1
|
Pintea M, Mason N, Peiró-Franch A, Clark E, Samanta K, Glessi C, Schmidtke IL, Luxford T. Dissociative electron attachment to gold(I)-based compounds: 4,5-dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I). Front Chem 2023; 11:1028008. [PMID: 37405247 PMCID: PMC10315492 DOI: 10.3389/fchem.2023.1028008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
With the use of proton-NMR and powder XRD (XRPD) studies, the suitability of specific Au-focused electron beam induced deposition (FEBID) precursors has been investigated with low electron energy, structure, excited states and resonances, structural crystal modifications, flexibility, and vaporization level. 4,5-Dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I) is a compound that is a uniquely designed precursor to meet the needs of focused electron beam-induced deposition at the nanostructure level, which proves its capability in creating high purity structures, and its growing importance in other AuImx and AuClnB (where x and n are the number of radicals, B = CH, CH3, or Br) compounds in the radiation cancer therapy increases the efforts to design more suitable bonds in processes of SEM (scanning electron microscopy) deposition and in gas-phase studies. The investigation performed of its powder shape using the XRPD XPERT3 panalytical diffractometer based on CoKα lines shows changes to its structure with change in temperature, level of vacuum, and light; the sensitivity of this compound makes it highly interesting in particular to the radiation research. Used in FEBID, though its smaller number of C, H, and O atoms has lower levels of C contamination in the structures and on the surface, it replaces these bonds with C-Cl and C-N bonds that have lower bond-breaking energy. However, it still needs an extra purification step in the deposition process, either H2O, O2, or H jets.
Collapse
Affiliation(s)
- Maria Pintea
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Nigel Mason
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Anna Peiró-Franch
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Ewan Clark
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Kushal Samanta
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Thomas Luxford
- Department of Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Lee JWL, Tikhonov DS, Allum F, Boll R, Chopra P, Erk B, Gruet S, He L, Heathcote D, Kazemi MM, Lahl J, Lemmens AK, Loru D, Maclot S, Mason R, Müller E, Mullins T, Passow C, Peschel J, Ramm D, Steber AL, Bari S, Brouard M, Burt M, Küpper J, Eng-Johnsson P, Rijs AM, Rolles D, Vallance C, Manschwetus B, Schnell M. The kinetic energy of PAH dication and trication dissociation determined by recoil-frame covariance map imaging. Phys Chem Chem Phys 2022; 24:23096-23105. [PMID: 35876592 PMCID: PMC9533308 DOI: 10.1039/d2cp02252d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022]
Abstract
We investigated the dissociation of dications and trications of three polycyclic aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and pyrene. PAHs are a family of molecules ubiquitous in space and involved in much of the chemistry of the interstellar medium. In our experiments, ions are formed by interaction with 30.3 nm extreme ultraviolet (XUV) photons, and their velocity map images are recorded using a PImMS2 multi-mass imaging sensor. Application of recoil-frame covariance analysis allows the total kinetic energy release (TKER) associated with multiple fragmentation channels to be determined to high precision, ranging 1.94-2.60 eV and 2.95-5.29 eV for the dications and trications, respectively. Experimental measurements are supported by Born-Oppenheimer molecular dynamics (BOMD) simulations.
Collapse
Affiliation(s)
- Jason W L Lee
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Department of Chemistry, University of Oxford, UK.
| | - Denis S Tikhonov
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Germany
| | - Felix Allum
- Department of Chemistry, University of Oxford, UK.
| | | | - Pragya Chopra
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Germany
| | | | | | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
| | | | | | - Jan Lahl
- Department of Physics, Lund University, Sweden
| | - Alexander K Lemmens
- Radboud University, FELIX Laboratory, The Netherlands
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | | | - Sylvain Maclot
- KTH Royal Institute of Technology, Sweden
- Physics Department, University of Gothenburg, Sweden
| | - Robert Mason
- Department of Chemistry, University of Oxford, UK.
| | | | - Terry Mullins
- Center for Ultrafast Imaging, Universität Hamburg, Germany
| | | | | | - Daniel Ramm
- Deutsches Elektronen-Synchrotron DESY, Germany.
| | - Amanda L Steber
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Germany.
| | - Mark Brouard
- Department of Chemistry, University of Oxford, UK.
| | - Michael Burt
- Department of Chemistry, University of Oxford, UK.
