1
|
Wootton CA, Maillard J, Theisen A, Brabeck GF, Schat CL, Rüger CP, Afonso C, Giusti P. A Gated TIMS FTICR MS Instrument to Decipher Isomeric Content of Complex Organic Mixtures. Anal Chem 2024; 96:11343-11352. [PMID: 38973712 DOI: 10.1021/acs.analchem.4c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Modern research faces increasingly complex materials with a constant need for new analytical strategies that can provide deeper levels of chemical insight. Ultrahigh resolution mass spectrometry (MS), particularly Fourier transform ion cyclotron resonance (FTICR) MS, has provided a robust analytical foundation. However, MS alone offers limited structural information. Here, we present the first implementation and results from an FTICR MS with fully integrated dual accumulation analysis with gated trapped ion mobility spectrometry (gTIMS) capability. The drastically extended charge capacity and parallel accumulation facilitate the analysis of complex mixtures. We achieved a high dynamic range of 4 orders of magnitude within a single FTICR acquisition event. Simultaneously, the valuable linear relationship between the TIMS elution voltage and reduced mobility was retained over a wide mobility range. Benchmarking the instrument performance with Suwannee River fulvic acid (SRFA) by variable ramp gTIMS analysis allowed separation and unambiguous assignment of different charge state distributions. Application to bio-oils has proven the capability to distinguish the isomeric diversity in these ultracomplex samples, while maintaining the expected FTICR MS resolving power and mass accuracy. Valuable information about the molecular distribution, isomeric diversity, and main molecular differences could directly be extracted within the analysis time of a classical "dilute and shoot" direct infusion experiment. The development of this fully integrated and flexible gTIMS with FTICR MS analysis possesses the potential to significantly change the current landscape of high-resolution mass spectrometric analysis of complex mixtures through the added insight of isomeric complexity afforded by TIMS. The exploration of the added IMS dimension promises transformative effects across diverse fields including energy transition, environmental studies, and biological research.
Collapse
Affiliation(s)
| | - Julien Maillard
- TotalEnergies One Tech, R&D, Downstream Processes & Polymers, TotalEnergies Research & Technology Gonfreville, BP 27, 76700 Harfleur, France
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| | - Alina Theisen
- Bruker Daltonics GmbH & Co. Kg, 28359 Bremen, Germany
| | | | | | - Christopher P Rüger
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
| | - Carlos Afonso
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, 76000 Rouen, France
| | - Pierre Giusti
- TotalEnergies One Tech, R&D, Downstream Processes & Polymers, TotalEnergies Research & Technology Gonfreville, BP 27, 76700 Harfleur, France
- International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, 76000 Rouen, France
| |
Collapse
|
2
|
Mikhael A, Hardie D, Smith D, Pětrošová H, Ernst RK, Goodlett DR. Structural Elucidation of Intact Rough-type Lipopolysaccharides Using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots. Anal Chem 2023; 95:16796-16800. [PMID: 37943784 PMCID: PMC10666081 DOI: 10.1021/acs.analchem.3c02947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 11/12/2023]
Abstract
Lipopolysaccharides (LPSs) are a hallmark virulence factor of Gram-negative bacteria. They are complex, structurally heterogeneous mixtures due to variations in number, type, and position of their simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of an intact R-type lipopolysaccharide complex mixture (lipooligosaccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas-phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and unequivocal structural assignments. In addition to FAIMS gas-phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [Na-H] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families, i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 181 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.
