1
|
Application of Advanced Non-Linear Spectral Decomposition and Regression Methods for Spectroscopic Analysis of Targeted and Non-Targeted Irradiation Effects in an In-Vitro Model. Int J Mol Sci 2022; 23:ijms232112986. [DOI: 10.3390/ijms232112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Irradiation of the tumour site during treatment for cancer with external-beam ionising radiation results in a complex and dynamic series of effects in both the tumour itself and the normal tissue which surrounds it. The development of a spectral model of the effect of each exposure and interaction mode between these tissues would enable label free assessment of the effect of radiotherapeutic treatment in practice. In this study Fourier transform Infrared microspectroscopic imaging was employed to analyse an in-vitro model of radiotherapeutic treatment for prostate cancer, in which a normal cell line (PNT1A) was exposed to low-dose X-ray radiation from the scattered treatment beam, and also to irradiated cell culture medium (ICCM) from a cancer cell line exposed to a treatment relevant dose (2 Gy). Various exposure modes were studied and reference was made to previously acquired data on cellular survival and DNA double strand break damage. Spectral analysis with manifold methods, linear spectral fitting, non-linear classification and non-linear regression approaches were found to accurately segregate spectra on irradiation type and provide a comprehensive set of spectral markers which differentiate on irradiation mode and cell fate. The study demonstrates that high dose irradiation, low-dose scatter irradiation and radiation-induced bystander exposure (RIBE) signalling each produce differential effects on the cell which are observable through spectroscopic analysis.
Collapse
|
2
|
Telarovic I, Yong CSM, Guckenberger M, Unkelbach J, Pruschy M. Radiation-induced lymphopenia does not impact treatment efficacy in a mouse tumor model. Neoplasia 2022; 31:100812. [PMID: 35667149 PMCID: PMC9168138 DOI: 10.1016/j.neo.2022.100812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022]
Abstract
Radiation-induced lymphopenia is a common occurrence in radiation oncology and an established negative prognostic factor, however the mechanisms underlying the relationship between lymphopenia and inferior survival remain elusive. The relevance of lymphocyte co-irradiation as critical normal tissue component at risk is an emerging topic of high clinical relevance, even more so in the context of potentially synergistic radiotherapy-immunotherapy combinations. The impact of the radiotherapy treatment volume on the lymphocytes of healthy and tumor-bearing mice was investigated in a novel mouse model of radiation-induced lymphopenia. Using an image-guided small-animal radiotherapy treatment platform, translationally relevant tumor-oriented volumes of irradiation with an anatomically defined increasing amount of normal tissue were irradiated, with a focus on the circulating blood and lymph nodes. In healthy mice, the influence of irradiation with increasing radiotherapy treatment volumes was quantified on the level of circulating blood cells and in the spleen. A significant decrease in the lymphocytes was observed in response to irradiation, including the minimally irradiated putative tumor area. The extent of lymphopenia correlated with the increasing volumes of irradiation. In tumor-bearing mice, differential radiotherapy treatment volumes did not influence the overall therapeutic response to radiotherapy alone. Intriguingly, an improved treatment efficacy in mice treated with draining-lymph node co-irradiation was observed in combination with an immune checkpoint inhibitor. Taken together, our study reveals compelling data on the importance of radiotherapy treatment volume in the context of lymphocytes as critical components of normal tissue co-irradiation and highlights emerging challenges at the interface of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carmen S M Yong
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Dept. Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Potiron V, Delpon G, Ollivier L, Vaugier L, Doré M, Guimas V, Rio E, Thillays F, Llagostera C, Moignier A, Josset S, Chiavassa S, Perennec T, Supiot S. [Clinical research in radiation oncology: how to move from the laboratory to the patient?]. Cancer Radiother 2022; 26:808-813. [PMID: 35999162 DOI: 10.1016/j.canrad.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Translational research in radiation oncology is undergoing intense development. An increasingly rapid transfer is taking place from the laboratory to the patients, both in the selection of patients who can benefit from radiotherapy and in the development of innovative irradiation strategies or the development of combinations with drugs. Accelerating the passage of discoveries from the laboratory to the clinic represents the ideal of any translational research program but requires taking into account the multiple obstacles that can slow this progress. The ambition of the RadioTransNet network, a project to structure preclinical research in radiation oncology in France, is precisely to promote scientific and clinical interactions at the interface of radiotherapy and radiobiology, in its preclinical positioning, in order to identify priorities for strategic research dedicated to innovation in radiotherapy. The multidisciplinary radiotherapy teams with experts in biology, medicine, medical physics, mathematics and engineering sciences are able to meet these new challenges which will allow these advances to be made available to patients as quickly as possible.
