAS group (left CV1: 36.69 ± 84.50 vs. 81.67 ± 93.25 Hounsfield Units [HU], respectively, p = 0.031; right CV1: 30.59 ± 81.18 vs. 74.26 ± 91.81 HU, p = 0.045; dens: 159.25 ± 115.96 vs. 223.94 ± 106.09 HU, p = 0.038). CONCLUSION Adults with OSAS have lower values for predicted BMD than those without OSAS.
Collapse
Affiliation(s)
| | - Stephen Warunek
- Department of Orthodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - David A Covell
- Department of Orthodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Alberto Monegro
- Pediatric Sleep Center, School of Medicine, University at Buffalo, Buffalo, NY, USA
| | | | - Thikriat Al-Jewair
- Department of Orthodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
6
|
Yaghini J, Tavakoli M, Farshami M, Torabinia N, Shams S. Evaluating systemic administration effect of propranolol on osseointegration around titanium implants: A histomorphometric study in dogs. Dent Res J (Isfahan) 2022. [DOI: 10.4103/1735-3327.344160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Uchibori S, Sekiya T, Sato T, Hayashi K, Takeguchi A, Muramatsu R, Ishizuka K, Kondo H, Miyazawa K, Togari A, Goto S. Suppression of tooth movement-induced sclerostin expression using β-adrenergic receptor blockers. Oral Dis 2020; 26:621-629. [PMID: 31943597 DOI: 10.1111/odi.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/30/2019] [Accepted: 12/27/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Regulation of bone metabolism by the sympathetic nervous system has recently been clarified. Tooth movement is increased by increased bone metabolic turnover due to sympathetic activation. This study aimed to compare the effects of the β-adrenergic receptor (β-AR) blockers atenolol (β1-AR blocker), butoxamine (β2-AR blocker) and propranolol (non-selective β-AR blocker) on tooth movement in spontaneously hypertensive rats (SHR) with sympathicotonia. MATERIALS AND METHODS Spontaneously hypertensive rats were divided into the following four groups: an SHR control group and groups treated with 0.1 mg/kg atenolol, 1 mg/kg butoxamine or 1 mg/kg propranolol (n = 6 rats/group). Atenolol, butoxamine or propranolol was administered daily to each treatment group, and orthodontic force was applied using a closed-coil spring. Finally, immunohistochemical analysis was performed for receptor activator of nuclear factor kappa-B ligand (RANKL) and sclerostin (SOST). RESULTS Atenolol, butoxamine and propranolol inhibited tooth movement and increased maxillary alveolar bone volume. Histological analysis revealed that these β-AR blockers decreased osteoclast activity on the compression side. Furthermore, immunohistochemical analysis revealed that atenolol, butoxamine and propranolol decreased the number of RANKL- and SOST-positive osteocytes on the compression side. CONCLUSIONS β-AR blockers decreased tooth movement and downregulated SOST in osteocytes, accompanied by increasing alveolar bone resorption.
Collapse
Affiliation(s)
- Shiho Uchibori
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Takeo Sekiya
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Kaori Hayashi
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Atsushi Takeguchi
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Ryujiro Muramatsu
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Kyoko Ishizuka
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Hisataka Kondo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| |
Collapse
|
8
|
Huang B, Ye J, Zeng X, Gong P. Effects of capsaicin-induced sensory denervation on early implant osseointegration in adult rats. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181082. [PMID: 30800361 PMCID: PMC6366164 DOI: 10.1098/rsos.181082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023]
Abstract
The presence of nerve endings around implants is well-known, but the interaction between the peripheral nervous system and the osseointegration of implants has not been thoroughly elucidated to date. The purpose of this study was to test the effects of selective sensory denervation on early implant osseointegration. Forty male Sprague-Dawley rats were divided randomly into two groups, group A and group B, and they were treated with capsaicin and normal saline, respectively. One week later, titanium implants were placed in the bilateral femurs of the rats. Three and six weeks after implantation, histological examination, microcomputed tomography and biomechanical testing were performed to observe the effect of sensory denervation on implant osseointegration. At three weeks and six weeks, bone area, trabecular bone volume/total bone volume and bone density were significantly lower in group A than in group B. Similarly, the bone-implant contact rate, trabecular number and trabecular thickness were clearly lower in group A than in group B at three weeks. However, the trabecular separation spacing in group A was greater than that in group B at both time points. Biomechanical testing revealed that the implant-bone binding ability of group A was significantly lower than that in group B. The research demonstrated that sensory innervation played an important role in the formation of osseointegration. Selective-sensory denervation could reduce osseointegration and lower the binding force of the bone and the implant.
Collapse
Affiliation(s)
- Bo Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jun Ye
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University, Shanghai, People's Republic of China
- Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Xiaohua Zeng
- Stomatology Department, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Ping Gong
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
9
|
Qiao Y, Wang Y, Zhou Y, Jiang F, Huang T, Chen L, Lan J, Yang C, Guo Y, Yan S, Wei Z, Li J. The role of nervous system in adaptive response of bone to mechanical loading. J Cell Physiol 2018; 234:7771-7780. [PMID: 30414185 DOI: 10.1002/jcp.27683] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/09/2018] [Indexed: 02/05/2023]
Abstract
Bone tissue is remodeled through the catabolic function of the osteoclasts and the anabolic function of the osteoblasts. The process of bone homeostasis and metabolism has been identified to be co-ordinated with several local and systemic factors, of which mechanical stimulation acts as an important regulator. Very recent studies have shown a mutual effect between bone and other organs, which means bone influences the activity of other organs and is also influenced by other organs and systems of the body, especially the nervous system. With the discovery of neuropeptide (calcitonin gene-related peptide, vasoactive intestinal peptide, substance P, and neuropeptide Y) and neurotransmitter in bone and the adrenergic receptor observed in osteoclasts and osteoblasts, the function of peripheral nervous system including sympathetic and sensor nerves in bone resorption and its reaction to on osteoclasts and osteoblasts under mechanical stimulus cannot be ignored. Taken together, bone tissue is not only the mechanical transmitter, but as well the receptor of neural system under mechanical loading. This review aims to summarize the relationship among bone, nervous system, and mechanotransduction.
Collapse
Affiliation(s)
- Yini Qiao
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yang Wang
- Department of Oral Radiology, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yimei Zhou
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Fulin Jiang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Tu Huang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Liujing Chen
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Jingxiang Lan
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Cai Yang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yutong Guo
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Shanyu Yan
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Zhangming Wei
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Juan Li
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| |
Collapse
|
10
|
Houseknecht KL, Bouchard CC, Black CA. Elucidating the Mechanism(s) Underlying Antipsychotic and Antidepressant-Mediated Fractures. ACTA ACUST UNITED AC 2017; 1:9-13. [PMID: 31008454 PMCID: PMC6469345 DOI: 10.29245/2578-2959/2018/1.1106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mood spectrum disorders and medications used to treat these disorders, such as atypical antipsychotic drugs (AA), are associated with metabolic and endocrine side effects including obesity, dyslipidemia, hyperglycemia and increased risk of fractures. Antidepressant medications, including selective serotonin reuptake inhibitors (SSRI), have also been reported to increase fracture risk in some patients. The pharmacology underlying the increased risk of fractures is currently unknown. Possible mechanisms include alternations in dopaminergic and/or serotonergic signaling pathways. As these medications distribute to the bone marrow as well as to the brain, it is possible that drug-induced fractures are due to both centrally mediated effects as well as direct effects on bone turnover. Given the growing patient population that is prescribed these medications for both on- and off-label indications, understanding the level of risk and the mechanisms underlying drug-induced fractures is important for informing both prescribing and patient monitoring practices.
Collapse
Affiliation(s)
- Karen L Houseknecht
- College of Osteopathic Medicine, University of New England, 11 Hills Beach Road, Biddeford, ME 04005, USA.,College of Pharmacy, University of New England, 11 Hills Beach Road, Biddeford, ME 04005 USA
| | - C C Bouchard
- College of Osteopathic Medicine, University of New England, 11 Hills Beach Road, Biddeford, ME 04005, USA
| | - C A Black
- College of Pharmacy, University of New England, 11 Hills Beach Road, Biddeford, ME 04005 USA
| |
Collapse
|
11
|
Grässel S, Muschter D. Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology. Int J Mol Sci 2017; 18:ijms18050931. [PMID: 28452955 PMCID: PMC5454844 DOI: 10.3390/ijms18050931] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
The importance of the nociceptive nervous system for maintaining tissue homeostasis has been known for some time, and it has also been suggested that organogenesis and tissue repair are under neuronal control. Changes in peripheral joint innervation are supposed to be partly responsible for degenerative alterations in joint tissues which contribute to development of osteoarthritis. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters, allowing response to peripheral neuronal stimuli. Among them are mesenchymal stem cells, synovial fibroblasts, bone cells and chondrocytes of different origin, which express distinct subtypes of adrenoceptors (AR), receptors for vasoactive intestinal peptide (VIP), substance P (SP) and calcitonin gene-related peptide (CGRP). Some of these cell types synthesize and secrete neuropeptides such as SP, and they are positive for tyrosine-hydroxylase (TH), the rate limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters are involved in the pathology of inflammatory diseases such as rheumatoid arthritis (RA) which manifests mainly in the joints. In addition, they seem to play a role in pathogenesis of priori degenerative joint disorders such as osteoarthritis (OA). Altogether it is evident that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for joint tissue and bone homeostasis. They modulate articular cartilage, subchondral bone and synovial tissue properties in physiological and pathophysiological conditions, in addition to their classical neurological features.
