1
|
Wang ZH, Zhu L, Xue HD, Jin ZY. Quantitative MR imaging biomarkers for distinguishing inflammatory pancreatic mass and pancreatic cancer-a systematic review and meta-analysis. Eur Radiol 2024; 34:6738-6750. [PMID: 38639911 DOI: 10.1007/s00330-024-10720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/09/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES To evaluate the diagnostic performance of quantitative magnetic resonance (MR) imaging biomarkers in distinguishing between inflammatory pancreatic masses (IPM) and pancreatic cancer (PC). METHODS A literature search was conducted using PubMed, Embase, the Cochrane Library, and Web of Science through August 2023. Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to evaluate the risk of bias and applicability of the studies. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated using the DerSimonian-Laird method. Univariate meta-regression analysis was used to identify the potential factors of heterogeneity. RESULTS Twenty-four studies were included in this meta-analysis. The two main types of IPM, mass-forming pancreatitis (MFP) and autoimmune pancreatitis (AIP), differ in their apparent diffusion coefficient (ADC) values. Compared with PC, the ADC value was higher in MFP but lower in AIP. The pooled sensitivity/specificity of ADC were 0.80/0.85 for distinguishing MFP from PC and 0.82/0.84 for distinguishing AIP from PC. The pooled sensitivity/specificity for the maximal diameter of the upstream main pancreatic duct (dMPD) was 0.86/0.74, with a cutoff of dMPD ≤ 4 mm, and 0.97/0.52, with a cutoff of dMPD ≤ 5 mm. The pooled sensitivity/specificity for perfusion fraction (f) was 0.82/0.68, and 0.82/0.77 for mass stiffness values. CONCLUSIONS Quantitative MR imaging biomarkers are useful in distinguishing between IPM and PC. ADC values differ between MFP and AIP, and they should be separated for consideration in future studies. CLINICAL RELEVANCE STATEMENT Quantitative MR parameters could serve as non-invasive imaging biomarkers for differentiating malignant pancreatic neoplasms from inflammatory masses of the pancreas, and hence help to avoid unnecessary surgery. KEY POINTS • Several quantitative MR imaging biomarkers performed well in differential diagnosis between inflammatory pancreatic mass and pancreatic cancer. • The ADC value could discern pancreatic cancer from mass-forming pancreatitis or autoimmune pancreatitis, if the two inflammatory mass types are not combined. • The diameter of main pancreatic duct had the highest specificity for differentiating autoimmune pancreatitis from pancreatic cancer.
Collapse
Affiliation(s)
- Zi-He Wang
- School of Medicine, Anhui Medical University, Hefei, China
| | - Liang Zhu
- Department of Radiology, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China.
| | - Hua-Dan Xue
- Department of Radiology, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China.
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
2
|
Tirkes T. Advances in MRI of Chronic Pancreatitis. ADVANCES IN CLINICAL RADIOLOGY 2024; 6:31-39. [PMID: 39185367 PMCID: PMC11339961 DOI: 10.1016/j.yacr.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
MRI and MRCP play an essential role in diagnosing CP by imaging pancreatic parenchyma and ducts. Quantitative and semi-quantitative MR imaging offers potential advantages over conventional MR imaging, including simplicity of analysis, quantitative and population-based comparisons, and more direct interpretation of disease progression or response to drug therapy. Using parenchymal imaging techniques may provide quantitative metrics for determining the presence and severity of acinar cell loss and aid in diagnosing CP. Given that the parenchymal changes of CP precede the ductal involvement, there would be a significant benefit from developing a new MRI/MRCP based, more robust diagnostic criteria combining ductal and parenchymal findings.