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Germany
- Department of Physics, Universität Hamburg, Germany
| | | | - Anouk M Rijs
- Radboud University, FELIX Laboratory, The Netherlands
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, KS, USA
| | | | | | | |
Collapse
|
3
|
Robertson C, Paterson MJ. Velocity map images from surface-hopping; reactive scattering of OH ( 2Σ +) + H 2 ( 1Σ+g). Chem Commun (Camb) 2022; 58:9092-9095. [PMID: 35894124 DOI: 10.1039/d2cc03368b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study OH(Σ) + H2 → H2O(X) + H reactive scattering using two potential energy models found in the literature. We analyze the quenching channels and generate velocity map images (VMI) by simulating quantum-classical trajectories of the quenched products. The initial conditions attempt to simulate supersonic jet, molecular beam scattering experiments which we compare against. The simulated results are able to elucidate the mechanisms behind some of these experimental observations.
Collapse
Affiliation(s)
- Christopher Robertson
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK.
| | - Martin J Paterson
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK.
| |
Collapse
|
4
|
Yifrach Y, Rahimi R, Portnov A, Baraban JH, Bar I. Maximal kinetic energy and angular distribution analysis of spatial map imaging: Application to photoelectrons from a single quantum state of H 2O. J Chem Phys 2021; 154:134201. [PMID: 33832240 DOI: 10.1063/5.0046015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dynamical or spatial properties of charged species can be obtained using electrostatic lenses by velocity map imaging (VMI) or spatial map imaging (SMI), respectively. Here, we report an approach for extracting dynamical and spatial information from patterns in SMI images that map the initial coordinates, velocity vectors, and angular distributions of charged particles onto the detector, using the same apparatus as in VMI. Deciphering these patterns required analysis and modeling, involving both their predictions from convolved spatial and velocity distributions and fitting observed images to kinetic energies (KEs) and anisotropy parameters (βs). As the first demonstration of this capability of SMI, the ensuing photoelectrons resulting from (2 + 1) resonant ionization of water in a selected rotational state were chosen to provide a rigorous basis for comparison to VMI. Operation with low acceleration voltages led to a measured SMI pattern with a unique vertical intensity profile that could be least-squares fitted to yield KE and β, in good agreement with VMI measurement. Due to the potential for improved resolution and the extended KE range achievable by this new technique, we expect that it might augment VMI in applications that require the analysis of charged particles and particularly in processes with high KE release.
Collapse
Affiliation(s)
- Yair Yifrach
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Rami Rahimi
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexander Portnov
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Joshua H Baraban
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ilana Bar
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
5
|
Köckert H, Heathcote D, Lee JWL, Vallance C. Covariance-map imaging study into the fragmentation dynamics of multiply charged CF3I formed in electron-molecule collisions. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1811909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hansjochen Köckert
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - David Heathcote
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Jason W. L. Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| |
Collapse
|
6
|
Köckert H, Heathcote D, Lee JWL, Zhou W, Richardson V, Vallance C. C–I and C–F bond-breaking dynamics in the dissociative electron ionization of CF3I. Phys Chem Chem Phys 2019; 21:14296-14305. [DOI: 10.1039/c8cp06682e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a comprehensive experimental study into the dissociative electron ionization dynamics of CF3I at energies ranging from 20 to 100 eV.
Collapse
Affiliation(s)
- Hansjochen Köckert
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford OX1 3TA
- UK
| | - David Heathcote
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford OX1 3TA
- UK
| | - Jason W. L. Lee
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford OX1 3TA
- UK
| | - Weiwei Zhou
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford OX1 3TA
- UK
| | - Vincent Richardson
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford OX1 3TA
- UK
| | - Claire Vallance
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford OX1 3TA
- UK
| |
Collapse
|