Collapse
Affiliation(s)
- V Potiron
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Unité en sciences biologiques et biotechnologies, UMR CNRS 6286, 2, rue de la Houssinière, 44322 Nantes, France
| | - G Delpon
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; IMT Atlantique, UMR CNRS 6457/IN2P3, Subatech, laboratoire de physique subatomique et des technologies associées, Nantes, France
| | - L Ollivier
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - L Vaugier
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - M Doré
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - V Guimas
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - E Rio
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - F Thillays
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - C Llagostera
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - A Moignier
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - S Josset
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - S Chiavassa
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; IMT Atlantique, UMR CNRS 6457/IN2P3, Subatech, laboratoire de physique subatomique et des technologies associées, Nantes, France
| | - T Perennec
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - S Supiot
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Unité en sciences biologiques et biotechnologies, UMR CNRS 6286, 2, rue de la Houssinière, 44322 Nantes, France.
| |
Collapse
|
4
|
Allignet B, Sunyach MP, Geets X, Waissi W. Is there a place for definitive radiotherapy in the treatment of unresectable soft-tissue sarcoma? A systematic review. Acta Oncol 2022; 61:720-729. [PMID: 35574815 DOI: 10.1080/0284186x.2022.2066983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Definitive external beam radiotherapy (EBRT) is an unusual treatment of unresectable soft-tissue sarcomas (STS). Recent technical innovations and physical advantages of particle therapies may improve results of this therapeutic option. The role of this review was to report the clinical results of photon- and particle-based EBRT in unresectable STS. MATERIAL AND METHODS We performed a systematic review of the literature on Pubmed database to identify studies investigating the efficacy and safety of EBRT. The primary endpoint was local control (LC) and secondary endpoints were progression-free survival (PFS), overall survival (OS) and adverse events in a subset of patients with gross disease STS. RESULTS We identified 29 studies involving 1409 patients (pts) evaluating photon (n = 18; 956 pts), proton (n = 1; 21 pts), carbon ion (n = 2; 152 pts), neutron (n = 7; 259 pts) or pion (n = 1; 21 pts) therapy. Definitive EBRT achieves valuable 5-year LC rates of 28-73% with photon and 52-69% with particle therapies. Most local failures (66-100%) occurred within 3 years. Long-term disease control can be achieved in a fraction of patients, with 5-year PFS and OS of 0-39% and 24.7-63%, respectively. The rate of severe adverse events was highly variable with photons, <15% in proton and carbon ion therapy, whereas 25 to 50% of patients treated with neutrons and pions presented severe AE. While a dose higher or equal 64 Gy seem to improve the prognosis, delivering a dose higher or equal 68 Gy dramatically increases severe adverse events. CONCLUSION Definitive EBRT with dose 64-66 Gy seems to be a safe and efficient treatment for unresectable STS. Future clinical trials should assess the potential of biomarkers of response, thus identifying patients that could benefit from local treatment.
Collapse
Affiliation(s)
- Benoît Allignet
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | | | - Xavier Geets
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| | - Waisse Waissi
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
5
|
Blake SW. Can dose convolution modelling explain bath and shower effects in rat spinal cord? Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5c8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
Abstract
Objective. ‘Bath and shower’ effects were first seen in proton irradiations of rat spinal cord, where a low dose ‘bath’ reduced the smaller field ‘shower’ dose needed for limb paralysis giving the appearance of sensitisation of the cord or disproportionate response. This was difficult to reconcile with existing tissue complication models. The purpose of this investigation is to explore a different approach using a dose convolution algorithm to model the 50% isoeffect endpoint. Approach. Bath and shower dose distributions were convolved with Gaussian functions with widths specified by the σ parameter. The hypothesis was that the maximum value from the convolved distributions was constant for isoeffect across the modelled scenarios. A simpler field length dependent relative biological effectiveness (FLRBE) approach was also used for a subset of the data which gave results independent of σ. Main results. The maximum values from the convolved distributions were constant within ±17% across the bath and shower experiments for σ = 3.5 mm, whereas the maximum dose varied by a factor of four. The FLRBE results were also within ±14% confirming the validity of the dose convolution approach. Significance. A simple approach using dose convolution modelling of the 50% isotoxicity gave compelling consistency with the full range of bath and shower results, while the FLRBE approach confirmed the results for the symmetric field data. Convolution modelling and the effect of time interval were consistent with a signalling factor diffusion mechanism such as the ‘bystander effect’. The results suggest biological effectiveness is reduced for very small field sizes, requiring a higher isoeffect dose. By implication, the bath dose does not sensitise the cord to the shower dose; when biological effectiveness is accounted for, a small increase in the bath dose requires a significantly larger reduction in shower dose for isoeffect.