Collapse
Affiliation(s)
- Susanne Grässel
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, University of Regensburg, 93053 Regensburg, Germany.
| | - Dominique Muschter
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
12
|
Kopiczko A, Gryko K. Body mass index, general fatness, lipid profile and bone mineral density in young women and men. ANTHROPOLOGICAL REVIEW 2017. [DOI: 10.1515/anre-2017-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The bone tissue is metabolically active. Throughout the entire life, it undergoes changes in the form of bone resorption processes which are successive, with the participation of the resorbing cells and bone formation processes. The aim of the study was to evaluate mineral density and bone mass tissue and the lipid profile, BMI, total body fat in young females and males. The study involved 100 people (50 females and 50 males) studying in Warsaw at the age of 23,2 ± 4,0 years. The densitometry method of the forearm was used for the assessment of bone mineral density (BMD) and bone mass (BMC). The method of bioelectrical impedance was used for the assessment of body components. Basic body dimensions and indicators were assessed using anthropometric measurements. Body height, body mass and the needs for the densitometry study of the forearm were measured. The total cholesterol concentration was determined in the blood serum using diagnostic kits, as well as high-density lipoprotein (HDL-C) and triglycerides. The concentration of the low-density lipoprotein (LDL-C) was calculated. While in men the occurrence of a significant, positive correlation was stated between the concentration of the HDL cholesterol fraction and the mineral density and T-score index in the ultra-distal point, the analysis of the compounds of mineral density (BMD), bone mass (BMC) of the forearm, T-score index with somatic features in women showed a significant, positive relation between the body weight and the bone mass mineral density and T-score indicator in the proximal point. Also, a significant weak, positive correlation was observed between the BMI, the mineral density and T-score indicator in the proximal point. In men, the occurrence of significant, positive correlations was stated between the body weight and BMC, BMD, T-score indicator in the proximal point of the forearm bone and ultra-distal point. Similar relations were observed between the BMI, mineral density, T-score and bone mass in the proximal point and in the ultra-distal point. Based on several noted weak, positive correlations between the lipid profile and BMD, the results of this study of women and men cannot unequivocally indicate the dependence of the bone tissue state on the lipid level in the blood serum of young women and men. Therefore, the issues raised require further investigation.
Collapse
|
13
|
Kodama D, Hirai T, Kondo H, Hamamura K, Togari A. Bidirectional communication between sensory neurons and osteoblasts in an in vitro coculture system. FEBS Lett 2017; 591:527-539. [PMID: 28094440 DOI: 10.1002/1873-3468.12561] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/30/2016] [Accepted: 01/11/2017] [Indexed: 12/18/2022]
Abstract
Recent studies have revealed that the sensory nervous system is involved in bone metabolism. However, the mechanism of communication between neurons and osteoblasts is yet to be elucidated. In this study, we investigated the signaling pathways between sensory neurons of the dorsal root ganglion (DRG) and the osteoblast-like MC3T3-E1 cells using an in vitro coculture system. Our findings indicate that signal transduction from DRG-derived neurons to MC3T3-E1 cells is suppressed by antagonists of the AMPA receptor and the NK1 receptor. Conversely, signal transduction from MC3T3-E1 cells to DRG-derived neurons is suppressed by a P2X7 receptor antagonist. Our results suggest that these cells communicate with each other by exocytosis of glutamate, substance P in the efferent signal, and ATP in the afferent signal.
Collapse
Affiliation(s)
- Daisuke Kodama
- Laboratory of Neuropharmacology, School of Pharmacy, Aichi-Gakuin University, Chikusa-ku, Nagoya, Japan.,Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Chikusa-ku, Nagoya, Japan
| | - Takao Hirai
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi-Gakuin University, Chikusa-ku, Nagoya, Japan
| | - Hisataka Kondo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Chikusa-ku, Nagoya, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Chikusa-ku, Nagoya, Japan
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
14
|
Hamada S, Ikezoe K, Hirai T, Oguma T, Tanizawa K, Inouchi M, Handa T, Oga T, Mishima M, Chin K. Evaluation of Bone Mineral Density by Computed Tomography in Patients with Obstructive Sleep Apnea. J Clin Sleep Med 2017; 12:25-34. [PMID: 26235157 DOI: 10.5664/jcsm.5386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/30/2015] [Indexed: 01/06/2023]
Abstract
STUDY OBJECTIVES Clinical studies have investigated whether obstructive sleep apnea (OSA) can modulate bone metabolism but data are conflicting. Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is the standard technique for quantifying bone strength but has limitations in overweight patients (body mass index [BMI] ≥ 25 kg/m(2)). The aim of this study was to examine the association between OSA and BMD by examining CT images that allow true volumetric measurements of the bone regardless of BMI. METHODS Lumbar vertebrae BMD was evaluated in 234 persons (180 males and 54 females) by CT scan. The method was calibrated by a phantom containing a known concentration of hydroxyapatite. RESULTS BMD was lower in male patients with severe OSA (apnea-hypopnea index [AHI] ≥ 30/h) than non OSA (AHI < 5; p < 0.05), while OSA and BMD had no association in females. Linear and multiple regression analyses revealed that age (p < 0.0001, β = -0.52), hypertension (p = 0.0068, β = -0.17), and the alveolar-arterial oxygen pressure difference (A-aDO2) (p = 0.012, β = -0.15) in males were associated with BMD, while only age (p < 0.0001, β = -0.68) was associated with BMD in females. CONCLUSION Males with severe OSA had a significantly lower BMD than non OSA participants. Age, hypertension, and elevation of A-aDO2 were significant factors for BMD by CT imaging. The usefulness of measuring BMD in OSA patients by CT scanning should be studied in future.
Collapse
Affiliation(s)
- Satoshi Hamada
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University; Kyoto, Japan
| | - Kohei Ikezoe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University; Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University; Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University; Kyoto, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University; Kyoto, Japan
| | - Morito Inouchi
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Handa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University; Kyoto, Japan
| | - Toru Oga
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michiaki Mishima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University; Kyoto, Japan
| | - Kazuo Chin
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Erndt-Marino JD, Hahn MS. Probing the response of human osteoblasts following exposure to sympathetic neuron-like PC-12 cells in a 3D coculture model. J Biomed Mater Res A 2017; 105:984-990. [PMID: 27860234 DOI: 10.1002/jbm.a.35964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/15/2016] [Indexed: 01/03/2023]
Abstract
Understanding the capacity of the sympathetic nervous system (SNS) to regulate bone homeostasis has implications for a number of metabolic diseases and may help establish connections between certain neurological conditions and bone quality. The goal of the present work was to gain a deeper understanding of the influence of the SNS on the phenotype of osteoblasts, a major cell type in bone. An in vitro coculture model with human osteoblasts and sympathetic-like, neuroendocrine pheochromocytoma-12 (PC-12) cells encapsulated within separate 3D poly(ethylene glycol) diacrylate (PEGDA) hydrogels was utilized to assess markers involved with bone ECM formation and osteoclast formation. In terms of bone ECM proteins, only osteopontin (OPN) was significantly increased in osteoblasts exposed to PC-12 cells relative to osteoblast mono-culture controls. In contrast, all bone resorption markers investigated (IL-6, TNF, IL-1β, VEGF-A) were enhanced at the gene level and the ratio of osteoprotegerin (OPG) to RANKL was significantly decreased in osteoblasts exposed to PC-12 cells. Cumulatively, these data indicate that the SNS may substantially influence bone resorption. Because of the context-dependent nature of the SNS, future studies will characterize the secretion profile of neurotransmitters and neuropeptides from the PC-12 cells in our model. Additionally, various SNS modulating pharmacologic agents will be examined for their capacity to reduce expression of bone resorption/inflammatory markers. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 984-990, 2017.
Collapse
Affiliation(s)
- Josh D Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
16
|
Yao Q, Liang H, Huang B, Xiang L, Wang T, Xiong Y, Yang B, Guo Y, Gong P. Beta-adrenergic signaling affect osteoclastogenesis via osteocytic MLO-Y4 cells' RANKL production. Biochem Biophys Res Commun 2016; 488:634-640. [PMID: 27823934 DOI: 10.1016/j.bbrc.2016.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 02/05/2023]
Abstract
The sympathetic nervous system play a pivotal role in bone remodeling through β-adrenoceptor (β-AR). However, it is not well documented whether the β-adrenoceptor pathway has the potential to influence osteocytes. In this study, cell viability, the expression of β-AR subtypes, enzymes of catecholamine synthesis or degradation, bone-related gene and protein in osteocytic MLO-Y4 cells were investigated by β-adrenergic stimulation. Isoproterenol (ISO) promoted RANKL to OPG expression in osteocytes, as well as osteoclasts formation in osteocytes-RAW264.7 cell co-cultures but not RAW264.7 cell monoculture. The ISO-stimulated effect was enhanced in β1-AR antagonist pretreatment, but was rescued by blocking β2-AR. The results indicate that β1-and β2-AR play reciprocal roles on MLO-Y4 cells in the regulation of osteoclastogenesis, and osteocyte β-adrenergic signaling might be a new valuable therapy for bone disease.