Collapse
Affiliation(s)
- Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Suite 0663, Indianapolis, IN, 46202, USA
| |
Collapse
|
3
|
Serai SD, Robson MD, Tirkes T, Trout AT. T 1 Mapping of the Abdomen, From the AJR "How We Do It" Special Series. AJR Am J Roentgenol 2024. [PMID: 39194308 DOI: 10.2214/ajr.24.31643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
By exploiting different tissues' characteristic T1 relaxation times, T1-weighted images help distinguish normal and abnormal tissues, aiding assessment of diffuse and local pathologies. However, such images do not provide quantitative T1 values. Advances in abdominal MRI techniques have enabled measurement of abdominal organs' T1 relaxation times, which can be used to create color-coded quantitative maps. T1 mapping is sensitive to tissue microenvironments including inflammation and fibrosis and has received substantial interest for noninvasive imaging of abdominal organ pathology. In particular, quantitative mapping provides a powerful tool for evaluation of diffuse disease by making apparent changes in T1 occurring across organs that may otherwise be difficult to identify. Quantitative measurement also facilitates sensitive monitoring of longitudinal T1 changes. Increased T1 in liver helps to predict parenchymal fibro-inflammation, in pancreas is associated with reduced exocrine function from chronic or autoimmune pancreatitis, and in kidney is associated with impaired renal function and aids diagnosis of chronic kidney disease. In this review, we describe the acquisition, postprocessing, and analysis of T1 maps in the abdomen and explore applications in liver, spleen, pancreas, and kidney. We highlight practical aspects of implementation and standardization, technical pitfalls and confounding factors, and areas of likely greatest clinical impact.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
4
|
Chaika M, Brendel JM, Ursprung S, Herrmann J, Gassenmaier S, Brendlin A, Werner S, Nickel MD, Nikolaou K, Afat S, Almansour H. Deep Learning Reconstruction of Prospectively Accelerated MRI of the Pancreas: Clinical Evaluation of Shortened Breath-Hold Examinations With Dixon Fat Suppression. Invest Radiol 2024:00004424-990000000-00235. [PMID: 39043213 DOI: 10.1097/rli.0000000000001110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVE Deep learning (DL)-enabled magnetic resonance imaging (MRI) reconstructions can enable shortening of breath-hold examinations and improve image quality by reducing motion artifacts. Prospective studies with DL reconstructions of accelerated MRI of the upper abdomen in the context of pancreatic pathologies are lacking. In a clinical setting, the purpose of this study is to investigate the performance of a novel DL-based reconstruction algorithm in T1-weighted volumetric interpolated breath-hold examinations with partial Fourier sampling and Dixon fat suppression (hereafter, VIBE-DixonDL). The objective is to analyze its impact on acquisition time, image sharpness and quality, diagnostic confidence, pancreatic lesion conspicuity, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). METHODS This prospective single-center study included participants with various pancreatic pathologies who gave written consent from January 2023 to September 2023. During the same session, each participant underwent 2 MRI acquisitions using a 1.5 T scanner: conventional precontrast and postcontrast T1-weighted VIBE acquisitions with Dixon fat suppression (VIBE-Dixon, reference standard) using 4-fold parallel imaging acceleration and 6-fold accelerated VIBE-Dixon acquisitions with partial Fourier sampling utilizing a novel DL reconstruction tailored to the acquisition. A qualitative image analysis was performed by 4 readers. Acquisition time, image sharpness, overall image quality, image noise and artifacts, diagnostic confidence, as well as pancreatic lesion conspicuity and size were compared. Furthermore, a quantitative analysis of SNR and CNR was performed. RESULTS Thirty-two participants were evaluated (mean age ± SD, 62 ± 19 years; 20 men). The VIBE-DixonDL method enabled up to 52% reduction in average breath-hold time (7 seconds for VIBE-DixonDL vs 15 seconds for VIBE-Dixon, P < 0.001). A significant improvement of image sharpness, overall image quality, diagnostic confidence, and pancreatic lesion conspicuity was observed in the images recorded using VIBE-DixonDL (P < 0.001). Furthermore, a significant reduction of image noise and motion artifacts was noted in the images recorded using the VIBE-DixonDL technique (P < 0.001). In addition, for all readers, there was no evidence of a difference in lesion size measurement between VIBE-Dixon and VIBE-DixonDL. Interreader agreement between VIBE-Dixon and VIBE-DixonDL regarding lesion size was excellent (intraclass correlation coefficient, >90). Finally, a statistically significant increase of pancreatic SNR in VIBE-DIXONDL was observed in both the precontrast (P = 0.025) and postcontrast images (P < 0.001). Also, an increase of splenic SNR in VIBE-DIXONDL was observed in both the precontrast and postcontrast images, but only reaching statistical significance in the postcontrast images (P = 0.34 and P = 0.003, respectively). Similarly, an increase of pancreas CNR in VIBE-DIXONDL was observed in both the precontrast and postcontrast images, but only reaching statistical significance in the postcontrast images (P = 0.557 and P = 0.026, respectively). CONCLUSIONS The prospectively accelerated, DL-enhanced VIBE with Dixon fat suppression was clinically feasible. It enabled a 52% reduction in breath-hold time and provided superior image quality, diagnostic confidence, and pancreatic lesion conspicuity. This technique might be especially useful for patients with limited breath-hold capacity.