Collapse
|
6
|
The role of the spatially fractionated radiation therapy in the management of advanced bulky tumors. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2021. [DOI: 10.2478/pjmpe-2021-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Spatially fractionated radiation therapy (SFRT) refers to the delivery of a single large dose of radiation within the target volume in a heterogeneous pattern using either a custom GRID block, multileaf collimators, and virtual methods such as helical tomotherapy or synchrotron-based microbeams. The potential impact of this technique on the regression of bulky deep-seated tumors that do not respond well to conventional radiotherapy has been remarkable. To date, a large number of patients have been treated using the SFRT techniques. However, there are yet many technical and medical challenges that have limited their routine use to a handful of clinics, most commonly for palliative intent. There is also a poor understanding of the biological mechanisms underlying the clinical efficacy of this approach. In this article, the methods of SFRT delivery together with its potential biological mechanisms are presented. Furthermore, technical challenges and clinical achievements along with the radiobiological models used to evaluate the efficacy and safety of SFRT are highlighted.
Collapse
|
7
|
Mahmoudi F, Chegeni N, Bagheri A, Fatahi Asl J, Batiar MT. Impact of radiobiological models on the calculation of the therapeutic parameters of Grid therapy for breast cancer. Appl Radiat Isot 2021; 174:109776. [PMID: 34082185 DOI: 10.1016/j.apradiso.2021.109776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/02/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022]
Abstract
Therapeutic advantages of Grid therapy have been demonstrated in several theoretical studies using the standard linear-quadratic (LQ) model. However, the suitability of the LQ model when describing cell killing at highly modulated radiation fields has been questioned. In this study, we have applied an extended LQ model to recalculate therapeutic parameters of Grid therapy. This study shows that incorporating the bystander effects in the radiobiological models would significantly change the theoretical predictions and conclusion of Grid therapy, especially at high dose gradient fields.
Collapse
Affiliation(s)
- Farshid Mahmoudi
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nahid Chegeni
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ali Bagheri
- Interventional Radiotherapy Ward, Department of Radiation Oncology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Fatahi Asl
- Department of Radiology Technology, School of Allied Medical Sciences, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taghi Batiar
- Department of Nuclear Engineering, Faculty of Nuclear Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
8
|
Hörner-Rieber J, Klüter S, Debus J, Adema G, Ansems M, Verheij M. MR-Guided Radiotherapy: The Perfect Partner for Immunotherapy? Front Oncol 2021; 10:615697. [PMID: 33604296 PMCID: PMC7884826 DOI: 10.3389/fonc.2020.615697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
During the last years, preclinical and clinical studies have emerged supporting the rationale to integrate radiotherapy and immunotherapy. Radiotherapy may enhance the effects of immunotherapy by improving tumor antigen release, antigen presentation, and T-cell infiltration. Recently, magnetic resonance guided radiotherapy (MRgRT) has become clinically available. Compared to conventional radiotherapy techniques, MRgRT firstly allows for daily on-table treatment adaptation, which enables both dose escalation for increasing tumor response and superior sparing of radiosensitive organs-at-risk for reducing toxicity. The current review focuses on the potential of combining MR-guided adaptive radiotherapy with immunotherapy by providing an overview on the current status of MRgRT, latest developments in preclinical and clinical radio-immunotherapy, and the unique opportunities and challenges for MR-guided radio-immunotherapy. MRgRT might especially assist in answering open questions in radio-immunotherapy regarding optimal radiation dose, fractionation, timing of immunotherapy, appropriate irradiation volumes, and response prediction.