Collapse
Affiliation(s)
- Abanoub Mikhael
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Darryl Hardie
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Derek Smith
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Helena Pětrošová
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Robert K. Ernst
- Department
of Microbial Pathogenesis, University of
Maryland—Baltimore, Baltimore, Maryland 21201, United States
| | - David R. Goodlett
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University
of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| |
Collapse
|
3
|
Mikhael A, Hardie D, Smith D, Pětrošová H, Ernst RK, Goodlett DR. Structural Elucidation of Intact Rough-Type Lipopolysaccharides using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545950. [PMID: 37461651 PMCID: PMC10349945 DOI: 10.1101/2023.06.21.545950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Lipopolysaccharide (LPS) is a hallmark virulence factor of Gram-negative bacteria. It is a complex, structurally heterogeneous mixture due to variations in number, type, and position of its simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of intact R-type lipopolysaccharide complex mixture (lipooligosaccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and unequivocal structural assignments. In addition to FAIMS gas phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [NaH] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families; i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 179 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.
Collapse
Affiliation(s)
- Abanoub Mikhael
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Darryl Hardie
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Derek Smith
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Helena Pětrošová
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland - Baltimore, Baltimore, MD, 21201 USA
| | - David R Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- University of Victoria Genome British Columbia Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| |
Collapse
|
4
|
Ion Mobility Mass Spectrometry for Structural Elucidation of Petroleum Compounds. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Olanrewaju CA, Ramirez CE, Fernandez-Lima F. Comprehensive Screening of Polycyclic Aromatic Hydrocarbons and Similar Compounds Using GC-APLI-TIMS-TOFMS/GC-EI-MS. Anal Chem 2021; 93:6080-6087. [PMID: 33835784 DOI: 10.1021/acs.analchem.0c04525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present work, a novel workflow based on complementary gas-phase separations for the identification of isomeric PAHs from complex mixtures is described. This is the first report on the coupling of gas chromatography (GC), atmospheric pressure laser ionization (APLI), and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) for the characterization of polycyclic aromatic hydrocarbons. Over a hundred known unknowns are uniquely identified based on the molecular ion retention indices I (5%), mobility (RSD < 0.6% and R = 50-90 with Sr = 0.18 V/ms), mobility-based theoretical candidate assignment (<3%), accurate mass chemical formula assignment (<2 ppm), and electron impact fragmentation pattern and database search. The advantages of theoretical modeling of PAHs and similar compounds were evaluated using candidate structures ranked by retention indices and fragmentation pattern from GC-EI-MS data sets. Over 20 PAH isomeric and deuterated standards were utilized for the GC-APLI-TIMS-TOF MS workflow validation. Noteworthy is the analytical capability for untargeted screening of isomeric and isobaric compounds with additional characterization metrics not available in traditional GC-EI-MSn workflows.
Collapse
Affiliation(s)
- Clement A Olanrewaju
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Advanced Mass Spectrometry Facility, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Advanced Mass Spectrometry Facility, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
6
|
Leyva D, Jaffe R, Fernandez-Lima F. Structural Characterization of Dissolved Organic Matter at the Chemical Formula Level Using TIMS-FT-ICR MS/MS. Anal Chem 2020; 92:11960-11966. [PMID: 32786462 DOI: 10.1021/acs.analchem.0c02347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TIMS-FT-ICR MS is an important alternative to study the isomeric diversity and elemental composition of complex mixtures. While the chemical structure of many compounds in the dissolved organic matter (DOM) remains largely unknown, the high structural diversity has been described at the molecular level using chemical formulas. In this study, we further push the boundaries of TIMS-FT-ICR MS by performing chemical formula-based ion mobility and tandem MS analysis for the structural characterization of DOM. The workflow described is capable to mobility select (R ∼ 100) and isolate molecular ion signals (Δm/z = 0.036) in the ICR cell, using single-shot ejections after broadband ejections and MS/MS based on sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The workflow results are compared to alternative TIMS-q-FT-ICR MS/MS experiments with quadrupole isolation at nominal mass (∼1 Da). The technology is demonstrated with isomeric and isobaric mixtures (e.g., 4-methoxy-1-naphthoic acid, 2-methoxy-1-naphthoic acid, decanedioic acid) and applied to the characterization of DOM. The application of this new methodology to the analysis of a DOM is illustrated by the isolation of the molecular ion [C18H18O10-H]- in the presence of other isobars at nominal mass 393. Five IMS bands were assigned to the heterogeneous ion mobility profile of [C18H18O10-H]-, and candidate structures from the PubChem database were screened based on their ion mobility and the MS/MS matching score. This approach overcomes traditional challenges associated with the similarity of fragmentation patterns of DOM samples (e.g., common neutral losses of H2O, CO2, and CH2-H2O) by narrowing down the isomeric candidate structures using the mobility domain.