Collapse
Affiliation(s)
- Qianqian Yao
- Oral Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hengxing Liang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo Huang
- Dental Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- Dental Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianlu Wang
- Dental Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- Dental Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Yang
- Dental Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjun Guo
- Dental Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- Dental Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Enhanced proliferation and differentiation effects of a CGRP- and Sr-enriched calcium phosphate cement on bone mesenchymal stem cells. J Appl Biomater Funct Mater 2016; 14:e431-e440. [PMID: 27514494 DOI: 10.5301/jabfm.5000295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Because of its good osteoconductivity, strontium (Sr) ranelate has been extensively used as a bone substitute for the treatment of bone disorders. To facilitate treatment, Sr is also incorporated into calcium phosphate cement (Sr-CPC); however, the Sr from Sr-CPC is not sufficient to induce a significant increase of bone mass in an ovariectomized rat model. To improve the efficiency of Sr-CPC, we developed a calcitonin gene-related peptide (CGRP)- and Sr-enriched CPC (CGRP-Sr-CPC). METHODS We used X-ray diffraction and Fourier transform infrared spectroscopy to measure properties of CGRP-Sr-CPC. We also employed a cell proliferation assay, alkaline phosphatase (ALP) assay and real-time PCR to assess the effects of CPC implants on proliferation and differentiation of bone mesenchymal stem cells (BMSCs) from an ovariectomized rat model. RESULTS CGRP did not change the composition, pore sizes and compressive strength of the cement body as compared with Sr-CPC. Meanwhile, CGRP-Sr-CPC did not show cell cytotoxicity to BMSCs. Further, CGRP and Sr released from CGRP-Sr-CPC significantly enhanced the cell proliferation of BMSCs and increased the activity of ALP during differentiation of BMSCs, compared with CGRP- or Sr-CPC. Moreover, CGRP-Sr-CPC significantly up-regulated the expression levels of osteogenic differentiation-related genes including Alp, Bmp2, Osteonectin and Runx2 during differentiation. CONCLUSIONS These findings demonstrate the optimized effects of CGRP- and Sr-enriched CPC in promoting proliferation and osteogenic differentiation of BMSCs, suggesting the potential ability of this novel cement to assist the formation of new bone during osteoporosis-induced bone disorders.
Collapse
|
18
|
Al-Subaie AE, Laurenti M, Abdallah MN, Tamimi I, Yaghoubi F, Eimar H, Makhoul N, Tamimi F. Propranolol enhances bone healing and implant osseointegration in rats tibiae. J Clin Periodontol 2016; 43:1160-1170. [DOI: 10.1111/jcpe.12632] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Ahmed E. Al-Subaie
- Faculty of Dentistry; McGill University; Montreal QC Canada
- Division of Oral & Maxillofacial Surgery; McGill University; Montreal QC Canada
- College of Dentistry; University of Dammam; Dammam Saudi Arabia
| | - Marco Laurenti
- Faculty of Dentistry; McGill University; Montreal QC Canada
| | | | | | - Farid Yaghoubi
- Faculty of Dentistry; McGill University; Montreal QC Canada
| | - Hazem Eimar
- Faculty of Dentistry; McGill University; Montreal QC Canada
| | - Nicholas Makhoul
- Faculty of Dentistry; McGill University; Montreal QC Canada
- Division of Oral & Maxillofacial Surgery; McGill University; Montreal QC Canada
| | - Faleh Tamimi
- Faculty of Dentistry; McGill University; Montreal QC Canada
| |
Collapse
|
19
|
Age-dependent impact of inferior alveolar nerve transection on mandibular bone metabolism and the underlying mechanisms. J Mol Histol 2016; 47:579-586. [PMID: 27681986 DOI: 10.1007/s10735-016-9697-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/13/2016] [Indexed: 02/05/2023]
Abstract
Aging is associated with peripheral nerve degradation and bone destruction. The aim of the study is to elucidate the influence of sensory denervation on bone metabolism in different age groups by establishing a modified unilateral inferior alveolar nerve transection (IANT) model. The rats, divided into young, middle-aged and aged group, were sacrificed at 1, 2, 4 and 8 weeks after right IANT. The histological changes of mandibles were analyzed by fluorescent double labeling, micro-CT, HE, TRAP and anti-CGRP immunohistochemical staining. Molecular mechanisms underlying the changes were analyzed by qPCR and western blot. Differences between the test and control side were evaluated by paired-samples t test. The Friedman test and separate Wilcoxon signed-rank tests were applied to analyze age-dependent difference. The impact of IANT was the most intensive in developing bone, the most persistent in full grown bone and the faintest in the aged bone. The role of IAN in keeping homeostasis was closely related to the anabolic effect of CGRP, which suppressed the number of osteoclasts through OPG/RANKL ratio and controlled growth factors expression like BMP2. This study contributes to a better understanding of the molecular mechanisms of CGRP in vivo and the relationship among sensory nerve, bone metabolism and aging.
Collapse
|
20
|
Bruchatá K, Némethy A, Čižmáriková R, Račanská E, Habala L. Synthesis andIn VitroPharmacological Evaluation of 5-(Alkoxymethyl)-2-(3-alkylamino-2-hydroxypropoxy)phenylethanones Related to Acebutolol and Celiprolol. Arch Pharm (Weinheim) 2016; 349:733-40. [DOI: 10.1002/ardp.201600136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/08/2016] [Accepted: 06/22/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Katarína Bruchatá
- Faculty of Pharmacy, Department of Chemical Theory of Drugs; Comenius University in Bratislava; Bratislava Slovakia
| | - Andrej Némethy
- Faculty of Pharmacy, Department of Chemical Theory of Drugs; Comenius University in Bratislava; Bratislava Slovakia
| | - Ružena Čižmáriková
- Faculty of Pharmacy, Department of Chemical Theory of Drugs; Comenius University in Bratislava; Bratislava Slovakia
| | - Eva Račanská
- Faculty of Pharmacy, Department of Pharmacology and Toxicology; Comenius University in Bratislava; Bratislava Slovakia
| | - Ladislav Habala
- Faculty of Pharmacy, Department of Chemical Theory of Drugs; Comenius University in Bratislava; Bratislava Slovakia
| |
Collapse
|
21
|
Wu X, Al-Abedalla K, Eimar H, Arekunnath Madathil S, Abi-Nader S, Daniel NG, Nicolau B, Tamimi F. Antihypertensive Medications and the Survival Rate of Osseointegrated Dental Implants: A Cohort Study. Clin Implant Dent Relat Res 2016; 18:1171-1182. [DOI: 10.1111/cid.12414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Xixi Wu
- Department of Dentistry, Faculty of Dentistry; McGill University; Montreal QC Canada
| | - Khadijeh Al-Abedalla
- Department of Dentistry, Faculty of Dentistry; McGill University; Montreal QC Canada
| | - Hazem Eimar
- Department of Dentistry, Faculty of Dentistry; McGill University; Montreal QC Canada
| | | | - Samer Abi-Nader
- Department of Dentistry, Faculty of Dentistry; McGill University; Montreal QC Canada
| | - Nach G. Daniel
- Private practice, East Coast Oral Surgery; Moncton NB Canada
| | - Belinda Nicolau
- Department of Dentistry, Faculty of Dentistry; McGill University; Montreal QC Canada
| | - Faleh Tamimi
- Department of Dentistry, Faculty of Dentistry; McGill University; Montreal QC Canada
| |
Collapse
|
22
|
Roshanzamir S, Dabbaghmanesh MH, Dabbaghmanesh A, Nejati S. Autonomic dysfunction and osteoporosis after electrical burn. Burns 2016; 42:583-8. [PMID: 26916589 DOI: 10.1016/j.burns.2015.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Several studies have shown the importance of the sympathetic nervous system in bone metabolism. There is an evidence of sympathetic skin response (SSR) impairment in electrical burn patients up to 2 years after their injuries. The acute phase of burn is accompanied by increased bone resorption. Whether the prolonged dysfunction of sympathetic nervous system may result in bone metabolism derangement even after the acute phase of electrical burn is the inspiring question for this study. And we tried to find correlation between SSR abnormality and areal bone mineral density (BMD) in electrical burn patients 6 months or more after the incidents. METHODS AND MATERIALS 42 electrical burn patients (≥6 months prior to study) who did not have a known joint or bone disease, history of neuropathy (central or peripheral), diabetes mellitus or consumption of any drug affecting the autonomic nervous system or evidence of neuropathy in nerve conduction study were recruited. We also gathered a control group of 50 healthy subjects (without electrical burn or the exclusion criteria). They went under dual energy X-ray absorptiometry and SSR study. Data were analyzed statistically with SPSS 16.0 making use of independent t-test and Pearson correlation coefficient. P<0.05 was considered significant statistically. RESULTS Areal BMD was significantly lower in electrical burn patients than control group (P<0.001). SSR latency was significantly prolonged and its amplitude was significantly reduced in burn patients compared to control group (P<0.001). In burn patients there was an inverse correlation of areal BMD of lumbar vertebrae, left femur neck and total femur with SSR latency and a direct correlation of areal BMD with SSR amplitude. In control group there was just direct correlation of areal BMD of lumbar vertebrae and left femur neck with SSR amplitude. CONCLUSION Electrical burn patients are at risk of reduced areal BMD long after their injuries. Sympathetic derangement and impaired SSR are correlated with reduction in areal BMD in these patients.