Collapse
Affiliation(s)
- Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gosse Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
Telarovic I, Krayenbuehl J, Grgic I, Tschanz F, Guckenberger M, Pruschy M, Unkelbach J. Probing spatiotemporal fractionation on the preclinical level. Phys Med Biol 2020; 65:22NT02. [PMID: 33179609 DOI: 10.1088/1361-6560/abbb75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In contrast to conventional radiotherapy, spatiotemporal fractionation (STF) delivers a distinct dose distribution in each fraction. The aim is to increase the therapeutic window by simultaneously achieving partial hypofractionation in the tumour along with near uniform fractionation in normal tissues. STF has been studied in silico under the assumption that different parts of the tumour can be treated in different fractions. Here, we develop an experimental setup for testing this key assumption on the preclinical level using high-precision partial tumour irradiation in an experimental animal model. We further report on an initial proof-of-concept experiment. We consider a reductionist model of STF in which the tumour is divided in half and treated with two complementary partial irradiations separated by 24 h. Precise irradiation of both tumour halves is facilitated by the image-guided small animal radiation research platform X-RAD SmART. To assess the response of tumours to partial irradiations, tumour growth experiments are conducted using mice carrying syngeneic subcutaneous tumours derived from MC38 colorectal adenocarcinoma cells. Tumour volumes were determined daily by calliper measurements and validated by CT-volumetry. We compared the growth of conventionally treated tumours, where the whole tumour was treated in one fraction, to the reductionist model of STF. We observed no difference in growth between the two groups. Instead, a reduction in the irradiated volume (where only one half of the tumour was irradiated) resulted in an intermediate response between full irradiation and unirradiated control. The results obtained by CT-volumetry supported the findings of the calliper-derived measurements. An experimental setup for precise partial tumour irradiation in small animals was developed, which is suited to test the assumption of STF that complementary parts of the tumour can be treated in different fractions on the preclinical level. An initial experiment supports this assumption, however, further experiments with longer follow-up and varying fractionation schemes are needed to provide additional support for STF.
Collapse
Affiliation(s)
- Irma Telarovic
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
Griffin RJ, Ahmed MM, Amendola B, Belyakov O, Bentzen SM, Butterworth KT, Chang S, Coleman CN, Djonov V, Formenti SC, Glatstein E, Guha C, Kalnicki S, Le QT, Loo BW, Mahadevan A, Massaccesi M, Maxim PG, Mohiuddin M, Mohiuddin M, Mayr NA, Obcemea C, Petersson K, Regine W, Roach M, Romanelli P, Simone CB, Snider JW, Spitz DR, Vikram B, Vozenin MC, Abdel-Wahab M, Welsh J, Wu X, Limoli CL. Understanding High-Dose, Ultra-High Dose Rate, and Spatially Fractionated Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 107:766-778. [PMID: 32298811 DOI: 10.1016/j.ijrobp.2020.03.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
The National Cancer Institute's Radiation Research Program, in collaboration with the Radiosurgery Society, hosted a workshop called Understanding High-Dose, Ultra-High Dose Rate and Spatially Fractionated Radiotherapy on August 20 and 21, 2018 to bring together experts in experimental and clinical experience in these and related fields. Critically, the overall aims were to understand the biological underpinning of these emerging techniques and the technical/physical parameters that must be further defined to drive clinical practice through innovative biologically based clinical trials.
Collapse
Affiliation(s)
- Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mansoor M Ahmed
- Division of Cancer Treatment and Diagnosis, Rockville, Maryland
| | | | - Oleg Belyakov
- International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, University of Maryland, Baltimore, Maryland
| | - Karl T Butterworth
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, United Kingdom
| | - Sha Chang
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - Valentin Djonov
- Bern Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Sylvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Eli Glatstein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Shalom Kalnicki
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Health Systems, Danville, Pennsylvania
| | - Mariangela Massaccesi
- Department of Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Peter G Maxim
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Nina A Mayr
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington
| | | | - Kristoffer Petersson
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - William Regine
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mack Roach
- Department of Radiation Oncology & Urology, University of California, San Francisco, San Francisco, California
| | | | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - James W Snider
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas R Spitz
- Free Radical & Radiation Biology Program, University of Iowa, Iowa City, Iowa
| | | | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital, Switzerland
| | - May Abdel-Wahab
- International Atomic Energy Agency Headquarters, Vienna International Centre, Vienna, Austria
| | - James Welsh
- Edward Hines VA Medical Center and Loyola University Stritch School of Medicine, Chicago, Illinois
| | - Xiaodong Wu
- Executive Medical Physics Associates, Miami, Florida; Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Charles L Limoli
- Department of Radiation Oncology, University of California-Irvine, Irvine, California.
