1
|
Guo Y, Canton G, Geleri DB, Balu N, Sun J, Kharaji M, Zanaty N, Wang X, Zhang K, Tirschwell D, Hatsukami TS, Yuan C, Mossa-Basha M. Plaque Evolution and Vessel Wall Remodeling of Intracranial Arteries: A Prospective, Longitudinal Vessel Wall MRI Study. J Magn Reson Imaging 2024; 60:889-899. [PMID: 38131254 PMCID: PMC11192854 DOI: 10.1002/jmri.29185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Progression of intracranial atherosclerotic disease (ICAD) is associated with ischemic stroke events and can be quantified with three-dimensional (3D) intracranial vessel wall (IVW) MRI. However, longitudinal 3D IVW studies are limited and ICAD evolution remains relatively unknown. PURPOSE To evaluate ICAD changes longitudinally and to characterize the imaging patterns of atherosclerotic plaque evolution. STUDY TYPE Prospective. POPULATION 37 patients (69 ± 12 years old, 12 females) with angiography confirmed ICAD. FIELD STRENGTH/SEQUENCE 3.0T/3D time-of-flight gradient echo sequence and T1- and proton density-weighted fast spin echo sequences. ASSESSMENT Each patient underwent baseline and 1-year follow-up IVW. Then, IVW data from both time points were jointly preprocessed using a multitime point, multicontrast, and multiplanar viewing workflow (known as MOCHA). Lumen and outer wall of plaques were traced and measured, and plaques were then categorized into progression, stable, and regression groups based on changes in plaque wall thickness. Patient demographic and clinical data were collected. Culprit plaques were identified based on cerebral ischemic infarcts. STATISTICAL TESTS Generalized estimating equations-based linear and logistic regressions were used to assess associations between vascular risk factors, medications, luminal stenosis, IVW plaque imaging features, and longitudinal changes. A two-sided P-value<0.05 was considered statistically significant. RESULTS Diabetes was significantly associated with ICAD progression, resulting in 6.6% decrease in lumen area and 6.7% increase in wall thickness at 1-year follow-up. After accounting for arterial segments, baseline contrast enhancement predicted plaque progression (odds ratio = 3.61). Culprit plaques experienced an average luminal expansion of 10.9% after 1 year. 74% of the plaques remained stable during follow-up. The regression group (18 plaques) showed significant increase in minimum lumen area (from 7.4 to 8.3 mm2), while the progression group (13 plaques) showed significant decrease in minimum lumen area (from 5.4 to 4.3 mm2). DATA CONCLUSION Longitudinal 3D IVW showed ICAD remodeling on the lumen side. Culprit plaques demonstrated longitudinal luminal expansion compared with their non-culprit counterparts. Baseline plaque contrast enhancement and diabetes mellitus were found to be significantly associated with ICAD changes. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yin Guo
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Gador Canton
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Duygu Baylam Geleri
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jie Sun
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Mona Kharaji
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Nadin Zanaty
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Radiology, Zagazig University, Egypt
| | - Xin Wang
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Kaiyu Zhang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - David Tirschwell
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas S. Hatsukami
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Radiology and Imaging Science, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Abstract
Cryptogenic strokes are symptomatic cerebral ischemic infarcts without a clear etiology identified following standard diagnostic evaluation and currently account for 10% to 40% of stroke cases. Continued research is needed to identify and bridge gaps in knowledge of this stroke grouping. Vessel wall imaging has increasingly shown its utility in the diagnosis and characterization of various vasculopathies. Initial promising evidence suggests rational use of vessel wall imaging in stroke workup may unravel pathologies that otherwise would have been occult and further improve our understanding of underlying disease processes that can translate into improved patient outcomes and secondary stroke prevention.