Collapse
Affiliation(s)
- Marianna Chaika
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tübingen University Hospital, Tübingen, Germany (M.C., J.M.B., S.U., J.H., S.G., A.B., S.W., K.N., S.A., H.A.); MR Application Predevelopment, Siemens Healthineers AG, Forchheim, Germany (M.D.N.); and Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor, Therapies," University of Tübingen, Tübingen, Germany (K.N.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Beleù A, Canonico D, Morana G. T1 and T2-mapping in pancreatic MRI: Current evidence and future perspectives. Eur J Radiol Open 2024; 12:100572. [PMID: 38872711 PMCID: PMC11170358 DOI: 10.1016/j.ejro.2024.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Conventional T1- and T2-weighted magnetic resonance imaging (MRI) of the pancreas can vary significantly due to factors such as scanner differences and pulse sequence variations. This review explores T1 and T2 mapping techniques, modern MRI methods providing quantitative information about tissue relaxation times. Various T1 and T2 mapping pulse sequences are currently under investigation. Clinical and research applications of T1 and T2 mapping in the pancreas include their correlation with fibrosis, inflammation, and neoplasms. In chronic pancreatitis, T1 mapping and extracellular volume (ECV) quantification demonstrate potential as biomarkers, aiding in early diagnosis and classification. T1 mapping also shows promise in evaluating pancreatic exocrine function and detecting glucose metabolism disorders. T2* mapping is valuable in quantifying pancreatic iron, offering insights into conditions like thalassemia major. However, challenges persist, such as the lack of consensus on optimal sequences and normal values for healthy pancreas relaxometry. Large-scale studies are needed for validation, and improvements in mapping sequences are essential for widespread clinical integration. The future holds potential for mixed qualitative and quantitative models, extending the applications of relaxometry techniques to various pancreatic lesions and enhancing routine MRI protocols for pancreatic pathology diagnosis and prognosis.
Collapse
Affiliation(s)
- Alessandro Beleù
- Department of Radiology, Treviso General Hospital, Piazzale Ospedale 1, Treviso, TV 31100, Italy
| | - Davide Canonico
- Department of Health Physics, Treviso General Hospital, Piazzale Ospedale 1, Treviso, TV 31100, Italy
| | - Giovanni Morana
- Department of Radiology, Treviso General Hospital, Piazzale Ospedale 1, Treviso, TV 31100, Italy
| |
Collapse
|
6
|
Koç U, Taydaş O. Evaluation of pancreatic steatosis prevalence and anthropometric measurements using non-contrast computed tomography. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:640-648. [PMID: 33090101 DOI: 10.5152/tjg.2020.19434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Pancreatic steatosis (PS) is a subject of current interest and its prevalence has been reported to range from 16.1% to 30.7% using various radiological methods. This study aimed to evaluate PS prevalence with non-contrast computed tomography (CT). MATERIALS AND METHODS The non-contrast CT scans taken in 2016 and 2017 in our hospital were retrospectively screened. A total of 637 cases (320 males, 317 females) were included in the study. CT number measurements were performed from three anatomic regions of the pancreas using regions of interest (ROI) of approximately 1 cm2. The cases with a <0.7 ratio of the pancreatic over splenic CT number were accepted as quantitatively steatosis-positive. Anthropometric evaluations were undertaken by determining various parameters defined on CT. RESULTS PS was determined visually in 30.6% of the males and 29% of the females, and quantitatively in 32.8% and 30.6%, respectively. A positive agreement was determined between the quantitative and visual evaluations of steatosis (Cohen's kappa coefficient=0.587, p<0.001). Although PS was seen to be mostly diffuse, the tail region of the pancreas was determined to be the area with most steatosis. CONCLUSION PS is usually overlooked in radiology practice but it has a clinical presentation with non-insignificant prevalence. Current radiological methods are adequate in the evaluation of PS. The determination of the cut-off values for various criteria on non-contrast CT can provide more objective evaluations.
