1
|
Pan K, Wang B, Xu X, Liang J, Tang Y, Ma S, Xia B, Zhu L. Hypofractionated stereotactic radiotherapy for brain metastases in lung cancer patients: dose‒response effect and toxicity. Discov Oncol 2024; 15:318. [PMID: 39078419 PMCID: PMC11289209 DOI: 10.1007/s12672-024-01191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Lung cancer is a common cause of brain metastases, approximately 40% of patients with lung cancer will develop brain metastases at some point during their disease. Hypofractionated stereotactic radiotherapy (HSRT) has been demonstrated to be effective in controlling limited brain metastases. However, there is still no conclusive on the optimal segmentation of HSRT. The aim of our study was to explore the correlation between the HSRT dosage and its treatment effect and toxicity. METHODS A retrospective analysis was conducted on patients with non-small cell lung cancer (NSCLC) brain metastasis at Hangzhou Cancer Hospital from 1 January 2019 to 1 January 2021. The number of brain metastases did not exceed 10 in all patients and the number of fractions of HSRT was 5. The prescription dose ranges from 25 to 40 Gy. The Kaplan-Meier method was used for estimation of the localised intracranial control rate (iLC). Adverse radiation effects (AREs) were evaluated according to CTCAE 5.0. This study was approved by the Institutional Ethics Review Board of the Hangzhou Cancer Hospital (#73/HZCH-2022). RESULTS Forty eligible patients with a total of 70 brain metastases were included in this study. The 1-year iLC was 76% and 89% in the prescribed dose ≤ 30 Gy and > 30 Gy group, respectively (P < 0.05). For patients treated with HSRT combined with targeted therapy, immunotherapy and chemotherapy, the 1-year iLC was 89%, 100%, and 45%, respectively. No significant associations were observed between the number, maximum diameter, location, and type of pathology of brain metastases. The rate of all-grade AREs was 33%. Two patients who received a total dose of 40 Gy developed grade 3 headache, the rest of the AREs were grade 1-2. CONCLUSIONS Increasing the prescription dose of HSRT improves treatment effect but may also exacerbate the side effects. Systemic therapy might impact the iLC rate, and individualized treatment regimens need to be developed.
Collapse
Affiliation(s)
- Kaicheng Pan
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Bing Wang
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Xiao Xu
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Jiafeng Liang
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Yi Tang
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Shenglin Ma
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Bing Xia
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China.
| | - Lucheng Zhu
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China.
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Kanakarajan H, De Baene W, Gehring K, Eekers DBP, Hanssens P, Sitskoorn M. Factors associated with the local control of brain metastases: a systematic search and machine learning application. BMC Med Inform Decis Mak 2024; 24:177. [PMID: 38907265 PMCID: PMC11191176 DOI: 10.1186/s12911-024-02579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Enhancing Local Control (LC) of brain metastases is pivotal for improving overall survival, which makes the prediction of local treatment failure a crucial aspect of treatment planning. Understanding the factors that influence LC of brain metastases is imperative for optimizing treatment strategies and subsequently extending overall survival. Machine learning algorithms may help to identify factors that predict outcomes. METHODS This paper systematically reviews these factors associated with LC to select candidate predictor features for a practical application of predictive modeling. A systematic literature search was conducted to identify studies in which the LC of brain metastases is assessed for adult patients. EMBASE, PubMed, Web-of-Science, and the Cochrane Database were searched up to December 24, 2020. All studies investigating the LC of brain metastases as one of the endpoints were included, regardless of primary tumor type or treatment type. We first grouped studies based on primary tumor types resulting in lung, breast, and melanoma groups. Studies that did not focus on a specific primary cancer type were grouped based on treatment types resulting in surgery, SRT, and whole-brain radiotherapy groups. For each group, significant factors associated with LC were identified and discussed. As a second project, we assessed the practical importance of selected features in predicting LC after Stereotactic Radiotherapy (SRT) with a Random Forest machine learning model. Accuracy and Area Under the Curve (AUC) of the Random Forest model, trained with the list of factors that were found to be associated with LC for the SRT treatment group, were reported. RESULTS The systematic literature search identified 6270 unique records. After screening titles and abstracts, 410 full texts were considered, and ultimately 159 studies were included for review. Most of the studies focused on the LC of the brain metastases for a specific primary tumor type or after a specific treatment type. Higher SRT radiation dose was found to be associated with better LC in lung cancer, breast cancer, and melanoma groups. Also, a higher dose was associated with better LC in the SRT group, while higher tumor volume was associated with worse LC in this group. The Random Forest model predicted the LC of brain metastases with an accuracy of 80% and an AUC of 0.84. CONCLUSION This paper thoroughly examines factors associated with LC in brain metastases and highlights the translational value of our findings for selecting variables to predict LC in a sample of patients who underwent SRT. The prediction model holds great promise for clinicians, offering a valuable tool to predict personalized treatment outcomes and foresee the impact of changes in treatment characteristics such as radiation dose.
Collapse
Affiliation(s)
- Hemalatha Kanakarajan
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
| | - Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Karin Gehring
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Patrick Hanssens
- Gamma Knife Center, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Margriet Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
| |
Collapse
|
3
|
Flanagan JPM, Fog LS, Astrahan MA, Talbot LJ, McKay D, Phillips C, McKenzie JD, O'Day R. Apical dose versus volume dose of Ruthenium-106 brachytherapy for uveal melanoma. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024:S0008-4182(24)00074-7. [PMID: 38582499 DOI: 10.1016/j.jcjo.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVE Ruthenium-106 brachytherapy is commonly used to treat uveal melanomas. Most centres prescribe a radiation dose to the tumour apex that is calculated with the tumour located in the centre of the plaque. Recent work suggests that D99%-the minimum radiation dose delivered to 99% of tumour volume-may be a better predictor of tumour control than apex dose. Both dosing regimens may be affected by tumour and treatment variables differently. We explored the effect of differences in these variables on volume and apex dose using a 3-dimensional planning model. METHODS The time required to deliver 100 Gy to the tumour apices of representative tumours ranging from 2- to 6-mm thickness with central plaque positioning was calculated in Plaque Simulator™. This treatment time was used for further calculations, including D99% with central plaque placement, and apical and tumour volume doses when tumour and plaque characteristics were altered, including eccentric plaque placement, either away from (tilt) or along (offset) scleral surface, tumour shape, and plaque type. RESULTS D99% was always greater than the apex dose when plaques were placed centrally, and the difference increased with tumour thickness. Increasing degrees of tumour offset reduced apical dose and D99%, with a greater effect on apical dose for thicker and D99% for thinner tumours, respectively. Differences in tumour shape and plaque type had idiosyncratic effects on apical and volume dosing. CONCLUSION D99% and apex dose are affected by tumour and treatment characteristics in different ways, highlighting the complexity of radiation delivery to uveal tumours.