Collapse
Affiliation(s)
- Bhagya Sannananja
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Road Northeast Suite BG20, Atlanta, GA 30322, USA
| | - Chengcheng Zhu
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Diab R, Chang D, Zhu C, Levitt MR, Aksakal M, Zhao HL, Huynh TJ, Romero-Sanchez G, Mossa-Basha M. Advanced cross-sectional imaging of cerebral aneurysms. Br J Radiol 2023; 96:20220686. [PMID: 36400095 PMCID: PMC10997029 DOI: 10.1259/bjr.20220686] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
While the rupture rate of cerebral aneurysms is only 1% per year, ruptured aneurysms are associated with significant morbidity and mortality, while aneurysm treatments have their own associated risk of morbidity and mortality. Conventional markers for aneurysm rupture include patient-specific and aneurysm-specific characteristics, with the development of scoring systems to better assess rupture risk. These scores, however, rely heavily on aneurysm size, and their accuracy in assessing risk in smaller aneurysms is limited. While the individual risk of rupture of small aneurysms is low, due to their sheer number, the largest proportion of ruptured aneurysms are small aneurysms. Conventional imaging techniques are valuable in characterizing aneurysm morphology; however, advanced imaging techniques assessing the presence of inflammatory changes within the aneurysm wall, hemodynamic characteristics of blood flow within aneurysm sacs, and imaging visualization of irregular aneurysm wall motion have been used to further determine aneurysm instability that otherwise cannot be characterized by conventional imaging techniques. The current manuscript reviews conventional imaging techniques and their value and limitations in cerebral aneurysm characterization, and evaluates the applications, value and limitations of advanced aneurysm imaging and post-processing techniques including intracranial vessel wall MRA, 4D-flow, 4D-CTA, and computational fluid dynamic simulations.
Collapse
Affiliation(s)
- Rawan Diab
- American University of Beirut School of
Medicine, Beirut, Lebanon
| | - Dandan Chang
- Department of Radiology, University of
Washington, Seattle, United States
| | - Chengcheng Zhu
- Department of Radiology, University of
Washington, Seattle, United States
| | | | - Mehmet Aksakal
- Department of Radiology, University of
Washington, Seattle, United States
| | - Hui-Lin Zhao
- Deparment of Radiology, Renji Hospital,
Shanghai, China
| | - Thien J. Huynh
- Department of Radiology, Mayo
Clinic-Jacksonville, Jacksonville, United States
| | - Griselda Romero-Sanchez
- Department of Radiology, Instituto Nacional de Ciencias
Medicas y Nutricion Salvador Zubiran, Mexico City,
Mexico
| | | |
Collapse
|
4
|
Sarrami AH, Bass DI, Rutman AM, Alexander MD, Aksakal M, Zhu C, Levitt MR, Mossa-Basha M. Idiopathic intracranial hypertension imaging approaches and the implications in patient management. Br J Radiol 2022; 95:20220136. [PMID: 35522777 PMCID: PMC10162046 DOI: 10.1259/bjr.20220136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
Abstract
Idiopathic intracranial hypertension (IIH) represents a clinical disease entity without a clear etiology, that if left untreated, can result in severe outcomes, including permanent vision loss. For this reason, early diagnosis and treatment is necessary. Historically, the role of cross-sectional imaging has been to rule out secondary or emergent causes of increased intracranial pressure, including tumor, infection, hydrocephalus, or venous thrombosis. MRI and MRV, however, can serve as valuable imaging tools to not only rule out causes for secondary intracranial hypertension but can also detect indirect signs of IIH resultant from increased intracranial pressure, and demonstrate potentially treatable sinus venous stenosis. Digital subtraction venographic imaging also plays a central role in both diagnosis and treatment, providing enhanced anatomic delineation and temporal flow evaluation, quantitative assessment of the pressure gradient across a venous stenosis, treatment guidance, and immediate opportunity for endovascular therapy. In this review, we discuss the multiple modalities for imaging IIH, their limitations, and their contributions to the management of IIH.