Collapse
Affiliation(s)
- Ural Koç
- Department of Radiology, Erzincan Mengucek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Onur Taydaş
- Department of Radiology, Erzincan Mengucek Gazi Training and Research Hospital, Erzincan, Turkey
| |
Collapse
|
7
|
Streicher SA, Lim U, Park SL, Li Y, Sheng X, Hom V, Xia L, Pooler L, Shepherd J, Loo LWM, Darst BF, Highland HM, Polfus LM, Bogumil D, Ernst T, Buchthal S, Franke AA, Setiawan VW, Tiirikainen M, Wilkens LR, Haiman CA, Stram DO, Cheng I, Le Marchand L. Genome-wide association study of pancreatic fat: The Multiethnic Cohort Adiposity Phenotype Study. PLoS One 2021; 16:e0249615. [PMID: 34329319 PMCID: PMC8323875 DOI: 10.1371/journal.pone.0249615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 01/26/2023] Open
Abstract
Several studies have found associations between higher pancreatic fat content and adverse health outcomes, such as diabetes and the metabolic syndrome, but investigations into the genetic contributions to pancreatic fat are limited. This genome-wide association study, comprised of 804 participants with MRI-assessed pancreatic fat measurements, was conducted in the ethnically diverse Multiethnic Cohort-Adiposity Phenotype Study (MEC-APS). Two genetic variants reaching genome-wide significance, rs73449607 on chromosome 13q21.2 (Beta = -0.67, P = 4.50x10-8) and rs7996760 on chromosome 6q14 (Beta = -0.90, P = 4.91x10-8) were associated with percent pancreatic fat on the log scale. Rs73449607 was most common in the African American population (13%) and rs79967607 was most common in the European American population (6%). Rs73449607 was also associated with lower risk of type 2 diabetes (OR = 0.95, 95% CI = 0.89-1.00, P = 0.047) in the Population Architecture Genomics and Epidemiology (PAGE) Study and the DIAbetes Genetics Replication and Meta-analysis (DIAGRAM), which included substantial numbers of non-European ancestry participants (53,102 cases and 193,679 controls). Rs73449607 is located in an intergenic region between GSX1 and PLUTO, and rs79967607 is in intron 1 of EPM2A. PLUTO, a lncRNA, regulates transcription of an adjacent gene, PDX1, that controls beta-cell function in the mature pancreas, and EPM2A encodes the protein laforin, which plays a critical role in regulating glycogen production. If validated, these variants may suggest a genetic component for pancreatic fat and a common etiologic link between pancreatic fat and type 2 diabetes.
Collapse
Affiliation(s)
- Samantha A. Streicher
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Unhee Lim
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - S. Lani Park
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Yuqing Li
- Department of Epidemiology and Biostatistics, University of California – San Francisco, San Francisco, California, United States of America
| | - Xin Sheng
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Victor Hom
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lucy Xia
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loreall Pooler
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - John Shepherd
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Lenora W. M. Loo
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Burcu F. Darst
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Heather M. Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Linda M. Polfus
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - David Bogumil
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Thomas Ernst
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven Buchthal
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Adrian A. Franke
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Veronica Wendy Setiawan
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Maarit Tiirikainen
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Lynne R. Wilkens
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Daniel O. Stram
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California – San Francisco, San Francisco, California, United States of America
| | - Loïc Le Marchand
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
8
|
Baleato-González S, García-Figueiras R, Junquera-Olay S, Canedo-Antelo M, Casas-Martínez J. Imaging acute pancreatitis. RADIOLOGIA 2021. [DOI: 10.1016/j.rxeng.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Imaging acute pancreatitis. RADIOLOGIA 2021; 63:145-158. [PMID: 33402267 DOI: 10.1016/j.rx.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Acute pancreatitis is common; the clinical course of this potentially severe condition varies widely. This paper aims to review the role of different imaging techniques in the management of acute pancreatitis, describe the main imaging findings for this entity, and explain the terms and criteria used to classify them. CONCLUSIONS Imaging techniques play a key role in the management of acute pancreatitis, from diagnosis and staging to identifying and treating complications, as well as in determining the underlying causes of the condition. For these reasons, radiologists should know the advantages and limitations of each imaging technique in the evaluation of acute pancreatitis, be familiar with the wide spectrum of imaging findings associated with it, and how to use the specific terminology derived from the Atlanta classification to ensure the standardization and quality of reports.