Collapse
Affiliation(s)
- Sharareh Roshanzamir
- Shiraz Burn Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Alireza Dabbaghmanesh
- Shiraz Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Solmaz Nejati
- Department of Physical Medicine and Rehabilitation, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Hirai T, Tanaka K, Togari A. α1B-Adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts. Biol Open 2015; 4:1400-9. [PMID: 26453621 PMCID: PMC4728343 DOI: 10.1242/bio.012617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks are endogenous and biological oscillations that occur with a period of <24 h. In mammals, the central circadian pacemaker is localized in the suprachiasmatic nucleus (SCN) and is linked to peripheral tissues through neural and hormonal signals. In the present study, we investigated the physiological function of the molecular clock on bone remodeling. The results of loss-of-function and gain-of-function experiments both indicated that the rhythmic expression of Tnfrsf11b, which encodes osteoprotegerin (OPG), was regulated by Bmal1 in MC3T3-E1 cells. We also showed that REV-ERBα negatively regulated Tnfrsf11b as well as Bmal1 in MC3T3-E1 cells. We systematically investigated the relationship between the sympathetic nervous system and the circadian clock in osteoblasts. The administration of phenylephrine, a nonspecific α1-adrenergic receptor (AR) agonist, stimulated the expression of Tnfrsf11b, whereas the genetic ablation of α1B-AR signaling led to the alteration of Tnfrsf11b expression concomitant with Bmal1 and Per2 in bone. Thus, this study demonstrated that the circadian regulation of Tnfrsf11b was regulated by the clock genes encoding REV-ERBα (Nr1d1) and Bmal1 (Bmal1, also known as Arntl), which are components of the core loop of the circadian clock in osteoblasts. Summary: This study demonstrates that the circadian regulation of TNFRSF11B is regulated by the clock genes Nr1d1 and Arntl, which are components of the core loop of the circadian clock in osteoblasts, providing a molecular mechanism for the control of bone remodelling by circadian rhythms.
Collapse
Affiliation(s)
- Takao Hirai
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Kenjiro Tanaka
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan
| |
Collapse
|
24
|
Muschter D, Schäfer N, Stangl H, Straub RH, Grässel S. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis. PLoS One 2015; 10:e0139726. [PMID: 26431344 PMCID: PMC4592252 DOI: 10.1371/journal.pone.0139726] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022] Open
Abstract
Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10(-6) M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors.
Collapse
Affiliation(s)
- Dominique Muschter
- Department of Orthopedic Surgery, Experimental Orthopedics, University Hospital Regensburg, Regensburg, Bavaria, Germany
- Center for Medical Biotechnology, BioPark I, Regensburg, Bavaria, Germany
| | - Nicole Schäfer
- Department of Orthopedic Surgery, Experimental Orthopedics, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Hubert Stangl
- Department of Internal Medicine I, Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Rainer H. Straub
- Department of Internal Medicine I, Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, University Hospital Regensburg, Regensburg, Bavaria, Germany
- Center for Medical Biotechnology, BioPark I, Regensburg, Bavaria, Germany
- * E-mail:
| |
Collapse
|
25
|
Al Mamun MA, Islam K, Alam MJ, Khatun A, Alam MM, Al-Bari MAA, Alam MJ. Flavonoids isolated from Tridax procumbens (TPF) inhibit osteoclasts differentiation and bone resorption. Biol Res 2015; 48:51. [PMID: 26363910 PMCID: PMC4567822 DOI: 10.1186/s40659-015-0043-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/02/2015] [Indexed: 11/13/2022] Open
Abstract
Background The Tridax procumbens flavonoids (TPF), are well known for their medicinal properties among local natives. The TPF are traditionally used for dropsy, anaemia, arthritis, gout, asthma, ulcer, piles, and urinary problems. It also used in treating gastric problems, body pain, and rheumatic pains of joints. The TPF have been reported to increase osteogenic functioning in mesenchymal stem cells. However, their effects on osteoclastogenesis remain unclear. The TPF isolated from T. procumbens and investigated the effects of the TPF inhibit on osteoclast differentiation and bone resorption activities using primary osteoclastic cells. Osteoclast formation was assessed by counting the number of tartrate resistant acid phosphatase (TRAP) positive multinucleated cells and by measuring both TRAP activities. Results The TPF significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in primary osteoclastic cells. The TPF also decreased the expression of mRNAs related to osteoclast differentiation, including Trap, Cathepsin K, Mmp-9, and Mmp-13 in primary osteoclastic cells. The treatment of primary osteoclastic cells with the TPF decreased Cathepsin K, Mmp-9, and Mmp-13 proteins expression in primary osteoclastic cells. Conclusion These results indicated that TPF inhibit osteoclastogenesis and pits formation activities. Our results suggest that the TPF could be a potential anti-bone resorptic agent to treat patients with bone loss-associated diseases such as osteoporosis.
Collapse
Affiliation(s)
- Md Abdullah Al Mamun
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Kamrul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Md Jahangir Alam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Amina Khatun
- Department of Anthropology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - M Masihul Alam
- Department of Applied Nutrition and Food Technology, Islamic University, Kustia, 7003, Bangladesh.
| | | | - Md Jahangir Alam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
26
|
|
27
|
Effect of Beta-Blockers on Bone Mineral Density, Bone Turnover Markers and Fractures: A Clinical Review. Clin Rev Bone Miner Metab 2015. [DOI: 10.1007/s12018-015-9186-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Togari A, Kondo H, Hirai T, Kodama D, Arai M, Goto S. [Regulation of bone metabolism by sympathetic nervous system]. Nihon Yakurigaku Zasshi 2015; 145:140-145. [PMID: 25765496 DOI: 10.1254/fpj.145.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
29
|
Liang W, Zhuo X, Tang Z, Wei X, Li B. Calcitonin gene-related peptide stimulates proliferation and osteogenic differentiation of osteoporotic rat-derived bone mesenchymal stem cells. Mol Cell Biochem 2015; 402:101-10. [PMID: 25563479 DOI: 10.1007/s11010-014-2318-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/23/2014] [Indexed: 01/27/2023]
Abstract
Osteoporosis, a systemic bone disorder, is prevalent in postmenopausal woman. Bone mesenchymal stem cells (BMSCs), precursors of osteogenic cells, may contribute to prevention or treatment of bone frustrate in osteoporosis. Recently, two studies suggested a role of calcitonin gene-related peptide (CGRP) in promoting osteogenesis of BMSCs under physiological conditions. However, the role of CGRP on BMSCs, which are derived from osteoporotic tissues, is unclear. Here, we investigated the role of CGRP on BMSCs isolated from female osteoporotic rats. Data showed that CGRP stimulated cell proliferation and inhibited cell apoptosis for short-term culture of BMSCs. Instead, CGRP induced BMSCs differentiation into the osteoblasts and promoted formation of calcified nodules after long-term culture. Moreover, CGRP gradually up-regulated expression levels of osteoporotic differentiation-related genes including alkaline phosphatase, Collagen type I, Bmp2, Osteonectin, and Runx2 during osteogenic differentiation. In conclusion, CGRP promoted proliferation and induced osteogenic differentiation and mineralization during female osteoporotic rat-derived BMSC differentiation. These findings support a potential role of CGRP on the prevention or treatment of osteoporotic fracture.