Collapse
Affiliation(s)
- Jeremy P M Flanagan
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne (Victoria), Australia; Ocular Oncology Research Unit, Centre for Eye Research Australia, Melbourne (Victoria), Australia
| | - Lotte S Fog
- Department of Ocular Oncology, Royal Victorian Eye and Ear Hospital, Melbourne (Victoria), Australia
| | - Melvin A Astrahan
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lachie J Talbot
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne (Victoria), Australia
| | - Daniel McKay
- Ocular Oncology Research Unit, Centre for Eye Research Australia, Melbourne (Victoria), Australia; Department of Ocular Oncology, Royal Victorian Eye and Ear Hospital, Melbourne (Victoria), Australia
| | - Claire Phillips
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne (Victoria), Australia
| | - John D McKenzie
- Department of Ocular Oncology, Royal Victorian Eye and Ear Hospital, Melbourne (Victoria), Australia
| | - Roderick O'Day
- Ocular Oncology Research Unit, Centre for Eye Research Australia, Melbourne (Victoria), Australia; Department of Ocular Oncology, Royal Victorian Eye and Ear Hospital, Melbourne (Victoria), Australia. roderick.o'
| |
Collapse
|
4
|
Wang B, Liu Y, Zhang J, Yin S, Liu B, Ding S, Qiu B, Deng X. Evaluating contouring accuracy and dosimetry impact of current MRI-guided adaptive radiation therapy for brain metastases: a retrospective study. J Neurooncol 2024; 167:123-132. [PMID: 38300388 PMCID: PMC10978730 DOI: 10.1007/s11060-024-04583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) guided adaptive radiotherapy (MRgART) has gained increasing attention, showing clinical advantages over conventional radiotherapy. However, there are concerns regarding online target delineation and modification accuracy. In our study, we aimed to investigate the accuracy of brain metastases (BMs) contouring and its impact on dosimetry in 1.5 T MRI-guided online adaptive fractionated stereotactic radiotherapy (FSRT). METHODS Eighteen patients with 64 BMs were retrospectively evaluated. Pre-treatment 3.0 T MRI scans (gadolinium contrast-enhanced T1w, T1c) and initial 1.5 T MR-Linac scans (non-enhanced online-T1, T2, and FLAIR) were used for gross target volume (GTV) contouring. Five radiation oncologists independently contoured GTVs on pre-treatment T1c and initial online-T1, T2, and FLAIR images. We assessed intra-observer and inter-observer variations and analysed the dosimetry impact through treatment planning based on GTVs generated by online MRI, simulating the current online adaptive radiotherapy practice. RESULTS The average Dice Similarity Coefficient (DSC) for inter-observer comparison were 0.79, 0.54, 0.59, and 0.64 for pre-treatment T1c, online-T1, T2, and FLAIR, respectively. Inter-observer variations were significantly smaller for the 3.0 T pre-treatment T1c than for the contrast-free online 1.5 T MR scans (P < 0.001). Compared to the T1c contours, the average DSC index of intra-observer contouring was 0.52‒0.55 for online MRIs. For BMs larger than 3 cm3, visible on all image sets, the average DSC indices were 0.69, 0.71 and 0.64 for online-T1, T2, and FLAIR, respectively, compared to the pre-treatment T1c contour. For BMs < 3 cm3, the average visibility rates were 22.3%, 41.3%, and 51.8% for online-T1, T2, and FLAIR, respectively. Simulated adaptive planning showed an average prescription dose coverage of 63.4‒66.9% when evaluated by ground truth planning target volumes (PTVs) generated on pre-treatment T1c, reducing it from over 99% coverage by PTVs generated on online MRIs. CONCLUSIONS The accuracy of online target contouring was unsatisfactory for the current MRI-guided online adaptive FSRT. Small lesions had poor visibility on 1.5 T non-contrast-enhanced MR-Linac images. Contour inaccuracies caused a one-third drop in prescription dose coverage for the target volume. Future studies should explore the feasibility of contrast agent administration during daily treatment in MRI-guided online adaptive FSRT procedures.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yimei Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jun Zhang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Shaohan Yin
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Biaoshui Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Shouliang Ding
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Bo Qiu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong, 510060, People's Republic of China.
| | - Xiaowu Deng
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong, 510060, People's Republic of China.
| |
Collapse
|
5
|
Xu L, Zhang K, Han H, Sun H, Yuan Y, Wang J, Zhao L, Wang P. Low radiotherapy dose is suitable for brain metastases in SCLC compared with high dose. Front Oncol 2023; 13:1245506. [PMID: 37786509 PMCID: PMC10541991 DOI: 10.3389/fonc.2023.1245506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 10/04/2023] Open
Abstract
Objective This study was designed to evaluate the suitable radiotherapy dose in SCLC patients with BM. Methods A retrospective analysis was performed among 121 patients on the prognosis of BM of SCLC who were admitted to our hospital from 2013 to 2023. They all received first line chemotherapy. 80 patients of them received TRT after chemotherapy. The Chi square method was used to compare the categorical data. Univariate survival analysis was estimated by Kaplan Meier method and the logrank was used to compare survival curves between groups. A multivariate prognostic analysis was made by the Cox proportional hazard model. The iOS and iLC of two groups of low dose and high dose were analyzed after propensity score matching (PSM). Results In all the patients, the median follow-up time was 18.6 months (range 6.30~85.7), the 2-year iOS and iLC rates were 15.4% and 70.3%, respectively, and cerebral necrosis occurred in 2 patients. In univariate analysis related to iOS, extracranial disease control (p=0.023), higher DS-GPA (≥2) (p=0.016), immunotherapy (p=0.049), low-dose(p=0.030), and WBRT+SIB (p=0.009) were significantly associated with an increase in survival rate. After PSM, the 2-year iOS of low dose (n=49) was significantly higher than that of high dose (n=49) (P=0.025), while the 2-year iLC was not significantly improved (P=0.267). In DS-GPA < 2 subgroup, the iOS of low dose group was significantly higher than that of high dose group (p=0.019). In the DS-GPA ≥ 2 subgroup, the 2-year iLC of the low dose group was significantly inferior than that of the high dose group (p=0.044). Conclusions The iLC was improved along with increasing radiotherapy dose, but high dose had inferior iOS compared to low dose, while there were not significantly improving iLC when radiotherapy BED >56Gy. But in patients with DS-GPA≥2 subgroup, high dose brought better iLC benefits.