| |
Collapse
|
11
|
Evolution of the Supermodel: Progress in Modelling Radiotherapy Response in Mice. Clin Oncol (R Coll Radiol) 2019; 31:272-282. [PMID: 30871751 DOI: 10.1016/j.clon.2019.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Mouse models are essential tools in cancer research that have been used to understand the genetic basis of tumorigenesis, cancer progression and to test the efficacies of anticancer treatments including radiotherapy. They have played a critical role in our understanding of radiotherapy response in tumours and normal tissues and continue to evolve to better recapitulate the underlying biology of humans. In addition, recent developments in small animal irradiators have significantly improved in vivo irradiation techniques, allowing previously unimaginable experimental approaches to be explored in the laboratory. The combination of contemporary mouse models with small animal irradiators represents a major step forward for the radiobiology field in being able to much more accurately replicate clinical exposure scenarios. As radiobiology studies become ever more sophisticated in reflecting developments in the clinic, it is increasingly important to understand the basis and potential limitations of extrapolating data from mice to humans. This review provides an overview of mouse models and small animal radiotherapy platforms currently being used as advanced radiobiological research tools towards improving the translational power of preclinical studies.
Collapse
|
12
|
Zhong H, Brown S, Devpura S, Li XA, Chetty IJ. Kinetic modeling of tumor regression incorporating the concept of cancer stem-like cells for patients with locally advanced lung cancer. Theor Biol Med Model 2018; 15:23. [PMID: 30587218 PMCID: PMC6307263 DOI: 10.1186/s12976-018-0096-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
Background Personalized medicine for patients receiving radiation therapy remains an elusive goal due, in part, to the limits in our understanding of the underlying mechanisms governing tumor response to radiation. The purpose of this study was to develop a kinetic model, in the context of locally advanced lung cancer, connecting cancer cell subpopulations with tumor volumes measured during the course of radiation treatment for understanding treatment outcome for individual patients. Methods The kinetic model consists of three cell compartments: cancer stem-like cells (CSCs), non-stem tumor cells (TCs) and dead cells (DCs). A set of ordinary differential equations were developed to describe the time evolution of each compartment, and the analytic solution of these equations was iterated to be aligned with the day-to-day tumor volume changes during the course of radiation treatment. A least squares fitting method was used to estimate the parameters of the model that include the proportion of CSCs and their radio-sensitivities. This model was applied to five patients with stage III lung cancer, and tumor volumes were measured from 33 cone-beam computed tomography (CBCT) images for each of these patients. The analytical solution of these differential equations was compared with numerically simulated results. Results For the five patients with late stage lung cancer, the derived proportions of CSCs are 0.3 on average, the average probability of the symmetry division is 0.057 and the average surviving fractions of CSCs is 0.967, respectively. The derived parameters are comparable to the results from literature and our experiments. The preliminary results suggest that the CSC self-renewal rate is relatively small, compared to the proportion of CSCs for locally advanced lung cancers. Conclusions A novel mathematical model has been developed to connect the population of cancer stem-like cells with tumor volumes measured from a sequence of CBCT images. This model may help improve our understanding of tumor response to radiation therapy, and is valuable for development of new treatment regimens for patients with locally advanced lung cancer.
Collapse
Affiliation(s)
- Hualiang Zhong
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA.