Collapse
Affiliation(s)
- Wei Liang
- The Fourth Affiliated Hospital, Guangxi Medical University, No. 1 Liushi Road, Yufeng, Liuzhou, 545005, Guangxi, China
| | | | | | | | | |
Collapse
|
30
|
Nagao S, Goto T, Kataoka S, Toyono T, Joujima T, Egusa H, Yatani H, Kobayashi S, Maki K. Expression of neuropeptide receptor mRNA during osteoblastic differentiation of mouse iPS cells. Neuropeptides 2014; 48:399-406. [PMID: 25464890 DOI: 10.1016/j.npep.2014.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 11/16/2022]
Abstract
Various studies have shown a relationship between nerves and bones. Recent evidence suggests that both sensory and sympathetic nerves affect bone metabolism; however, little is known about how neuropeptides are involved in the differentiation of pluripotent stem cells into osteoblastic (OB) cells. To evaluate the putative effects of neuropeptides during the differentiation of mouse induced pluripotent stem (iPS) cells into calcified tissue-forming OB cells, we investigated the expression patterns of neuropeptide receptors at each differentiation stage. Mouse iPS cells were seeded onto feeder cells and then transferred to low-attachment culture dishes to form embryoid bodies (EBs). EBs were cultured for 4 weeks in osteoblastic differentiation medium. The expression of α1-adrenergic receptor (AR), α2-AR, β2-AR, neuropeptide Y1 receptor (NPY1-R), neuropeptide Y2 receptor (NPY2-R), calcitonin gene-related protein receptor (CGRP-R), and neurokinin 1-R (NK1-R) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Among these neuropeptide receptors, CGRP-R and β2-AR were expressed at all stages of cell differentiation, including the iPS cell stage, with peak expression occurring at the early osteoblastic differentiation stage. Another sensory nervous system receptor, NK1-R, was expressed mainly in the late osteoblastic differentiation stage. Furthermore, CGRP-R mRNA showed an additional small peak corresponding to EBs cultured for 3 days, suggesting that EBs may be affected by serum CGRP. These data suggest that the sensory nervous system receptor CGRP-R and the sympathetic nervous system receptor β2-AR may be involved in the differentiation of iPS cells into the osteoblastic lineage. It follows from these findings that CGRP and β2-AR may regulate cell differentiation in the iPS and EB stages, and that each neuropeptide has an optimal period of influence during the differentiation process.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cells, Cultured
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Osteoblasts/cytology
- Osteoblasts/metabolism
- RNA, Messenger/metabolism
- Receptors, Adrenergic/metabolism
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Receptors, Neurokinin-1/metabolism
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide Y/metabolism
Collapse
Affiliation(s)
- Satomi Nagao
- Division of Developmental Stomatognathic Function Science, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tetsuya Goto
- Division of Oral Anatomy and Histology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Shinji Kataoka
- Anatomy, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Takashi Toyono
- Oral Histology and Neurobiology, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Takaaki Joujima
- Anatomy, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai-city 980-8575, Japan
| | - Hirofumi Yatani
- Division of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | | | - Kenshi Maki
- Division of Developmental Stomatognathic Function Science, Kyushu Dental University, Kitakyushu 803-8580, Japan
| |
Collapse
|
31
|
Sliwiński L, Folwarczna J, Pytlik M, Cegieła U, Nowińska B, Trzeciak H, Trzeciak HI. Do effects of propranolol on the skeletal system depend on the estrogen status? Pharmacol Rep 2014; 65:1345-56. [PMID: 24399731 DOI: 10.1016/s1734-1140(13)71493-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/11/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Propranolol, a nonselective β-adrenergic receptor antagonist, was reported to favorably affect the skeletal system in different animal models. The aim of the study was to investigate whether the effects of propranolol on the skeletal system depend on the estrogen status. METHODS The in vivo experiments were carried out on the following groups of mature female Wistar rats: sham-operated control rats, sham-operated rats receiving propranolol, ovariectomized (OVX) control rats, OVX rats receiving propranolol, OVX rats receiving estradiol, OVX rats receiving estradiol and propranolol. Propranolol hydrochloride (10 mg/kg po) and/or estradiol (0.1 mg/kg po) were administered daily for 4 weeks. Bone mass, mineral and calcium content, macrometric and histomorphometric parameters, and mechanical properties were examined. In vitro, effects of estradiol and propranolol on the formation of mouse osteoclasts and on the mRNA expression of genes related to osteoclastogenesis, bone formation and mineralization, as well as adrenergic and estrogen signalling in mouse osteoblasts were investigated. RESULTS AND CONCLUSION Propranolol exerted some favorable effects on the rat skeletal system in vivo, independently of the estrogen status. However, in vitro studies indicated a possibility of some antagonistic relations between the estradiol and propranolol effects.
Collapse
Affiliation(s)
- Leszek Sliwiński
- Department of Pharmacology, Medical University of Silesia, Katowice, Jagiellońska 4, PL 41-200 Sosnowiec, Poland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kodama D, Togari A. Signaling pathway and physiological role of the alpha-1 adrenergic receptor in human osteoblasts. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Ghosh M, Majumdar SR. Antihypertensive medications, bone mineral density, and fractures: a review of old cardiac drugs that provides new insights into osteoporosis. Endocrine 2014; 46:397-405. [PMID: 24504763 DOI: 10.1007/s12020-014-0167-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/04/2014] [Indexed: 01/20/2023]
Abstract
Osteoporosis is increasing in prevalence and importance as society's age, with the clinical consequence of fractures of the hip, spine, and upper extremity, leading to impaired quality of life, loss of function and independence, and increased morbidity and mortality. A major risk factor for osteoporosis is older age, and cardiovascular diseases also share this risk factor; therefore, osteoporosis and cardiovascular disease often coexist and share risk factors. Medications used for the treatment of cardiovascular diseases, in particular antihypertensive drugs, have been shown in a variety of studies of varying designs to modulate bone health in both a positive or negative manner. In this article, we reviewed the pharmacology, potential mechanisms, and possible effects on bone mineral density and fracture risk of commonly prescribed antihypertensive medications, including thiazide and non-thiazide diuretics, beta-blockers, calcium channel blockers, renin-angiotensin-aldosterone system agents, and nitrates.
Collapse
Affiliation(s)
- Mahua Ghosh
- Division of General Internal Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
34
|
Hirai T, Tanaka K, Togari A. β-adrenergic receptor signaling regulates Ptgs2 by driving circadian gene expression in osteoblasts. J Cell Sci 2014; 127:3711-9. [PMID: 24994935 DOI: 10.1242/jcs.148148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sympathetic nervous system modulates bone remodeling and mediates the expression of core clock genes in part through the β-adrenergic receptor (β-AR) in osteoblasts. In this study, we show that in MC3T3-E1 osteoblastic cells that isoproterenol (Iso), a non-selective β-AR agonist, upregulated the transcriptional factor Nfil3, and induced rhythmic mRNA expression of prostaglandin-endoperoxide synthase 2 (Ptgs2, also known as Cox2). The rhythmic effects of Iso on Ptgs2 expression were mediated by interplay between the Per2 and Bmal1 clock genes in osteoblasts. In addition, Ptgs2 was significantly decreased in bone after continuous Iso treatment. Overexpression of Nfil3 decreased Ptgs2 expression in MC3T3-E1 cells. Knockdown of Nfil3 upregulated the expression of Ptgs2 in MC3TC-E1 cells, indicating that Nfil3 negatively regulated Ptgs2 in osteoblasts. Furthermore, Iso acutely induced the expression Nfil3 and increased the binding of Nfil3 to the Ptgs2 promoter in MC3T3-E1 cells. These results suggest that Iso-mediated induction of Nfil3 in osteoblasts regulates the expression of Ptgs2 by driving the expression of circadian clock genes. These findings provide new evidence for a physiological role of circadian clockwork in bone metabolism.
Collapse
Affiliation(s)
- Takao Hirai
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Kenjiro Tanaka
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan
| |
Collapse
|
35
|
Smitham P, Crossfield L, Hughes G, Goodship A, Blunn G, Chenu C. Low dose of propranolol does not affect rat osteotomy healing and callus strength. J Orthop Res 2014; 32:887-93. [PMID: 24710688 PMCID: PMC4312912 DOI: 10.1002/jor.22619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/27/2014] [Indexed: 02/04/2023]
Abstract
Experimental studies suggest that the β-blocker propranolol stimulates bone formation but little work has investigated its effect on fracture healing. In this study, we examined if a low dose of propranolol, previously shown to be preventive against bone loss in rats, improves bone repair. Female Wistar rats were injected with saline or propranolol (0.1 mg/kg/day) (n = 20/group), 5 days a week for 8 weeks. Three weeks after the beginning of treatment, all rats underwent a mid-diaphyseal transverse osteotomy in the left femur. Radiographic analysis of ostetomy healing was performed 2 and 5 weeks after osteotomy. Rats were sacrificed at 5 weeks and femora collected for measurements of fracture strength by torsional testing, callus volume, and mineral content by micro-CT analysis and histology of fracture callus. Eighty nine percent of osteotomies achieved apparent radiological union by 5 weeks in both groups. Propranolol treatment did not significantly alter the torsional strength of the fractured femur compared with controls. The volume and mineralization of fracture callus at 5 weeks were not significantly different in both groups. Histology showed that endochondral ossification was not affected by propranolol. Altogether, our results demonstrate that propranolol using the regimen described does not significantly improve or inhibit rat osteotomy healing and mechanical strength.