Collapse
Affiliation(s)
- Liming Xu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Kunning Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Haonan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Han Sun
- Department of Radiation Oncology, Cancer Center/National Clinical Research, Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yajing Yuan
- Department of Anesthesia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Radiation Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
6
|
Layer JP, Layer K, Sarria GR, Röhner F, Dejonckheere CS, Friker LL, Zeyen T, Koch D, Scafa D, Leitzen C, Köksal M, Schmeel FC, Schäfer N, Landsberg J, Hölzel M, Herrlinger U, Schneider M, Giordano FA, Schmeel LC. Five-Fraction Stereotactic Radiotherapy for Brain Metastases-A Retrospective Analysis. Curr Oncol 2023; 30:1300-1313. [PMID: 36826062 PMCID: PMC9955428 DOI: 10.3390/curroncol30020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To determine the safety and outcome profile of five-fraction stereotactic radiotherapy (FSRT) for brain metastases (BM), either as a definitive or adjuvant treatment. METHODS We assessed clinical data of patients receiving five fractions of 7 Gy each (cumulative physical dose of 35 Gy) to BM or surgical cavities. The primary endpoints were toxicity and radiation necrosis (RN) rates. Secondary endpoints were 1-year cumulative local control rate (LCR) and estimated overall survival (OS). RESULTS A total of 36 eligible patients receiving FSRT to a total of 49 targets were identified and included. The median follow up was 9 (1.1-56.2) months. The median age was 64.5 (34-92) years, the median ECOG score was 1, and the median Diagnostic-Specific Graded Prognostic Assessment (DS-GPA) score was 2. Treatment was well tolerated and there were no grade 3 adverse events or higher. The overall RN rate was 14.3% and the median time to RN was 12.9 (1.8-23.8) months. RN occurrence was associated with immunotherapy, young age (≤45 years), and large PTV. The cumulative 1-year local control rate was 83.1% and the estimated median local progression free-survival was 18.8 months. The estimated median overall survival was 11 (1.1-56.2) months and significantly superior in those patients presenting with RN. CONCLUSIONS FSRT with 5 × 7 Gy represents a feasible, safe, and efficient fast track approach of intensified FSRT with acceptable LC and comparable RN rates for both the adjuvant and definitive RT settings.
Collapse
Affiliation(s)
- Julian P. Layer
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Katharina Layer
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Gustavo R. Sarria
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Fred Röhner
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Cas S. Dejonckheere
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Lea L. Friker
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Institute of Neuropathology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Thomas Zeyen
- Division of Clinical Neuro-Oncology, Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - David Koch
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Davide Scafa
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Christina Leitzen
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Mümtaz Köksal
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | | | - Niklas Schäfer
- Division of Clinical Neuro-Oncology, Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neuro-Oncology, Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Leonard Christopher Schmeel
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
7
|
Papp J, Simon M, Csiki E, Kovács Á. CBCT Verification of SRT for Patients With Brain Metastases. Front Oncol 2022; 11:745140. [PMID: 35127470 PMCID: PMC8807635 DOI: 10.3389/fonc.2021.745140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe aim of our work is to demonstrate the role of image guidance and volumetric imaging in stereotactic radiotherapy (SRT) of brain metastases.MethodsBetween 2018 and 2020, 106 patients underwent intracranial stereotactic radiotherapy. 10 patients with metastatic brain tumors treated with SRT were randomly selected and included in our study model. Patients were scanned pre- and post-treatment with cone beam CT. Total of 100 verifications of 50 stereotaxic treatments were performed and analyzed.ResultsPopulation mean X, Y, Z values were -0.13 cm, -0.04 cm, -0.03 cm, respectively, rotation values 0.81°, 0.51°, 0.46°, respectively. Systematic error components for translational displacements pre corrections were as follows: 0.14 cm for X, 0.13 cm for Y and 0.1 cm for Z. Systematic error components of the post-treatment HR 3D CBCTs were as follows: 0.01 cm for X, 0.06 cm for Y and 0.04 cm for Z.ConclusionsPopulation mean values close to 0 confirmed that there is no systematic variation in our system and the accuracy of our equipment and tools is reliable. HR 3D CBCT scans performed pre SRTs further refine patient and target volume setting, support medical decision making and eliminate the possibility of gross error.
Collapse
Affiliation(s)
- Judit Papp
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Csiki
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Kovács
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- *Correspondence: Árpád Kovács,
| |
Collapse
|
8
|
Loo M, Clavier JB, Attal Khalifa J, Moyal E, Khalifa J. Dose-Response Effect and Dose-Toxicity in Stereotactic Radiotherapy for Brain Metastases: A Review. Cancers (Basel) 2021; 13:cancers13236086. [PMID: 34885193 PMCID: PMC8657210 DOI: 10.3390/cancers13236086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Brain metastases are one of the most frequent complications for cancer patients. Stereotactic radiosurgery is considered a cornerstone treatment for patients with limited brain metastases and the ideal dose and fractionation schedule still remain unknown. The aim of this literature review is to discuss the dose-effect relation in brain metastases treated by stereotactic radiosurgery, accounting for fractionation and technical considerations. Abstract For more than two decades, stereotactic radiosurgery has been considered a cornerstone treatment for patients with limited brain metastases. Historically, radiosurgery in a single fraction has been the standard of care but recent technical advances have also enabled the delivery of hypofractionated stereotactic radiotherapy for dedicated situations. Only few studies have investigated the efficacy and toxicity profile of different hypofractionated schedules but, to date, the ideal dose and fractionation schedule still remains unknown. Moreover, the linear-quadratic model is being debated regarding high dose per fraction. Recent studies shown the radiation schedule is a critical factor in the immunomodulatory responses. The aim of this literature review was to discuss the dose–effect relation in brain metastases treated by stereotactic radiosurgery accounting for fractionation and technical considerations. Efficacy and toxicity data were analyzed in the light of recent published data. Only retrospective and heterogeneous data were available. We attempted to present the relevant data with caution. A BED10 of 40 to 50 Gy seems associated with a 12-month local control rate >70%. A BED10 of 50 to 60 Gy seems to achieve a 12-month local control rate at least of 80% at 12 months. In the brain metastases radiosurgery series, for single-fraction schedule, a V12 Gy < 5 to 10 cc was associated to 7.1–22.5% radionecrosis rate. For three-fractions schedule, V18 Gy < 26–30 cc, V21 Gy < 21 cc and V23 Gy < 5–7 cc were associated with about 0–14% radionecrosis rate. For five-fractions schedule, V30 Gy < 10–30 cc, V 28.8 Gy < 3–7 cc and V25 Gy < 16 cc were associated with about 2–14% symptomatic radionecrosis rate. There are still no prospective trials comparing radiosurgery to fractionated stereotactic irradiation.