Collapse
Affiliation(s)
- Amir Hossein Sarrami
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - David I. Bass
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Matthew D Alexander
- Department of Radiology, University of Utah, Salt Lake City, Utah, United States
| | - Mehmet Aksakal
- Department of Radiology, University of Washington, Seattle, United States
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, United States
| | | | | |
Collapse
|
5
|
Sundermann B, Billebaut B, Bauer J, Iacoban CG, Alykova O, Schülke C, Gerdes M, Kugel H, Neduvakkattu S, Bösenberg H, Mathys C. Practical Aspects of novel MRI Techniques in Neuroradiology: Part 2 - Acceleration Methods and Implications for Individual Regions. ROFO-FORTSCHR RONTG 2022; 194:1195-1203. [PMID: 35798335 DOI: 10.1055/a-1800-8789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Recently introduced MRI techniques facilitate accelerated examinations or increased resolution with the same duration. Further techniques offer homogeneous image quality in regions with anatomical transitions. The question arises whether and how these techniques can be adopted for routine diagnostic imaging. METHODS Narrative review with an educational focus based on current literature research and practical experiences of different professions involved (physicians, MRI technologists/radiographers, physics/biomedical engineering). Different hardware manufacturers are considered. RESULTS AND CONCLUSIONS Compressed sensing and simultaneous multi-slice imaging are novel acceleration techniques with different yet complimentary applications. They do not suffer from classical signal-to-noise-ratio penalties. Combining 3 D and acceleration techniques facilitates new broader examination protocols, particularly for clinical brain imaging. In further regions of the nervous systems mainly specific applications appear to benefit from recent technological improvements. KEY POINTS · New acceleration techniques allow for faster or higher resolution examinations.. · New brain imaging approaches have evolved, including more universal examination protocols.. · Other regions of the nervous system are dominated by targeted applications of recently introduced MRI techniques.. CITATION FORMAT · Sundermann B, Billebaut B, Bauer J et al. Practical Aspects of novel MRI Techniques in Neuroradiology: Part 2 - Acceleration Methods and Implications for Individual Regions. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1800-8789.
Collapse
Affiliation(s)
- Benedikt Sundermann
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Germany.,Clinic for Radiology, University Hospital Münster, Germany
| | - Benoit Billebaut
- Clinic for Radiology, University Hospital Münster, Germany.,School for Radiologic Technologists, University Hospital Münster, Germany
| | - Jochen Bauer
- Clinic for Radiology, University Hospital Münster, Germany
| | - Catalin George Iacoban
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | - Olga Alykova
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | | | - Maike Gerdes
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | - Harald Kugel
- Clinic for Radiology, University Hospital Münster, Germany
| | | | - Holger Bösenberg
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Germany.,Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Germany
| |
Collapse
|
6
|
Mossa-Basha M, Zhu C, Yuan C, Saba L, Saloner DA, Edjlali M, Stence NV, Mandell DM, Romero JM, Qiao Y, Mikulis DJ, Wasserman BA. Survey of the American Society of Neuroradiology Membership on the Use and Value of Intracranial Vessel Wall MRI. AJNR Am J Neuroradiol 2022; 43:951-957. [PMID: 35710122 DOI: 10.3174/ajnr.a7541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Intracranial vessel wall MR imaging is an emerging technique for intracranial vasculopathy assessment. Our aim was to investigate intracranial vessel wall MR imaging use by the American Society of Neuroradiology (ASNR) members at their home institutions, including indications and barriers to implementation. MATERIALS AND METHODS The ASNR Vessel Wall Imaging Study Group survey on vessel wall MR imaging use, frequency, applications, MR imaging systems and field strength used, protocol development approaches, vendor engagement, reasons for not using vessel wall MR imaging, ordering-provider interest, and impact on clinical care, was distributed to the ASNR membership between April 2 and August 30, 2019. RESULTS There were 532 responses; 79 were excluded due to nonresponse and 42 due to redundant institutional responses, leaving 411 responses. Fifty-two percent indicated that their institution performs vessel wall MR imaging, with 71.5% performed at least 1-2 times/month, most frequently on 3T MR imaging, and 87.7% using 3D sequences. Protocols most commonly included were T1-weighted pre- and postcontrast and TOF-MRA; 60.6% had limited contributions from vendors or were still in protocol development. Vasculopathy differentiation (94.4%), cryptogenic stroke (41.3%), aneurysm (38.0%), and atherosclerosis (37.6%) evaluation were the most common indications. For those not performing vessel wall MR imaging, interpretation (53.1%) or technical (46.4%) expertise, knowledge of applications (50.5%), or limitations of clinician (56.7%) or radiologist (49.0%) interest were the most common reasons. If technical/expertise obstacles were overcome, 56.4% of those not performing vessel wall MR imaging indicated that they would perform it. Ordering providers most frequently inquiring about vessel wall MR imaging were from stroke neurology (56.5%) and neurosurgery (25.1%), while 34.3% indicated that no providers had inquired. CONCLUSIONS More than 50% of neuroradiology groups use vessel wall MR imaging for intracranial vasculopathy characterization and differentiation, emphasizing the need for additional technical and educational support, especially as clinical vessel wall MR imaging implementation continues to grow.