Collapse
Affiliation(s)
- Peter Smitham
- Institute of Orthopaedics and Musculoskeletal Science, UCL, Royal National Orthopaedic HospitalLondon, Stanmore, United Kingdom
| | - Lawrence Crossfield
- Department of Comparative and Biomedical Sciences, Royal Veterinary CollegeLondon, NW1 0TU, United Kingdom
| | - Gillian Hughes
- Department of Comparative and Biomedical Sciences, Royal Veterinary CollegeLondon, NW1 0TU, United Kingdom
| | - Allen Goodship
- Institute of Orthopaedics and Musculoskeletal Science, UCL, Royal National Orthopaedic HospitalLondon, Stanmore, United Kingdom
| | - Gordon Blunn
- Institute of Orthopaedics and Musculoskeletal Science, UCL, Royal National Orthopaedic HospitalLondon, Stanmore, United Kingdom
| | - Chantal Chenu
- Department of Comparative and Biomedical Sciences, Royal Veterinary CollegeLondon, NW1 0TU, United Kingdom,Correspondence to: Chantal Chenu (T: +44-207-468-5045; F: +44-207-468-5204; E-mail: )
| |
Collapse
|
36
|
Sato T, Miyazawa K, Suzuki Y, Mizutani Y, Uchibori S, Asaoka R, Arai M, Togari A, Goto S. Selective β2-adrenergic Antagonist Butoxamine Reduces Orthodontic Tooth Movement. J Dent Res 2014; 93:807-12. [PMID: 24868013 DOI: 10.1177/0022034514536730] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/26/2014] [Indexed: 12/22/2022] Open
Abstract
Recently, involvement of the sympathetic nervous system in bone metabolism has attracted attention. β2-Adrenergic receptor (β2-AR) is presented on osteoblastic and osteoclastic cells. We previously demonstrated that β-AR blockers at low dose improve osteoporosis with hyperactivity of the sympathetic nervous system via β2-AR blocking, while they may have a somewhat inhibitory effect on osteoblastic activity at high doses. In this study, the effects of butoxamine (BUT), a specific β2-AR antagonist, on tooth movement were examined in spontaneously hypertensive rats (SHR) showing osteoporosis with hyperactivity of the sympathetic nervous system. We administered BUT (1 mg/kg) orally, and closed-coil springs were inserted into the upper-left first molar. After sacrifice, we calculated the amount of tooth movement and analyzed the trabecular microarchitecture and histomorphometry. The distance in the SHR control was greater than that in the Wistar-Kyoto rat group, but no significant difference was found in the SHR treated with BUT compared with the Wistar-Kyoto rat control. Analysis of bone volume per tissue volume, trabecular number, and osteoclast surface per bone surface in the alveolar bone showed clear bone loss by an increase of bone resorption in SHR. In addition, BUT treatment resulted in a recovery of alveolar bone loss. Furthermore, TH-immunoreactive nerves in the periodontal ligament were increased by tooth movement, and BUT administration decreased TH-immunoreactive nerves. These results suggest that BUT prevents alveolar bone loss and orthodontic tooth movement via β2-AR blocking.
Collapse
Affiliation(s)
- T Sato
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - K Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Y Suzuki
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Y Mizutani
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - S Uchibori
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - R Asaoka
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - M Arai
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan Department of Dental Hygiene, Aichi-Gakuin Junior College, Nagoya, Japan
| | - A Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - S Goto
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| |
Collapse
|
37
|
Swift JM, Hogan HA, Bloomfield SA. β-1 adrenergic agonist mitigates unloading-induced bone loss by maintaining formation. Med Sci Sports Exerc 2014; 45:1665-73. [PMID: 23470310 DOI: 10.1249/mss.0b013e31828d39bc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Recent data indicate a direct relationship between the sympathetic nervous system and bone metabolism. The purpose of this study was to evaluate the effects of a beta-1 adrenergic (Adrb1) agonist, dobutamine (DOB), on disuse-induced changes in bone integrity during 28 d of hindlimb unloading (HU). METHODS Male Sprague-Dawley rats, age 6 months, were assigned to either a normal cage activity (CC) or HU (n = 24/group). Animals were given one daily bolus dose (4 mg·kg body weight a day) of DOB (n = 12) or an equal volume of saline (VEH, n = 12). RESULTS In vivo peripheral quantitative computed tomography scans revealed a 9% loss in proximal tibia metaphysis (PTM) volumetric bone mineral density (vBMD) over 28 d of disuse. DOB administration during HU significantly attenuated reductions in PTM vBMD and inhibited reductions in mid-diaphysis tibia cross-sectional moment of inertia. A significant decline in PTM bone formation rate in the HU-VEH group (-56% vs CC-VEH) was completely abolished in the HU-DOB group. Significant reductions in strength of the femoral shaft and neck in the HU-VEH group (14% and 15%, respectively) were prevented with DOB treatment. CONCLUSION In conclusion, DOB administration during HU effectively attenuates significant declines in total vBMD at PTM by mitigating associated decrements in bone formation rate. Positive effects of DOB were observed only in unloaded animals, with no effects observed in normal weight-bearing rats. These data provide evidence for the importance of Adrb1 signaling in maintaining osteoblast function during periods of mechanical unloading.
Collapse
Affiliation(s)
- Joshua M Swift
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
38
|
The combination therapy with zoledronic Acid and propranolol improves the trabecular microarchitecture and mechanical property in an rat model of postmenopausal osteoporosis. J Osteoporos 2014; 2014:586431. [PMID: 24800099 PMCID: PMC3988934 DOI: 10.1155/2014/586431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/19/2014] [Accepted: 02/27/2014] [Indexed: 01/30/2023] Open
Abstract
We conducted the present study to investigate the therapeutic effects of propranolol (PRO), alone and in combination with the antiresorptive agent ZOL, in a rat model of postmenopausal osteoporosis. Female Wistar rats were OVX or sham-operated at 3 months of age. Twelve weeks after surgery, rats were randomized into six groups: (1) sham + vehicle, (2) OVX + vehicle, (3) OVX + ZOL (100 μ g/kg, i.v. single dose), (4) OVX + ZOL (50 μ g/kg, i.v. single dose), (5) OVX + PRO (0.1 mg/kg, s.c. 5 days per week), and (6) OVX + ZOL (50 μ g/kg, i.v. single dose) + PRO (0.1 mg/kg, s.c. 5 days per week) for 12 weeks. At the end of treatment study, various bone parameters were evaluated. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the combination treatment of ZOL and PRO was more effective than each drug administered as a monotherapy. Moreover, combination therapy using ZOL and PRO preserved the trabecular microarchitecture better than single-drug therapy using ZOL or PRO in OVX rats. These data suggest that combination therapy with ZOL plus PRO represents a potentially useful therapeutic option for patients with osteoporosis.
Collapse
|
39
|
Healing of periodontal defects and calcitonin gene related peptide expression following inferior alveolar nerve transection in rats. J Mol Histol 2013; 45:311-20. [PMID: 24202439 DOI: 10.1007/s10735-013-9551-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/28/2013] [Indexed: 02/03/2023]
Abstract
The roles of nerve and neuropeptides in the process of bone formation and remolding have been studied previously. However, the effects of nervous system and neuropeptide on periodontal alveolar bone formation remained unknown. The aim of this study was to assess the effect of innervation on regeneration of alveolar bone and expression levels of calcitonin gene related peptide (CGRP) in periodontal tissues of rats, so as to have a better understanding of the effect of nerve and its related neuropeptide on periodontal tissue regeneration. Rats received transection of the left inferior alveolar nerve and a surgery to produce bilateral periodontal defect, then the alveolar tissue was obtained from animals of each group at week 1, 2, 4, 6 and 8 weeks after operation, respectively. Hematoxylin and eosin staining, and Masson staining were performed to evaluate the ability to restore and repair periodontal tissues at 4, 6 and 8 after surgery. Then new bone formation area and mineralized area were quantified using imagepro-plus6.0 software after pictures were taken under the microscope and SPSS17.0 was used for statistical analysis. Immunohistochemical staining was applied to investigate the expression of CGRP at 1, 2, 4, 6 and 8 weeks. Rats received transection of the left inferior alveolar nerve surgery and were then sacrificed at day 1, 3, 7, 14, 21, 28 after the operation. The change of CGRP expression in periodontal tissue was detected using immunohistochemical methods. The results showed that the volume of new bone formation was not significantly difference between the experimental and control groups, but the mineralized new bone area between the two groups was statistically significant. The level of CGRP expression was lower than normal at week 1, and then it began to rise in the next stage. The plateau, at higher than normal level, was reached at 6 weeks post-surgery. Results of transection of the left inferior alveolar nerve demonstrated the expression of CGRP was decreased in early stage; it reached the lowest level at day 7. Then the expression level began to increase until it returned to normal level at day 28. The results of this study suggest that nerve and its related neuropeptide CGRP are the important factors that can affect the quality of regenerated alveolar bone by reducing bone density during the mineralization process.