Collapse
Affiliation(s)
- Maxime Loo
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
- Correspondence:
| | - Jean-Baptiste Clavier
- Radiotherapy Department, Strasbourg Europe Cancer Institute (ICANS), 67033 Strasbourg, France;
| | - Justine Attal Khalifa
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
| | - Elisabeth Moyal
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
| | - Jonathan Khalifa
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
| |
Collapse
|
9
|
Li H, Li W, Qi C, Zhou L, Wen F, Qu Y, Yu H. Optimizing Whole Brain Radiotherapy Treatment and Dose for Patients With Brain Metastases From Small Cell Lung Cancer. Front Oncol 2021; 11:726613. [PMID: 34760692 PMCID: PMC8573246 DOI: 10.3389/fonc.2021.726613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose This study aimed to evaluate the survival outcomes of whole brain radiotherapy (WBRT) compared to whole brain radiotherapy plus local radiation boost (WBRT + boost), and further identify whether higher biologically effective dose (BED) of WBRT + boost translates into a survival benefit in small cell lung cancer (SCLC) patients with brain metastasis (BM). Methods SCLC patients with BM from January 1, 2012, to December 31, 2019, were retrospectively analyzed. Overall survival (OS) and intracranial progression-free survival (iPFS) were evaluated by the Kaplan–Meier method and compared by the log-rank test. Univariate and multivariate regression analyses of prognostic factors for OS were performed using Cox proportional hazards regression models. The cutoff value of BED was determined by the receiver operating characteristic (ROC) curve analysis. Results Among the 180 eligible patients, 82 received WBRT + boost and 98 received WBRT. Both OS and iPFS in the WBRT + boost group were significantly superior to those in the WBRT group (median OS: 20 vs. 14 months, p = 0.011; median iPFS: 16 vs. 10 months, p = 0.003). At a cutoff value of 58.35 Gy in the WBRT + boost group, 52 for the high-BED (>58.35 Gy) group, 30 for the low-BED (≤58.35 Gy) group. High BED was significantly associated with improved OS and iPFS compared with low BED in the WBRT + boost group (median OS: 23 vs. 17 months, p = 0.002; median iPFS: 17 vs. 10 months, p = 0.002). Conclusions Compared with WBRT alone, WBRT + boost improved OS and iPFS in SCLC patients with BM. High BED (>58.35 Gy) for WBRT + boost may be a reasonable consideration for SCLC patients with BM.
Collapse
Affiliation(s)
- Hanming Li
- School of Graduate, Dalian Medical University, Dalian, China
| | - Wang Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Chao Qi
- School of Graduate, Dalian Medical University, Dalian, China
| | - Lu Zhou
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Fengyun Wen
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yanli Qu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hong Yu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
10
|
Zhang J, Wang L, Xu B, Huang M, Chen Y, Li X. Influence of Using a Contrast-Enhanced CT Image as the Primary Image on CyberKnife Brain Radiosurgery Treatment Plans. Front Oncol 2021; 11:705905. [PMID: 34604041 PMCID: PMC8483719 DOI: 10.3389/fonc.2021.705905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose This study aimed to quantify the differences between pre- and post-contrast agent (CA) CT for CyberKnife brain SRS plans. Materials and Methods Twenty-five patients were retrospectively analyzed. They were divided into two categories, inhomogeneous cases (13 patients) and homogeneous cases (12 patients), according to whether the tumor was close to the cavity and inhomogeneous tissues or not. The pre-CA and post-CA plans were designed and calculated using the same monitor unit and paths as those in the ray-tracing algorithm, respectively. Results The CT number difference of tumor between pre- and post-CA was significant (on average, 24.78 ± 18.56 HU, P-value < 0.01). The deviation value of the target was the largest at approximately 37 HU (inhomo-) and 13 HU (homo-) (P < 0.01), and the values of the organs at risk (OARs) were not statistically significant (P-value > 0.05). However, it was not statistically significant for the dose difference between the two groups with the injection of CA (P-value > 0.05). The absolute effective depth difference generally remained at a level of 1 mm, but the dose difference was quitely fluctuated sometimes more than 20%. The absolute effective depth difference of the inhomo-case (0.62 mm) was larger than that of the homo-case (0.37 mm) on median, as well as the variation amplitude (P-value < 0.05). Moreover, the relative dose differences between the two cases were 0.38% (inhomo-) and 0.2% (homo-), respectively (P-value < 0.05). At the criterion of 1 mm/1%, the gamma pass rate of the homo-case (95.89%) was larger than that of the inhomo-case (93.79%). For the OARs, except for the cochlea, the two cases were almost the same (>98.85%). The tumor control probability of the target was over 99.99% before and after injection of a CA, as well as the results for the homo-case and inhomo-case. Conclusions Considering the difference of evaluation indexes between pre- and post-CA images, we recommended plain CT to be employed as the primary image for improving the CK treatment accuracy of brain SRS, especially when the target was close to CA-sensitive OARs and cavity.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Lin Wang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Miaoyun Huang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Yuangui Chen
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaobo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Koo J, Roh TH, Lee SR, Heo J, Oh YT, Kim SH. Whole-Brain Radiotherapy vs. Localized Radiotherapy after Resection of Brain Metastases in the Era of Targeted Therapy: A Retrospective Study. Cancers (Basel) 2021; 13:cancers13184711. [PMID: 34572938 PMCID: PMC8472558 DOI: 10.3390/cancers13184711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The paradigm shift from cytotoxic chemotherapy to molecular targeted therapy dramatically improved the survival and quality of life of cancer patients. In radio-oncological aspects, there also was a paradigm shift from whole-brain radiotherapy to localized radiotherapy including stereotactic radiosurgery. This retrospective study analyzed 124 consecutive patients who had undergone surgical resection of brain metastases. We found targeted therapies to improve overall survival and distant control with decreased incidence of leptomeningeal metastasis. Our data suggest that localized radiotherapy is sufficient after resection of brain metastases when systemic targeted therapy is available. Abstract Whether targeted therapy (TT) and radiotherapy impact survival after resection of brain metastases (BM) is unknown. The purpose of this study was to analyze the factors affecting overall survival (OS), local control (LC), distant control (DC), and leptomeningeal metastases (LMM) in patients who had undergone resection of BM. We retrospectively analyzed 124 consecutive patients who had undergone resection of BM between 2004 and 2020. Patient information about age, sex, Karnofsky Performance Scale (KPS), origin of cancer, synchronicity, tumor size, status of primary cancer, use of TT, extent of resection, and postoperative radiotherapy was collected. Radiation therapy was categorized into whole-brain radiotherapy (WBRT), localized radiotherapy (local brain radiotherapy or stereotactic radiosurgery (LBRT/SRS)), and no radiation. We identified factors that affect OS, LC, DC, and LMM. In multivariable analysis, significant factors for OS were higher KPS score (≥90) (HR 0.53, p = 0.011), use of TT (HR 0.43, p = 0.001), controlled primary disease (HR 0.63, p = 0.047), and single BM (HR 0.55, p = 0.016). Significant factors for LC were gross total resection (HR 0.29, p = 0.014) and origin of cancer (p = 0.041). Both WBRT and LBRT/SRS showed superior LC than no radiation (HR 0.32, p = 0.034 and HR 0.38, p = 0.018, respectively). Significant factors for DC were use of TT (HR 0.54, p = 0.022) and single BM (HR 0.47, p = 0.004). Reduced incidence of LMM was associated with use of TT (HR 0.42, p = 0.038), synchronicity (HR 0.25, p = 0.028), and controlled primary cancer (HR 0.44, p = 0.047). TT was associated with prolonged OS, improved DC, and reduced LMM in resected BM patients. WBRT and LBRT/SRS showed similar benefits on LC. Considering the extended survival of cancer patients and the long-term effect of WBRT on cognitive function, LBRT/SRS appears to be a good option after resection of BM.