Collapse
|
10
|
Cervelli R, Cencini M, Buonincontri G, Campana F, Cacciato Insilla A, Aringhieri G, De Simone P, Boggi U, Campani D, Tosetti M, Crocetti L. 7-T MRI of explanted liver and ex-vivo pancreatic specimens: prospective study protocol of radiological-pathological correlation feasibility (the EXLIPSE project). Eur Radiol Exp 2020; 4:58. [PMID: 33057851 PMCID: PMC7560686 DOI: 10.1186/s41747-020-00185-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
The study focuses on radiological-pathological correlation between imaging of ex vivo samples obtained by a 7-T scanner and histological examination. The specimens will be derived from native explanted cirrhotic livers, liver grafts excluded from donation because of severe steatosis, and primary pancreatic tumours. Magnetic resonance imaging (MRI) examinations will be performed within 24 h from liver or pancreatic lesion surgical removal. The MRI protocol will include morphological sequences, quantitative T1, T2, and fat-, water-fraction maps with Cartesian k-space acquisition, and multiparametric methods based on a transient-state “MRI fingerprinting”. Finally, the specimen will be fixed by formalin. Qualitative imaging analysis will be performed by two independent blinded radiologists to assess image consistency score. Quantitative analysis will be performed by drawing regions of interest on different tissue zones to measure T1 and T2 relaxation times as well as fat- and water-fraction. The same tissue areas will be analysed by the pathologists. This study will provide the possibility to improve our knowledge about qualitative and quantitative abdominal imaging assessment at 7 T, by correlating imaging characteristics and the corresponding histological composition of ex vivo specimens, in order to identify imaging biomarkers. Trial registration: ClinicalTrials.gov: 13646. Registered 9 July 2019—retrospectively registered
Collapse
Affiliation(s)
- Rosa Cervelli
- Division of Diagnostic and Interventional Radiology, University of Pisa, Via Paradisa, 2 - Cisanello Hospital, 56100, Pisa, Italy
| | | | | | - Francesco Campana
- Division of Diagnostic and Interventional Radiology, University of Pisa, Via Paradisa, 2 - Cisanello Hospital, 56100, Pisa, Italy
| | | | - Giacomo Aringhieri
- Division of Diagnostic and Interventional Radiology, University of Pisa, Via Paradisa, 2 - Cisanello Hospital, 56100, Pisa, Italy
| | - Paolo De Simone
- Division of Hepatic Surgery and Liver Transplant, University of Pisa, Pisa, Italy
| | - Ugo Boggi
- Division of General and Transplant and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Laura Crocetti
- Division of Diagnostic and Interventional Radiology, University of Pisa, Via Paradisa, 2 - Cisanello Hospital, 56100, Pisa, Italy.
| |
Collapse
|
11
|
Koç U, Ocakoğlu G, Alğin O. The efficacy of the 3-dimensional vibe-caipirinha-dixon technique in the evaluation of pancreatic steatosis. Turk J Med Sci 2020; 50:184-194. [PMID: 31865664 PMCID: PMC7080364 DOI: 10.3906/sag-1909-83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background/aim CAIPIRINHA is a new technique in abdominal imaging. Pancreatic steatosis (PS) is a subject of increasing scientific interest. The aim of this study was to investigate the efficacy of the isotropic 3D-VIBE- CAIPIRINHA -DIXON technique on a new generation 3-tesla MR unit in the evaluation of PS. Materials and methods In this retrospective study, the imaging findings of 49 patients with PS and 41 control subjects were examined. The pancreas-to-spleen ratio (PSR), pancreas-to-muscle ratio (PMR), and pancreatic signal intensity index (PSII) were defined as 3 new parameters and these indexes were calculated from the in-phase/out of phase 3D-VIBE- CAIPIRINHA-DIXON images. Results The PSR, PMR, and PSII values were significantly different between the patient and control groups (P = 0.001, P = 0.009, P < 0.001, respectively). Statistically significant differences were observed between patient and control groups for ROI measurements of fatty areas on these sequences/images: subtraction (in-out) (P < 0.001), T2W HASTE (P < 0.001), DIXON-fat (P < 0.001), fat-suppressed T1W (P = 0.002), and subtraction (out-in) (P = 0.010). Conclusion Evaluation of PS with the 3D-VIBE-CAIPIRINHA-DIXON technique can be made rapidly and effectively.
Collapse
Affiliation(s)
- Ural Koç
- Section of Radiology, Ankara Sehit Ahmet Ozsoy State Hospital, Ankara, Turkey
| | - Gökhan Ocakoğlu
- Department of Biostatistics, School of Medicine, Uludag University, Bursa, Turkey
| | - Oktay Alğin
- Department of Radiology, School of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|