| | - Stephen Brown
- Department of Radiation Oncology, Henry Ford Health System, Detroit, 48202, MI, USA
| | - Suneetha Devpura
- Department of Radiation Oncology, Henry Ford Health System, Detroit, 48202, MI, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, 48202, MI, USA
| |
Collapse
|
13
|
Gao M, Mohiuddin MM, Hartsell WF, Pankuch M. Spatially fractionated (GRID) radiation therapy using proton pencil beam scanning (PBS): Feasibility study and clinical implementation. Med Phys 2018; 45:1645-1653. [PMID: 29431867 DOI: 10.1002/mp.12807] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/10/2018] [Accepted: 01/25/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE GRID therapy is an effective treatment for bulky tumors. Linear accelerator (Linac)-produced photon beams collimated through blocks or multileaf collimators (MLCs) are the most common methods used to deliver this therapy. Utilizing the newest proton delivery method of pencil beam scanning (PBS) can further improve the efficacy of GRID therapy. In this study, we developed a method of delivering GRID therapy using proton PBS, evaluated the dosimetry of this novel technique and applied this method in two clinical cases. MATERIALS/METHODS In the feasibility study phase, a single PBS proton beam was optimized to heterogeneously irradiate a shallow 20 × 20 × 12 cm3 target volume centered at a 6 cm depth in a water phantom. The beam was constrained to have an identical spot pattern in all layers, creating a "beamlet" at each spot position. Another GRID treatment using PBS was also performed on a deep 15 × 15 × 8 cm3 target volume centered at a 14 cm depth in a water phantom. Dosimetric parameters of both PBS dose distributions were compared with typical photon GRID dose distributions. In the next phase, four patients have been treated at our center with this proton GRID technique. The planning, dosimetry, and measurements for two representative patients are reported. RESULTS For the shallow phantom target, the depth-dose curve of the PBS plan was uniform within the target (variation < 5%) and dropped quickly beyond the target (50% at 12.9 cm and 0.5% at 14 cm). The lateral profiles of the PBS plan were comparable to those of photon GRID in terms of valley-to-peak ratios. For the deep phantom target, the PBS plan provided smaller valley-to-peak ratios than the photon GRID technique. Pretreatment dose verification QA showed close agreement between the measurements and the plan (pass rate > 95% with a gamma index criterion of 3%/3 mm). Patients tolerated the treatment well without significant skin toxicity (radiation dermatitis grade ≤ 1). CONCLUSIONS Proton GRID therapy using a PBS delivery method was successfully developed and implemented clinically. Proton GRID therapy offers many advantages over photon GRID techniques. The use of protons provides a more uniform beamlet dose within the tumor and spares normal tissues located beyond the tumor. This new PBS method will also reduce the dose to proximal organs when treating a deep-seated tumor.
Collapse
Affiliation(s)
- M Gao
- Northwestern Medicine Chicago Proton Center, Warrenville, IL, 60555, USA
| | - M M Mohiuddin
- Advocate Lutheran General Hospital, Park Ridge, IL, 60068, USA.,Radiation Oncology Consultants, Ltd., Oak Brook, IL, 60523, USA
| | - W F Hartsell
- Northwestern Medicine Chicago Proton Center, Warrenville, IL, 60555, USA.,Radiation Oncology Consultants, Ltd., Oak Brook, IL, 60523, USA
| | - M Pankuch
- Northwestern Medicine Chicago Proton Center, Warrenville, IL, 60555, USA
| |
Collapse
|
14
|
Thompson HF, Butterworth KT, McMahon SJ, Ghita M, Hounsell AR, Prise KM. The Impact of Hypoxia on Out-of-Field Cell Survival after Exposure to Modulated Radiation Fields. Radiat Res 2017; 188:636-644. [PMID: 29019742 DOI: 10.1667/rr14836.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Advanced radiotherapy techniques such as intensity modulated radiation therapy achieve highly conformal dose distributions within target tumor volumes through the sequential delivery of multiple spatially and temporally modulated radiation fields and have been shown to influence radiobiological response. The goals of this study were to determine the effect of hypoxia on the cell survival responses of different cell models (H460, DU145, A549, MDA231 and FADU) to modulated fields and to characterize the time dependency of signaling under oxic conditions, following reoxygenation and after prolonged hypoxia. Hypoxia was induced by incubating cells at 95% nitrogen and 5% carbon dioxide for 4 h prior to irradiation. The out-of-field response in MDA231 cells was oxygen dependent and therefore selected for co-culture studies to determine the signaling kinetics at different time intervals after irradiation under oxic and hypoxic conditions. Under both oxic and hypoxic conditions, significant increases in cell survival were observed in-field with significant decreases in survival observed out-of-field (P < 0.05), which were dependent on intercellular communication. The in-field response of MDA231 cells showed no significant time dependency up to 24 h postirradiation, while out-of-field survival decreased significantly during the first 6 h postirradiation (P < 0.05). While in-field responses were oxygen dependent, out-of-field effects were observed to be independent of oxygen, with similar or greater cell killing under hypoxic conditions. This study provides further understanding of intercellular signaling under hypoxic conditions and highlights the need for further refinement of established radiobiological models for future applications in advanced radiotherapies.
Collapse
Affiliation(s)
- Hannah F Thompson
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Karl T Butterworth
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Stephen J McMahon
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Mihaela Ghita
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Alan R Hounsell
- b Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast, Northern Ireland, United Kingdom
| | - Kevin M Prise
- a Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| |
Collapse
|