Collapse
Affiliation(s)
- Jaho Koo
- Gamma Knife Center, Brain Tumor Center, Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon 16499, Korea; (J.K.); (S.R.L.); (S.-H.K.)
| | - Tae Hoon Roh
- Gamma Knife Center, Brain Tumor Center, Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon 16499, Korea; (J.K.); (S.R.L.); (S.-H.K.)
- Correspondence:
| | - Sang Ryul Lee
- Gamma Knife Center, Brain Tumor Center, Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon 16499, Korea; (J.K.); (S.R.L.); (S.-H.K.)
| | - Jaesung Heo
- Brain Tumor Center, Department of Radiation Oncology, Ajou University Hospital, Ajou University School of Medicine, Suwon 16499, Korea; (J.H.); (Y.-T.O.)
| | - Young-Taek Oh
- Brain Tumor Center, Department of Radiation Oncology, Ajou University Hospital, Ajou University School of Medicine, Suwon 16499, Korea; (J.H.); (Y.-T.O.)
| | - Se-Hyuk Kim
- Gamma Knife Center, Brain Tumor Center, Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon 16499, Korea; (J.K.); (S.R.L.); (S.-H.K.)
| |
Collapse
|
12
|
Samanci Y, Karakose F, Senyurek S, Peker S. Single-fraction versus hypofractionated gamma knife radiosurgery for small metastatic brain tumors. Clin Exp Metastasis 2021; 38:305-320. [PMID: 33733707 DOI: 10.1007/s10585-021-10086-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
Stereotactic radiosurgery (SRS) has become a standard of care for the treatment of metastatic brain tumors (METs). Although a better balance of tumor control and toxicity of hypofractionated SRS (hfSRS) compared with single-fraction SRS (sfSRS) was demonstrated in large METs, there is no data comparing two approaches for small METs (< 4 cm3). It was aimed to compare clinical outcomes between sfSRS versus hfSRS Gamma Knife radiosurgery (GKRS) in a series of patients with unresected, small METs. Patients (n = 208) treated with sfGKRS or hfGKRS between June 2017 and May 2020 were retrospectively examined in a single center. The co-primary endpoints of local control (LC) and toxicity were estimated by applying the Kaplan-Meier method. Multivariate analysis using Cox proportional hazards (HR) modeling was used to assess the effect of independent variables on the outcomes. The actuarial LC rate was 99.7% at six months and 98.8% at 18 months in the sfGKRS group, and 99.4% and 94.3% in the hfGKRS group (p = 0.089), respectively. In multivariate analysis, MET volume (p = 0.023, HR 2.064) and biologically effective dose (BED10) (p < 0.0001, HR 0.753) was associated with LC. In total, treatment-related toxicity was observed in 13 (8.7%) patients during a median period of 10 weeks (range 1-31). Radiation necrosis was observed in four patients (1.9%), and all patients were in the sfGKRS group (p = 0.042). Only the maximum dose was associated with toxicity (p = 0.032, HR 1.047). Our current results suggest that hfGKRS is advantageous and beneficial also in patients with unresected, small METs.
Collapse
Affiliation(s)
- Yavuz Samanci
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| | - Fatih Karakose
- Department of Radiation Oncology, Koç University Hospital, Istanbul, Turkey
| | - Sukran Senyurek
- Department of Radiation Oncology, Koç University Hospital, Istanbul, Turkey
| | - Selcuk Peker
- Department of Neurosurgery, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
13
|
Cyberknife ® hypofractionated stereotactic radiosurgery (CK-hSRS) as salvage treatment for brain metastases. J Cancer Res Clin Oncol 2021; 147:2765-2773. [PMID: 33638006 PMCID: PMC8310836 DOI: 10.1007/s00432-021-03564-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
Purpose The introduction of hypofractionated stereotactic radiosurgery (hSRS) extended the treatment modalities beyond the well-established single-fraction stereotactic radiosurgery and fractionated radiotherapy. Here, we report the efficacy and side effects of hSRS using Cyberknife® (CK-hSRS) for the treatment of patients with critical brain metastases (BM) and a very poor prognosis. We discuss our experience in light of current literature. Methods All patients who underwent CK-hSRS over 3 years were retrospectively included. We applied a surface dose of 27 Gy in 3 fractions. Rates of local control (LC), systemic progression-free survival (PFS), and overall survival (OS) were estimated using Kaplan–Meier method. Treatment-related complications were rated using the Common Terminology Criteria for Adverse Events (CTCAE). Results We analyzed 34 patients with 75 BM. 53% of the patients had a large tumor, tumor location was eloquent in 32%, and deep seated in 15%. 36% of tumors were recurrent after previous irradiation. The median Karnofsky Performance Status was 65%. The actuarial rates of LC at 3, 6, and 12 months were 98%, 98%, and 78.6%, respectively. Three, 6, and 12 months PFS was 38%, 32%, and 15%, and OS was 65%, 47%, and 28%, respectively. Median OS was significantly associated with higher KPS, which was the only significant factor for survival. Complications CTCAE grade 1–3 were observed in 12%. Conclusion Our radiation schedule showed a reasonable treatment effectiveness and tolerance. Representing an optimal salvage treatment for critical BM in patients with a very poor prognosis and clinical performance state, CK-hSRS may close the gap between surgery, stereotactic radiosurgery, conventional radiotherapy, and palliative care.