Collapse
|
7
|
Cho E, Riches E, Palmer M, Giles K, Ujma J, Kim S. Isolation of Crude Oil Peaks Differing by m/z ∼0.1 via Tandem Mass Spectrometry Using a Cyclic Ion Mobility-Mass Spectrometer. Anal Chem 2019; 91:14268-14274. [DOI: 10.1021/acs.analchem.9b02255] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eunji Cho
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Eleanor Riches
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Martin Palmer
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Kevin Giles
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Jakub Ujma
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Green-Nano Materials Research Center, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Leyva D, Tose LV, Porter J, Wolff J, Jaffé R, Fernandez-Lima F. Understanding the structural complexity of dissolved organic matter: isomeric diversity. Faraday Discuss 2019; 218:431-440. [DOI: 10.1039/c8fd00221e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the present work, the advantages of ESI-TIMS-FT-ICR MS to address the isomeric content of dissolved organic matter are studied.
Collapse
Affiliation(s)
- Dennys Leyva
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Southeast Environmental Research Center
| | - Lilian V. Tose
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Jacob Porter
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | | | - Rudolf Jaffé
- Southeast Environmental Research Center
- Florida International University
- Miami
- USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Biomolecular Sciences Institute
| |
Collapse
|
9
|
Tose LV, Benigni P, Leyva D, Sundberg A, Ramírez CE, Ridgeway ME, Park MA, Romão W, Jaffé R, Fernandez-Lima F. Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1287-1295. [PMID: 29756663 DOI: 10.1002/rcm.8165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/28/2018] [Accepted: 05/03/2018] [Indexed: 05/05/2023]
Abstract
RATIONALE There is a need for fast, post-ionization separation during the analysis of complex mixtures. In this study, we evaluate the use of a high-resolution mobility analyzer with high-resolution and ultrahigh-resolution mass spectrometry for unsupervised molecular feature detection. Goals include the study of the reproducibility of trapped ion mobility spectrometry (TIMS) across platforms, applicability range, and potential challenges during routine analysis. METHODS A TIMS analyzer was coupled to time-of-flight mass spectrometry (TOF MS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) instruments for the analysis of singly charged species in the m/z 150-800 range of a complex mixture (Suwannee River Fulvic Acid Standard). Molecular features were detected using an unsupervised algorithm based on chemical formula and IMS profiles. RESULTS TIMS-TOF MS and TIMS-FT-ICR MS analysis provided 4950 and 7760 m/z signals, 1430 and 3050 formulas using the general Cx Hy N0-3 O0-19 S0-1 composition, and 7600 and 22 350 [m/z; chemical formula; K; CCS] features, respectively. CONCLUSIONS TIMS coupled to TOF MS and FT-ICR MS showed similar performance and high reproducibility. For the analysis of complex mixtures, both platforms were able to capture the major trends and characteristics; however, as the chemical complexity at the level of nominal mass increases with m/z (m/z >300-350), only TIMS-FT-ICR MS was able to report the lower abundance compositional trends.