Collapse
|
40
|
Kodama D, Togari A. Noradrenaline stimulates cell proliferation by suppressing potassium channels via G(i/o) -protein-coupled α(1B) -adrenoceptors in human osteoblasts. Br J Pharmacol 2013; 168:1230-9. [PMID: 23061915 DOI: 10.1111/bph.12000] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent studies demonstrated that the sympathetic nervous system regulates bone metabolism via β(2) -adrenoceptors. Although α-adrenoceptors are also expressed in osteogenic cells, their functions in bone metabolism have been less studied. We previously demonstrated that noradrenaline suppressed potassium currents via α(1B) -adrenoceptors in the human osteoblast SaM-1 cell line. The aim of this study was to investigate the signal transduction pathway and the physiological role of noradrenaline in human osteoblasts in more detail. EXPERIMENTAL APPROACH To investigate signal transduction through α(1B) -adrenoceptors, we used whole-cell patch clamp recording and Ca fluorescence imaging. Potassium channels regulate membrane potential and cell proliferation activity in non-excitable cells, so we evaluated cell proliferation activity by BrdU incorporation and WST assay. KEY RESULTS In SaM-1 cells, bath-applied noradrenaline elevated intracellular Ca(2+) concentration and this effect was abolished by both chloroethylclonidine, an α(1B) -adrenoceptor antagonist, and U73122, a PLC inhibitor. However, the inhibitory effect of noradrenaline on whole-cell current was unaffected by U73122. In contrast, in cells pretreated with either Pertussis toxin, a G(i/o) -protein-coupled receptor inhibitor, or gallein, a Gβγ-protein inhibitor, the inhibitory effect of noradrenaline on whole-cell current was significantly suppressed. Noradrenaline-induced enhancement of cell proliferation was inhibited by CsCl, a non-selective potassium channel blocker, gallein and H89, a PKA inhibitor, but not by U73122. CONCLUSIONS AND IMPLICATIONS Noradrenaline facilitated cell proliferation by regulation of potassium currents in human osteoblasts via G(i/o) -protein-coupled α(1B) -adrenoceptors, not via coupling to Gq-proteins.
Collapse
Affiliation(s)
- D Kodama
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | |
Collapse
|
41
|
Kodama D, Togari A. Store-operated calcium entry induced by activation of Gq-coupled alpha1B adrenergic receptor in human osteoblast. Biochem Biophys Res Commun 2013; 437:239-44. [PMID: 23806689 DOI: 10.1016/j.bbrc.2013.06.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/15/2013] [Indexed: 11/26/2022]
Abstract
Recent studies have revealed that the sympathetic nervous system is involved in bone metabolism. We previously reported that noradrenaline (NA) suppressed K(+) currents via Gi/o protein-coupled alpha1B-adrenergic receptor (α1B-AR) in human osteoblast SaM-1 cells. Additionally, it has been demonstrated that the intracellular Ca(2+) level ([Ca(2+)]i) was increased by NA via α1B-AR. In this study, we investigated the signal pathway of NA-induced [Ca(2+)]i elevation by using Ca(2+) fluorescence imaging in SaM-1 cells. NA-induced [Ca(2+)]i elevation was suppressed by pretreatment with a PLC inhibitor, U73122. This suggested that the [Ca(2+)]i elevation was mediated by Gq protein-coupled α1B-AR. On the other hand, NA-induced [Ca(2+)]i elevation was completely abolished in Ca(2+)-free solution, which suggested that Ca(2+) influx is the predominant pathway of NA-induced [Ca(2+)]i elevation. Although the inhibition of K(+) channel by NA caused membrane depolarization, the [Ca(2+)]i elevation was not affected by voltage-dependent Ca(2+) channel blockers, nifedipine and mibefradil. Meanwhile, NA-induced [Ca(2+)]i elevation was abolished following activation of store-operated Ca(2+) channel by thapsigargin. Additionally, the [Ca(2+)]i elevation was suppressed by store-operated channel inhibitors, 2-APB, flufenamate, GdCl3 and LaCl3. These results suggest that Ca(2+) influx through store-operated Ca(2+) channels plays a critical role in the signal transduction pathway of Gq protein-coupled α1B-AR in human osteoblasts.
Collapse
Affiliation(s)
- Daisuke Kodama
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| | | |
Collapse
|
42
|
Kondo H, Takeuchi S, Togari A. β-Adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species. Am J Physiol Endocrinol Metab 2013; 304:E507-15. [PMID: 23169789 DOI: 10.1152/ajpendo.00191.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sympathetic signaling regulates bone resorption through receptor activator of nuclear factor-κB ligand (RANKL) expression via the β-adrenergic receptor (β-AR) on osteoblasts. Reactive oxygen species (ROS) are known as one type of osteoclast regulatory molecule. Here we show that an antioxidant, α-lipoic acid (α-LA), treatment prevent the β-adrenergic signaling-induced bone loss by suppressing osteoclastogenesis, and sympathetic signaling directly regulates osteoclastogenesis through β2-AR expressed on osteoclasts via intracellular ROS generation. In an in vitro study, the β-AR agonist isoprenaline increased intracellular ROS generation in osteoclasts prepared from bone marrow macrophages (BBMs) and RAW 264.7 cells. Isoprenaline enhanced osteoclastogenesis through β2-AR expressed on BMMs and RAW 264.7 cells. The antioxidant α-LA inhibited isoprenaline-enhanced osteoclastogenesis. Isoprenaline increased the expression of osteoclast-related genes such as nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1, tartrate-resistant acid phosphatase, and cathepsin K on osteoclasts. α-LA also inhibited isoprenaline-induced increases of these gene expressions. These in vitro results led to the hypothesis that β-adrenergic signaling directly stimulates osteoclastogenesis via ROS generation. In an in vivo study, isoprenaline treatment alone caused oxidative damage in local bone and reduced bone mass because of an increase in bone resorption, and, in α-LA-treated mice, isoprenaline did not increase tibial osteoclast number even though the RANKL-to-osteoprotegerin ratio increased. These in vitro and in vivo results indicate that β-adrenergic signaling, at least in part, directly stimulates osteoclastogenesis through β2-AR on osteoclasts via ROS generation.
Collapse
Affiliation(s)
- Hisataka Kondo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | | | |
Collapse
|
43
|
Arai M, Sato T, Takeuchi S, Goto S, Togari A. Dose effects of butoxamine, a selective β2-adrenoceptor antagonist, on bone metabolism in spontaneously hypertensive rat. Eur J Pharmacol 2013; 701:7-13. [PMID: 23321373 DOI: 10.1016/j.ejphar.2012.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/17/2022]
Abstract
Recent studies have shown that osteoblasts and osteoclasts express β2-adrenoceptor, and increased sympathetic nervous activity causes bone loss via an increase in osteoclastic bone resorption and a decrease in osteoblastic bone formation. We previously demonstrated that non-selective β-adrenoceptor antagonist propranolol at low doses (0.1 and 1mg/kg), but not at a higher dose (10mg/kg), prevented a decrease in bone mass and an increase in bone fragility in spontaneously hypertensive rat (SHR), an animal model of osteoporosis with hyperactivity of the sympathetic nervous system, without affecting blood pressure. In the present study, the dose effects of butoxamine, a selective β2-adrenoceptor antagonist, on bone metabolism were examined in SHR by analysis of microcomputed tomography, bone histomorphometry, biomechanical testing and plasma biochemistry. Treatment of SHR with butoxamine at 0.1, 1 and 10mg/kg (per os) for 12 weeks increased bone mass indices and biomechanical parameters of strength and toughness of the lumbar vertebrae, suggesting antiosteoporotic activity. Butoxamine dose-dependently decreased osteoclast number and surface per bone surface with decreases in plasma tartrate-resistant acid phosphatase-5b level, a biochemical index of osteoclastic activity. On the other hand, histomorphometry indices of bone formation and plasma osteocalcin concentration reflecting osteoblastic activity were increased in SHR treated with butoxamine at 0.1 and 1mg/kg, but not at 10mg/kg. These results suggest that β-adrenoceptor antagonists at a low dose may improve osteoporosis with hyperactivity of the sympathetic nervous system via β2-adrenoceptor blocking action, while they may have a somewhat inhibitory effect on osteoblastic activity at a high dose.
Collapse
Affiliation(s)
- Michitsugu Arai
- Department of Pharmacology, Aichi-Gakuin University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
44
|
Case of progressive facial hemiatrophy with cervical sympathetic hyperactivity as underlying aetiology. The Journal of Laryngology & Otology 2012; 126:725-8. [PMID: 22697810 DOI: 10.1017/s0022215112000783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE We report a case of progressive facial hemiatrophy with cervical sympathetic hyperactivity as a possible underlying aetiology, based on clinical findings, three-dimensional computed tomography and thermographic imaging. METHODS We present a case report in which we describe the investigation and clinical course of progressive facial hemiatrophy, and we also review the world literature on this condition. RESULTS To our knowledge, this is the first report in the world literature of progressive facial hemiatrophy with cervical sympathetic hyperactivity indicated as a possible underlying aetiology, based on clinical findings, three-dimensional computed tomography and thermographic imaging. CONCLUSION This syndrome may lead to atrophy of the subcutaneous adipose tissue with hyperfunction of the vegetative system. Although this is a rare syndrome, otolaryngologists should be aware of its symptoms, aetiology and treatment.