Collapse
|
14
|
Li C, Zheng X, Chen W, Ji S, Yuan Y, Jiang X. Tumor Microenvironment-Regulated and Reported Nanoparticles for Overcoming the Self-Confinement of Multiple Photodynamic Therapy. NANO LETTERS 2020; 20:6526-6534. [PMID: 32787152 DOI: 10.1021/acs.nanolett.0c02272] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The efficiency of photodynamic therapy (PDT) highly depends on the tumor oxygenation state. However, PDT itself can not only cause oxygen depletion but also prevent oxygen supply in tumors. Such self-confinement effect significantly limits the efficacy of PDT, especially fractionated PDT (fPDT). Herein, we proposed a multifunctional nanoparticle system having a four-pronged pipelined therapeutic scheme to address this issue. It performed in situ oxygen supply and tumor microenvironment modulation together to effectively maintain tumor oxygenation even after multiple PDT fractions. It also introduced a new photosensitizer that not only was highly efficient in producing ROS but also could visually report tumor oxygenation state in a real-time fashion. All these functions were integrated into a single nanoparticulate system to obtain pipeline-style teamwork, which was then applied for the fPDT on a mice tumor model, and achieved significantly better tumor oxygenation even after multiple PDT fractions, ending up with a better tumor inhibition efficiency.
Collapse
Affiliation(s)
- Cheng Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xianchuang Zheng
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Weizhi Chen
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shilu Ji
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yang Yuan
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Kim JS, Kim IA. Evolving treatment strategies of brain metastases from breast cancer: current status and future direction. Ther Adv Med Oncol 2020; 12:1758835920936117. [PMID: 32636942 PMCID: PMC7313341 DOI: 10.1177/1758835920936117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in breast cancer treatment has improved patient survival, resulting in an increased incidence of brain metastasis (BM). Current treatment options for BM are limited and are generally used for palliative purposes. Historically, local treatment, consisting of radiotherapy and surgery, is the standard of care due to delivery limitations of systemic treatments through the blood-brain barrier. However, as novel biological mechanisms for tumors and BM have been discovered, several innovative systemic agents, such as small-molecular-targeted therapy and immunotherapy, have begun to change the treatment paradigm. In addition, efforts to maximize antitumor effects have been attempted using combination therapy, informed by tumor biology. In this comprehensive review, we will highlight various clinical trials investigating the treatment of BM in breast cancer patients, discuss presently available treatment options, and suggest potential directions of future therapeutic targets.
Collapse
Affiliation(s)
- Jae Sik Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Gumi-ro 173, 82 Beon-gil, Bundang gu, Seongnam, 13620, Republic of Korea
| |
Collapse
|
16
|
Venur VA, Chukwueke UN, Lee EQ. Advances in Management of Brain and Leptomeningeal Metastases. Curr Neurol Neurosci Rep 2020; 20:26. [PMID: 32506161 DOI: 10.1007/s11910-020-01039-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The management of brain and leptomeningeal metastases has changed significantly over the past decade. RECENT FINDINGS Historically, radiation therapy had been the mainstay of treatment. Several strategies to limit toxicities with radiation have been developed in the recent years. Increasingly systemic therapy options are being considered an important therapeutic option for CNS metastases. Numerous novel small molecule inhibitors and immunotherapy agents have intracranial activity to varying degrees, in addition to good extracranial disease control. Overall, the prognosis of select patients with CNS metastases has improved over the past several years with advent of new therapeutic strategies. Systemic therapy options with CNS benefit should be considered in select patients with small and asymptomatic CNS metastases. Further areas of research focus on molecular alterations predisposing to CNS metastases, identification of small molecule inhibitors with CNS activity, and the combination of radiation therapy and immunotherapy.
Collapse
Affiliation(s)
- Vyshak Alva Venur
- Seattle Cancer Care Alliance, Division of Oncology, Department of Medicine, University of Washington Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ugonma N Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.,Brigham and Women's Hospital, Boston, MA, 02215, USA.,Harvard Medical School, Boston, MA, 02215, USA
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA. .,Brigham and Women's Hospital, Boston, MA, 02215, USA. .,Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
17
|
Zhuang QY, Li JL, Lin FF, Lin XJ, -lin H, -Wang Y, -Lin Y, Huang YX, Zhang XQ, Tang LR, Wu JX. High Biologically Effective Dose Radiotherapy for Brain Metastases May Improve Survival and Decrease Risk for Local Relapse Among Patients With Small-Cell Lung Cancer: A Propensity-Matching Analysis. Cancer Control 2020; 27:1073274820936287. [PMID: 32614270 PMCID: PMC7333507 DOI: 10.1177/1073274820936287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/28/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
To evaluate whether high biologically effective dose (BED) radiotherapy improves local control and survival outcomes for patients with brain metastases (BMs) from small-cell lung cancer (SCLC) and to determine possible prognostic factors. From January 1998 to June 2018, 250 patients with BM from SCLC were retrospectively analyzed. The Cutoff Finder program was used to classify patients by BED. Overall survival (OS) and BM progression-free survival (BM-PFS) were analyzed using the Kaplan-Meier method and log-rank test. A Cox regression model was used to calculate the hazard ratio and 95% CI for prognostic factors for OS among the study population and propensity score (PS)-matched patients. A BED of 47.4 was taken as the optimal cutoff value. Both OS and BM-PFS were significantly improved in the high-BED (>47.4 Gy) than in the low-BED (≤47.4 Gy) group (median OS: 17.5 months vs 9.5 months, P < .001, median BM-PFS: 14.4 months vs 8.3 months, P < .001). Biologically effective dose (P < .001), Eastern Cooperative Oncology Group performance status (P = .047), smoking (P = .005), and pleural effusion (P = .004) were independent prognostic factors for OS. Propensity score matching with a ratio of 1:2 resulted in 57 patients in the high-BED group and 106 patients in the low-BED group. In the PS-matched cohort, OS and BM-PFS were significantly prolonged in the high-BED group compared with the low-BED group (P < .001). Biologically effective dose >47.4 Gy improves survival among patients with BM from SCLC. Eastern Cooperative Oncology Group score, smoking, and pleural effusion independently affect OS of SCLC patients with BM.