Collapse
Affiliation(s)
- Lilian V Tose
- Federal University of Espírito Santo, Petroleomic and Forensic Chemistry Laboratory, Department of Chemistry, 29075-910, Vitória, ES, Brazil
| | - Paolo Benigni
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - Dennys Leyva
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - Abigail Sundberg
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - César E Ramírez
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | | | | | - Wanderson Romão
- Federal University of Espírito Santo, Petroleomic and Forensic Chemistry Laboratory, Department of Chemistry, 29075-910, Vitória, ES, Brazil
- Federal Institute of Education, Science and Technology of Espírito Santo, 29106-010, Vila Velha, ES, Brazil
| | - Rudolf Jaffé
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
- Florida International University, Southeast Environmental Research Center, Miami, FL, 33199, USA
| | - Francisco Fernandez-Lima
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
- Florida International University, Southeast Environmental Research Center, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
10
|
Ghislain T, Molnárné Guricza L, Schrader W. Characterization of crude oil asphaltenes by coupling size-exclusion chromatography directly to an ultrahigh-resolution mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:495-502. [PMID: 28010034 DOI: 10.1002/rcm.7814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 11/14/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Fossil fuels are one of the most important energy resources until new sustainable materials become available. To optimize the upgrading processes of these materials characterization of the remaining heavy materials is of great importance. METHODS Asphaltenes are the most difficult fraction of crude oil to process due to the limited number of solvents in which they can be dissolved. Chromatographic separation methods need to consider the difficulties associated with these limitations. Size-exclusion chromatography (SEC) in combination with Fourier transform Orbitrap mass spectrometry (MS) combines the capabilities of ultrahigh resolution and very high mass accuracy with a separation method that allows using solvents as mobile phase for asphaltene separation. RESULTS A chromatographic method was developed that shows the separation of asphaltenes according to their molecular mass. A simplification of the samples was achieved by reducing the number of compounds present in a single spectrum compared to infusion data. Direct detection by mass spectrometry additionally allows a distinction of different isomers present in the complex samples. CONCLUSIONS Direct coupling of SEC with ultrahigh-resolution mass spectrometry allows the study of the most difficult to analyze fraction of crude oil, the asphaltene fraction. Separation reduces the complexity of individual spectra and, therefore, also reduces suppression and discrimination effects. The separation of structural isomers which cannot be characterized by MS alone gives an added dimension to the analysis of asphaltenes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Thierry Ghislain
- Max-Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Lilla Molnárné Guricza
- Max-Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Wolfgang Schrader
- Max-Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Ewing MA, Glover MS, Clemmer DE. Hybrid ion mobility and mass spectrometry as a separation tool. J Chromatogr A 2016; 1439:3-25. [DOI: 10.1016/j.chroma.2015.10.080] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/05/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
|
12
|
Da Costa C, Turner M, Reynolds JC, Whitmarsh S, Lynch T, Creaser CS. Direct Analysis of Oil Additives by High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry Combined with Electrospray Ionization and Desorption Electrospray Ionization. Anal Chem 2016; 88:2453-8. [DOI: 10.1021/acs.analchem.5b04595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Caitlyn Da Costa
- Centre
for Analytical Science, Department of Chemistry, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
| | - Matthew Turner
- Centre
for Analytical Science, Department of Chemistry, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
| | - James C. Reynolds
- Centre
for Analytical Science, Department of Chemistry, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
| | - Samuel Whitmarsh
- BP Formulated Products Technology, Whitchurch
Hill, Pangbourne, Reading, RG8 7QR, United Kingdom
| | - Tom Lynch
- BP Formulated Products Technology, Whitchurch
Hill, Pangbourne, Reading, RG8 7QR, United Kingdom
| | - Colin S. Creaser
- Centre
for Analytical Science, Department of Chemistry, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
| |
Collapse
|
13
|
Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses. Int J Mol Sci 2016; 17:ijms17010104. [PMID: 26784175 PMCID: PMC4730346 DOI: 10.3390/ijms17010104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 12/16/2022] Open
Abstract
Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS) has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices.