Collapse
|
45
|
The neuro-osteogenic network: The sympathetic regulation of bone resorption. JAPANESE DENTAL SCIENCE REVIEW 2012. [DOI: 10.1016/j.jdsr.2011.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
46
|
Effects of propranolol on the development of glucocorticoid-induced osteoporosis in male rats. Pharmacol Rep 2012; 63:1040-9. [PMID: 22001992 DOI: 10.1016/s1734-1140(11)70620-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 04/14/2011] [Indexed: 02/07/2023]
Abstract
Glucocorticoid-induced osteoporosis is the most frequently occurring type of secondary osteoporosis. Antagonists of β-adrenergic receptors are now considered to be potential drugs under investigation for osteoporosis. The aim of the present study was to investigate the effects of propranolol, a nonselective β-receptor antagonist, on the skeletal system of mature male rats and on the development of bone changes induced by glucocorticoid (prednisolone) administration. The experiments were performed on 24-week-old male Wistar rats. The effects of prednisolone 21-hemisuccinate sodium salt (7 mg/kg, sc daily) or/and propranolol hydrochloride (10 mg/kg, ip daily) administered for 4 weeks on the skeletal system were studied. Bone and bone mineral mass in the tibia, femur and L-4 vertebra, length and diameter of the long bones, mechanical properties of tibial metaphysis, femoral diaphysis and femoral neck, bone histomorphometric parameters and turnover markers in serum were determined. Prednisolone-induced unfavorable skeletal changes led to disorders in bone mechanical properties. Propranolol not only did not improve bone parameters, but even caused deleterious effects on the skeletal system. Concurrent administration of propranolol with prednisolone did not counteract the changes induced by prednisolone. The results of this study may help to understand the equivocal results of human studies on the effects of β-blockers on the skeletal system. It is possible that the drugs exert biphasic effects on the skeletal system, both favorable and deleterious, depending on the dose or individual susceptibility.
Collapse
|
47
|
Komoto S, Kondo H, Fukuta O, Togari A. Comparison of β-adrenergic and glucocorticoid signaling on clock gene and osteoblast-related gene expressions in human osteoblast. Chronobiol Int 2012; 29:66-74. [PMID: 22217103 DOI: 10.3109/07420528.2011.636496] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Most living organisms exhibit circadian rhythms that are generated by endogenous circadian clocks, the master one being present in the suprachiasmatic nuclei (SCN). Output signals from the SCN are believed to transmit standard circadian time to peripheral tissue through sympathetic nervous system and humoral routes. Therefore, the authors examined the expression of clock genes following treatment with the β-adrenergic receptor agonist, isoprenaline, or the synthetic glucocorticoid, dexamethasone, in cultured human osteoblast SaM-1 cells. Cells were treated with 10(-6) M isoprenaline or 10(-7) M dexamethasone for 2 h and gene expressions were determined using real-time polymerase chain reaction (PCR) analysis. Treatment with isoprenaline or dexamethasone induced the circadian expression of clock genes human period 1 (hPer1), hPer2, hPer3, and human brain and muscle Arnt-like protein 1 (hBMAL1). Isoprenaline or dexamethasone treatment immediately increased hPer1 and hPer2 and caused circadian oscillation of hPer1 and hPer2 with three peaks within 48 h. hPer3 expression had one peak after isoprenaline or dexamethasone treatment. hBMAL expression had two peaks after isoprenaline or dexamethasone treatment, the temporal pattern being in antiphase to that of the other clock genes. Dexamethasone treatment delayed the oscillation of all clock genes for 2-6 h compared with isoprenaline treatment. The authors also examined the expression of osteoblast-related genes hα-1 type I collagen (hCol1a1), halkaline phosphatase (hALP), and hosteocalcin (hOC). Isoprenaline induced oscillation of hCol1a1, but not hALP and hOC. On the other hand, dexamethasone induced oscillation of hCol1a1 and hALP, but not hOC. Isoprenaline up-regulated hCol1a1 expression, but dexamethasone down-regulated hCol1a1 and hALP expression in the first phase.
Collapse
Affiliation(s)
- Shintaro Komoto
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Chikusa-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
48
|
Abstract
OBJECTIVE The aim of this study was to investigate the presence of autonomic dysfunction in patients with osteoporosis. DESIGN This is a prospective controlled trial. Sixteen postmenopausal female patients with osteoporosis and 10 age-matched postmenopausal nonosteoporotic controls were included in the study. Participants were divided into the postmenopausal osteoporosis group and the nonosteoporotic control group according to bone mineral densities. Heart rate variability parameters and sympathetic skin responses were studied to evaluate autonomic functions. RESULTS The latencies of sympathetic skin responses obtained from both hands were significantly increased in the patient group when compared with the control group. The sympathetic skin response amplitude of the right hands and both feet of the patient group were found to be decreased significantly when compared with that of the control group. A 24-hr high-frequency value was significantly decreased in the patient group than in control group. A 24-hr low-/high-frequency value was significantly higher in the patient group than in the control group. CONCLUSIONS Autonomic dysfunction characterized with increased sympathetic and decreased parasympathetic activity may be present in osteoporosis, and cardiac functions in patients with osteoporosis may also be affected by accompanying autonomic dysfunction.
Collapse
|
49
|
Oka Y, Iwai S, Amano H, Irie Y, Yatomi K, Ryu K, Yamada S, Inagaki K, Oguchi K. Tea polyphenols inhibit rat osteoclast formation and differentiation. J Pharmacol Sci 2011; 118:55-64. [PMID: 22186621 DOI: 10.1254/jphs.11082fp] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) play an important role in degeneration of the matrix associated with bone and cartilage. Regulation of osteoclast activity is essential in the treatment of bone disease, including osteoporosis and rheumatoid arthritis. Polyphenols in green tea, particularly epigallocatechin-3-gallate (EGCG), inhibit MMPs expression and activity. However, the effects of the black tea polyphenol, theaflavin-3,3'-digallate (TFDG), on osteoclast and MMP activity are unknown. Therefore, we examined whether TFDG and EGCG affect MMP activity and osteoclast formation and differentiation in vitro. TFDG or EGCG (10 and 100 µM) was added to cultures of rat osteoclast precursors cells and mature osteoclasts. Numbers of multinucleated osteoclasts and actin rings decreased in polyphenol-treated cultures relative to control cultures. MMP-2 and MMP-9 activities were lower in TFDG- and EGCG-treated rat osteoclast precursor cells than in control cultures. MMP-9 mRNA levels declined significantly in TFDG-treated osteoclasts in comparison to control osteoclasts. TFDG and EGCG inhibited the formation and differentiation of osteoclasts via inhibition of MMPs. TFDG may suppress actin ring formation more effectively than EGCG. Thus, TFDG and EGCG may be suitable agents or lead compounds for the treatment of bone resorption diseases.
Collapse
Affiliation(s)
- Yoshiomi Oka
- Department of Pharmacology, Showa University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kawamura H, Arai M, Togari A. Inhibitory effect of chlorpromazine on RANKL-induced osteoclastogenesis in mouse bone marrow cells. J Pharmacol Sci 2011; 117:54-62. [PMID: 21869564 DOI: 10.1254/jphs.11006fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Chlorpromazine (CPZ), the first widely used phenothiazine tranquilizer, is shown to inhibit the action of intracellular calmodulin (CaM) and bone resorption in vivo and in vitro. In this study, CPZ (0.63 - 10 µM) dose-dependently inhibited the formation of tartrate-resistant acid phosphatase (TRAP) staining-positive osteoclast-like cells in mouse bone marrow cells (BMCs) treated with 1α,25(OH)(2)D(3) (10 nM) or soluble receptor activator of nuclear factor-κB ligand (s-RANKL) (20 ng/ml). Expressions of mRNA for the nuclear factor of activated T-cells c1 (NFATc1), a key regulator of osteoclast differentiation; dendritic cell-specific transmembrane protein (DC-STAMP), an essential protein for cell-cell fusion; and characteristic markers of osteoclasts such as TRAP, cathepsin K, carbonic anhydrase II, and calcitonin receptor in BMCs were up-regulated by s-RANKL and decreased by the addition of CPZ (5 µM) or the selective CaM antagonist W7, but not the inactive analog W5. The general CaM kinase (CaMK) inhibitor KN-93 and CaM-dependent phosphatase calcineurin inhibitor FK-506 also inhibited s-RANKL-induced osteoclastogenesis. Phenothiazines such as CPZ, trifluoperazine (TFPZ), and promethazine (PMZ) inhibited s-RANKL-induced osteoclast-like cell formation in mouse BMCs. Osteoclastogenesis inhibitory effects decreased in the order of TFPZ, CPZ, PMZ, depending on their anti-CaM potency. These findings suggest that CPZ inhibits RANKL-induced osteoclastogenesis by its anti-CaM action.
Collapse
Affiliation(s)
- Hiroharu Kawamura
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Japan
| | | | | |
Collapse
|