Collapse
Affiliation(s)
- Qing-yang Zhuang
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Jin-luan Li
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital, School of Medicine, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, People’s Republic of China
| | - Fei-fei Lin
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Xi-jin Lin
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Huaqin -lin
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Youjia -Wang
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yaobin -Lin
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yun-xia Huang
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital, School of Medicine, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, People’s Republic of China
| | - Xue-qing Zhang
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Li-rui Tang
- Department of Renal Cancer and Melanoma, The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Jun-xin Wu
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
18
|
Loo M, Pin Y, Thierry A, Clavier JB. Single-fraction radiosurgery versus fractionated stereotactic radiotherapy in patients with brain metastases: a comparative study. Clin Exp Metastasis 2020; 37:425-434. [PMID: 32185576 DOI: 10.1007/s10585-020-10031-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
To compare the local control and brain radionecrosis in patients with brain metastasis primarily treated by single-fraction radiosurgery (SRS) or hypofractionated stereotactic radiotherapy (HFSRT). Between January 2012 and December 2017, 179 patients with only 1-3 brain metastases (total: 287) primarily treated by SRS (14 Gy) or HFSRT (23.1 Gy in 3 fractions of 7.7 Gy, every other day) were retrospectively analyzed in a single center. Follow-up imaging data were available in 152 patients with 246 lesions. The corresponding Biological Effective Dose (BED) were 33.6 Gy and 40.9 Gy respectively for SRS and HFSRT group, assuming an α/β of 10 Gy. Local control (LC) and risk of radionecrosis (RN) were calculated by the Kaplan-Meier method. The actuarial local control rates at 6 and 12 months were 94% and 88.1% in SRS group, and 87.6% and 78.4%, in HFSRT group (p = 0.06), respectively. Only the total volume of edema was associated with worse LC (p = 0.01, HR 1.02, 95% CI [1.004-1.03]) in multivariate analysis. Brain radionecrosis occurred in 1 lesion in SRS group and 9 in HFSRT group. Median time to necrosis was 5.5 months (range 1-9). Only the volume of GTV was associated with RN (p = 0.02, HR 1.09, 95% CI [1.01-1.18]) in multivariate analysis. Multi-fraction SRT dose of 23.31 Gy in 3 fractions has similar efficacy to single-fraction SRT dose of 14 Gy in patients with brain metastases. A slightly higher occurrence of radionecrosis appeared in HFSRT group.
Collapse
Affiliation(s)
- Maxime Loo
- Radiotherapy Department, Centre Paul Strauss, Strasbourg Cedex, 67065, France.
| | - Yvan Pin
- Radiotherapy Department, Centre Paul Strauss, Strasbourg Cedex, 67065, France
| | - Alicia Thierry
- Public Health and Statistics Department, Centre Paul Strauss, Strasbourg Cedex, 67065, France
| | | |
Collapse
|
19
|
Moravan MJ, Fecci PE, Anders CK, Clarke JM, Salama AKS, Adamson JD, Floyd SR, Torok JA, Salama JK, Sampson JH, Sperduto PW, Kirkpatrick JP. Current multidisciplinary management of brain metastases. Cancer 2020; 126:1390-1406. [PMID: 31971613 DOI: 10.1002/cncr.32714] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/08/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022]
Abstract
Brain metastasis (BM), the most common adult brain tumor, develops in 20% to 40% of patients with late-stage cancer and traditionally are associated with a poor prognosis. The management of patients with BM has become increasingly complex because of new and emerging systemic therapies and advancements in radiation oncology and neurosurgery. Current therapies include stereotactic radiosurgery, whole-brain radiation therapy, surgical resection, laser-interstitial thermal therapy, systemic cytotoxic chemotherapy, targeted agents, and immune-checkpoint inhibitors. Determining the optimal treatment for a specific patient has become increasingly individualized, emphasizing the need for multidisciplinary discussions of patients with BM. Recognizing and addressing the sequelae of BMs and their treatment while maintaining quality of life and neurocognition is especially important because survival for patients with BMs has improved. The authors present current and emerging treatment options for patients with BM and suggest approaches for managing sequelae and disease recurrence.
Collapse
Affiliation(s)
- Michael J Moravan
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.,Department of Radiation Oncology, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | - Peter E Fecci
- Department of Neurosurgery, Duke University Hospital, Durham, North Carolina
| | - Carey K Anders
- Department of Internal Medicine, Division of Medical Oncology, Duke University Hospital, Durham, North Carolina
| | - Jeffrey M Clarke
- Department of Internal Medicine, Division of Medical Oncology, Duke University Hospital, Durham, North Carolina
| | - April K S Salama
- Department of Internal Medicine, Division of Medical Oncology, Duke University Hospital, Durham, North Carolina
| | - Justus D Adamson
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Jordan A Torok
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Joseph K Salama
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.,Department of Radiation Oncology, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | - John H Sampson
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University Hospital, Durham, North Carolina
| | - Paul W Sperduto
- Minneapolis Radiation Oncology, Minneapolis, Minnesota.,University of Minnesota Gamma Knife Center, Minneapolis, Minnesota
| | - John P Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University Hospital, Durham, North Carolina
| |
Collapse
|
20
|
Dumont Lecomte D, Lequesne J, Geffrelot J, Lesueur P, Barraux V, Loiseau C, Lacroix J, Leconte A, Émery É, Thariat J, Stefan D. Hypofractionated stereotactic radiotherapy for challenging brain metastases using 36 Gy in six fractions. Cancer Radiother 2019; 23:860-866. [DOI: 10.1016/j.canrad.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 10/25/2022]
|
21
|
Film dosimetry studies for patient specific quality assurance in microbeam radiation therapy. Phys Med 2019; 65:227-237. [DOI: 10.1016/j.ejmp.2019.09.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022] Open
|
22
|
Traylor JI, Habib A, Patel R, Muir M, Gadot R, Briere T, Yeboa DN, Li J, Rao G. Fractionated stereotactic radiotherapy for local control of resected brain metastases. J Neurooncol 2019; 144:343-350. [PMID: 31313060 DOI: 10.1007/s11060-019-03233-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE Postoperative stereotactic radiosurgery (SRS) has been shown to establish local control in patients with resected brain metastases, yet its efficacy may be limited, particularly for resected lesions with large post-operative resection cavities. We describe the efficacy of postoperative fractionated stereotactic radiotherapy (FSRT) for local control in patients who have undergone resection for brain metastases. METHODS In this retrospective cohort study, we analyzed patients who received FSRT for resected brain metastases in 3 or 5 fractions. Time to local recurrence was the primary endpoint in this study. RESULTS Sixty-seven patients (n = 29 female, n = 38 male) met study criteria for review. The median age of the cohort was 62 years (range 18-79 years). Median preoperative tumor volume was 11.1 cm3 (range 0.4-77.0 cm3). The rate of local control was 91.0% at 6 months, 85.1% at 12 months, and 85.1% at 18 months. Estimates of freedom from local recurrence at 6 and 12 months were 90.9% and 84.3%, respectively. Higher biologically equivalent doses (BED10) were found to be predictive of longer freedom from local recurrence on univariate and multivariable analysis. Larger cavity volumes were found to correspond to longer time to local recurrence on univariate and multivariable analysis. CONCLUSION Our results suggest that postoperative FSRT may be an effective method for providing local control to the surgical bed in patients with resected brain metastases, particularly for larger tumors not amenable to conventional, single-fraction SRS. Additional prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Jeffrey I Traylor
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed Habib
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajan Patel
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Muir
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ron Gadot
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Briere
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debra N Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Room FC7.2000, Unit 853, Houston, TX, 77030-4009, USA.