Collapse
|
14
|
Wang X, Schrader W. Selective Analysis of Sulfur-Containing Species in a Heavy Crude Oil by Deuterium Labeling Reactions and Ultrahigh Resolution Mass Spectrometry. Int J Mol Sci 2015; 16:30133-43. [PMID: 26694374 PMCID: PMC4691148 DOI: 10.3390/ijms161226205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 02/06/2023] Open
Abstract
A heavy crude oil has been treated with deuterated alkylating reagents (CD₃I and C₂D₅I) and directly analyzed without any prior fractionation and chromatographic separation by high-field Orbitrap Fourier Transform Mass Spectrometry (FTMS) and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) using electrospray ionization (ESI). The reaction of a polycyclic aromatic sulfur heterocycles (PASHs) dibenzothiophene (DBT), in the presence of silver tetrafluoroborate (AgBF₄) with ethyl iodide (C₂H₅I) in anhydrous dichloroethane (DCE) was optimized as a sample reaction to study heavy crude oil mixtures, and the reaction yield was monitored and determined by proton nuclear magnetic resonance spectroscopy (¹H-NMR). The obtained conditions were then applied to a mixture of standard aromatic CH-, N-, O- and S-containing compounds and then a heavy crude oil, and only sulfur-containing compounds were selectively alkylated. The deuterium labeled alkylating reagents, iodomethane-d₃ (CD₃I) and iodoethane-d₅ (C₂D₅I), were employed to the alkylation of heavy crude oil to selectively differentiate the tagged sulfur species from the original crude oil.
Collapse
Affiliation(s)
- Xuxiao Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - Wolfgang Schrader
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
15
|
Vetere A, Schrader W. 1- and 2-photon ionization for online FAIMS-FTMS coupling allows new insights into the constitution of crude oils. Anal Chem 2015. [PMID: 26221748 DOI: 10.1021/acs.analchem.5b01969] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photoionization techniques (APPI and APLI) are important for the mass spectrometric analysis of crude oils, given the mainly unpolar character of the sample. Ultrahigh resolving Fourier Transform mass spectrometry (FTMS) allows to distinguish between most isobaric compounds as well as to unambiguously determine the elemental compositions of the detected ions. Nevertheless, the complexity of crude oil makes its thorough analysis a difficult task. Besides discriminating effects that can be avoided and depth of information that can be gained by simplification of the sample prior to the MS analysis the presence of numerous isomeric compounds limits the amount of information that can be gained by mass spectrometry alone. Ion mobility spectrometry (IMS) has been shown to be a valuable tool for isomer separation and has also been employed for the analysis of crude oils using IMS-TOF MS. The application of an online FAIMS-FTMS coupling after photoionization for the analysis of crude oils is shown. With this setup the complementarity of data obtained from both APPI and APLI ionization is demonstrated. Online separation and individual detection of different hydrocarbon isomers is achieved.
Collapse
Affiliation(s)
- Alessandro Vetere
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim (Ruhr), Germany
| | - Wolfgang Schrader
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim (Ruhr), Germany
| |
Collapse
|
16
|
Benigni P, Thompson CJ, Ridgeway ME, Park MA, Fernandez-Lima F. Targeted high-resolution ion mobility separation coupled to ultrahigh-resolution mass spectrometry of endocrine disruptors in complex mixtures. Anal Chem 2015; 87:4321-5. [PMID: 25818070 PMCID: PMC4867114 DOI: 10.1021/ac504866v] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Traditional separation and detection of targeted compounds from complex mixtures from environmental matrices requires the use of lengthy prefractionation steps and high-resolution mass analyzers due to the large number of chemical components and their large structural diversity (highly isomeric). In the present work, selected accumulation trapped ion mobility spectrometry (SA-TIMS) is coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for direct separation and characterization of targeted endocrine-disrupting compounds (EDC) from a complex environmental matrix in a single analysis. In particular, targeted identification based on high-resolution mobility (R ∼ 70-120) and ultrahigh-resolution mass measurements (R > 400 000) of seven commonly targeted EDC and their isobars (e.g., bisphenol A, (Z)- and (E)-diethylstilbestrol, hexestrol, estrone, α-estradiol, and 17-ethynylestradiol) is shown from a complex mixture of water-soluble organic matter (e.g., Suwannee River Fulvic Acid Standard II) complemented with reference standard measurements and theoretical calculations (<3% error).
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | | | - Mark E. Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|