| |
Collapse
|
23
|
Subdermal injection of hyaluronic acid to decrease skin toxicity from radiation delivered with low-dose-rate brachytherapy for cancer patients. J Contemp Brachytherapy 2019; 11:14-20. [PMID: 30911305 PMCID: PMC6431100 DOI: 10.5114/jcb.2019.82770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose To study the feasibility of hyaluronic acid (HA) injection to increase the distance between skin and radioactive sources, and dose reduction of skin during low-dose-rate (LDR) brachytherapy. Material and methods: A total of 11 patients with subdermal malignant tumors were enrolled in this study. HA was injected after I-125 seed implantation, and dosimetric parameters were calculated by a brachytherapy treatment planning system (BTPS). The distance of the new space between radioactive sources and skin was measured on computed tomography (CT) and magnetic resonance imaging (MRI). Clinical signs were observed and followed up for every patient. Results After HA injection, the average of newly generated maximum distance was 1.0 cm along the entire length of the tumor. The D90 and V100 did not significantly change for tumors before or after injection (p = 0.39, p = 0.50, respectively). The maximum dose to a relatively small volume (0.1 cc) of the skin (OAR-Max) decreased from 100.66 Gy to 61.20 Gy (p < 0.05), and the mean skin dose (OAR-Mean) decreased from 49.20 Gy to 17.27 Gy (p < 0.05) after injection. On follow-up CT and MRI, HA was quite stable in shape and position for nearly 6 months. Conclusions Our study results showed that an additional 1.0 cm distance between the radioactive source and skin could be induced by HA injection in patients with subdermal tumor, and this distance could significantly decrease the skin dose in LDR brachytherapy. In addition, no obvious toxicity and side effects were produced by HA injection. Therefore, hyaluronic acid injection is a safe and effective technique.
Collapse
|
24
|
O'Beirn M, Benghiat H, Meade S, Heyes G, Sawlani V, Kong A, Hartley A, Sanghera P. The Expanding Role of Radiosurgery for Brain Metastases. MEDICINES (BASEL, SWITZERLAND) 2018; 5:medicines5030090. [PMID: 30110927 PMCID: PMC6165316 DOI: 10.3390/medicines5030090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Stereotactic radiosurgery (SRS) has become increasingly important in the management of brain metastases due to improving systemic disease control and rising incidence. Initial trials demonstrated SRS with whole-brain radiotherapy (WBRT) improved local control rates compared with WBRT alone. Concerns with WBRT associated neurocognitive toxicity have contributed to a greater use of SRS alone, including for patients with multiple metastases and following surgical resection. Molecular information, targeted agents, and immunotherapy have also altered the landscape for the management of brain metastases. This review summarises current and emerging data on the role of SRS in the management of brain metastases.
Collapse
Affiliation(s)
- Mark O'Beirn
- Hall-Edwards Radiotherapy Research Group, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK.
| | - Helen Benghiat
- Hall-Edwards Radiotherapy Research Group, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK.
| | - Sara Meade
- Hall-Edwards Radiotherapy Research Group, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK.
| | - Geoff Heyes
- Hall-Edwards Radiotherapy Research Group, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK.
| | - Vijay Sawlani
- Neuroradiology, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK.
| | - Anthony Kong
- Hall-Edwards Radiotherapy Research Group, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK.
| | - Andrew Hartley
- Hall-Edwards Radiotherapy Research Group, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK.
| | - Paul Sanghera
- Hall-Edwards Radiotherapy Research Group, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK.
| |
Collapse
|
25
|
Improved effectiveness of stereotactic radiosurgery in large brain metastases by individualized isotoxic dose prescription: an in silico study. Strahlenther Onkol 2018; 194:560-569. [PMID: 29349605 PMCID: PMC5959984 DOI: 10.1007/s00066-018-1262-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In large brain metastases (BM) with a diameter of more than 2 cm there is an increased risk of radionecrosis (RN) with standard stereotactic radiosurgery (SRS) dose prescription, while the normal tissue constraint is exceeded. The tumor control probability (TCP) with a single dose of 15 Gy is only 42%. This in silico study tests the hypothesis that isotoxic dose prescription (IDP) can increase the therapeutic ratio (TCP/Risk of RN) of SRS in large BM. MATERIALS AND METHODS A treatment-planning study with 8 perfectly spherical and 46 clinically realistic gross tumor volumes (GTV) was conducted. The effects of GTV size (0.5-4 cm diameter), set-up margins (0, 1, and 2 mm), and beam arrangements (coplanar vs non-coplanar) on the predicted TCP using IDP were assessed. For single-, three-, and five-fraction IDP dose-volume constraints of V12Gy = 10 cm3, V19.2 Gy = 10 cm3, and a V20Gy = 20 cm3, respectively, were used to maintain a low risk of radionecrosis. RESULTS In BM of 4 cm in diameter, the maximum achievable single-fraction IDP dose was 14 Gy compared to 15 Gy for standard SRS dose prescription, with respective TCPs of 32 and 42%. Fractionated SRS with IDP was needed to improve the TCP. For three- and five-fraction IDP, a maximum predicted TCP of 55 and 68% was achieved respectively (non-coplanar beams and a 1 mm GTV-PTV margin). CONCLUSIONS Using three-fraction or five-fraction IDP the predicted TCP can be increased safely to 55 and 68%, respectively, in large BM with a diameter of 4 cm with a low risk of RN. Using IDP, the therapeutic ratio of SRS in large BM can be increased compared to current SRS dose prescription.
Collapse
|
26
|
Klement RJ. Radiobiological parameters of liver and lung metastases derived from tumor control data of 3719 metastases. Radiother Oncol 2017; 123:218-226. [PMID: 28363484 DOI: 10.1016/j.radonc.2017.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE The radiobiological parameters for liver and lung metastases treated with stereotactic body radiation therapy (SBRT) are poorly defined. This project aimed at estimating these parameters from published tumor control probability (TCP) data, and separately for metastases with colorectal cancer (CRC) and non-CRC histology. MATERIALS AND METHODS A total of 62 studies with 89 different treatment prescriptions for a total of 3719 metastases were analyzed in a Bayesian framework using four different radiobiological models: The LQ, mLQ, LQ-L and the regrowth model which accounts for tumor regrowth after SBRT. RESULTS Depending on the particular model, α/β ratios in the range 13-23Gy for pulmonary metastases and 16-28Gy for hepatic metastases were estimated. For CRC metastases the estimated α/β ratio was 43.1±4.7Gy compared to 21.6±7.8Gy for non-CRC metastases. Typical isocenter dose prescriptions of 3×12Gy, 3×14.5Gy and 3×17Gy applied within 5days were predicted sufficient to control 90% of lung, liver and CRC metastases after 1yr, respectively. CONCLUSIONS α/β ratios for liver and lung metastases are higher than the usually assumed 10Gy. Differences between CRC and non-CRC histology were found. Future studies confirming these findings in individual patient data are needed.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital, Schweinfurt, Germany.
| |
Collapse
|