Collapse
Affiliation(s)
- M Mossa-Basha
- From the Department of Radiology (M.M.-B.), University of North Carolina, Chapel Hill, North Carolina .,Department of Radiology (M.M.-B., C.Z.), University of Washington, Seattle, Washington
| | - C Zhu
- Department of Radiology (M.M.-B., C.Z.), University of Washington, Seattle, Washington
| | - C Yuan
- Department of Radiology (C.Y.), University of Utah, Salt Lake City, Utah
| | - L Saba
- University of Cagliari (L.S.), Cagliari, Sardinia, Italy
| | - D A Saloner
- Department of Radiology and Biomedical Imaging (D.A.S.), University of California San Francisco, San Francisco, California
| | - M Edjlali
- Department of Radiology (M.E.), AP-HP, Laboratoire d'imagerie Biomédicale Multimodale (BioMaps), Paris-Saclay University, Paris, France
| | - N V Stence
- Department of Radiology (N.V.S.), Children's Hospital of Colorado, Aurora, Colorado
| | - D M Mandell
- Joint Department of Medical Imaging (D.M.M., D.J.M.), University Health Network, Toronto, Ontario, Canada
| | - J M Romero
- Department of Radiology (J.M.R.), Massachusetts General Hospital, Boston, Massachusetts
| | - Y Qiao
- Department of Radiology (Y.Q., B.A.W.), Johns Hopkins University, Baltimore, Maryland
| | - D J Mikulis
- Joint Department of Medical Imaging (D.M.M., D.J.M.), University Health Network, Toronto, Ontario, Canada
| | - B A Wasserman
- Department of Radiology (Y.Q., B.A.W.), Johns Hopkins University, Baltimore, Maryland.,Department of Radiology (B.A.W.), University of Maryland, Baltimore, Maryland
| |
Collapse
|
7
|
Guo Y, Canton G, Chen L, Sun J, Geleri DB, Balu N, Xu D, Mossa-Basha M, Hatsukami TS, Yuan C. Multi-Planar, Multi-Contrast and Multi-Time Point Analysis Tool (MOCHA) for Intracranial Vessel Wall Characterization. J Magn Reson Imaging 2022; 56:944-955. [PMID: 35099091 DOI: 10.1002/jmri.28087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) intracranial vessel wall (IVW) magnetic resonance imaging can reliably image intracranial atherosclerotic disease (ICAD). However, an integrated, streamlined, and optimized workflow for IVW analysis to provide qualitative and quantitative measurements is lacking. PURPOSE To propose and evaluate an image analysis pipeline (MOCHA) that can register multicontrast and multitime point 3D IVW for multiplanar review and quantitative plaque characterization. STUDY TYPE Retrospective. POPULATION A total of 11 subjects with ICAD (68 ± 10 years old, 6 males). FIELD STRENGTH/SEQUENCE A 3.0 T, 3D time-of-flight gradient echo sequence and T1- and proton density-weighted fast spin echo sequences. ASSESSMENT Each participant underwent two IVW sessions within 2 weeks. Scan and rescan IVW images were preprocessed using MOCHA. The presence of atherosclerotic lesions was identified in different intracranial arterial segments by two readers (GC and JS, 12 years of vascular MR imaging experience each) following an established review protocol to reach consensus on each of the reviews. For all locations with identified plaques, plaque length, lumen and vessel wall areas, maximum and mean wall thickness values, normalized wall index and contrast enhancement ratio were measured. STATISTICAL TESTS Percent agreement and Cohen's κ were used to test scan-rescan reproducibility of detecting plaques using MOCHA. Intraclass correlation coefficient (ICC) and Bland-Altman analysis were used to evaluate scan-rescan reproducibility for plaque morphologic and enhancement measurements. RESULTS In 150 paired intracranial vessel segments, the overall agreement in plaque detection was 92.7% (κ = 0.822). The ICCs (all ICCs > 0.90) and Bland-Altman plots (no bias observed) indicated excellent scan-rescan reproducibility for all morphologic and enhancement measurements. DATA CONCLUSION Findings from this study demonstrate that MOCHA provides high scan-rescan reproducibility for identification and quantification of atherosclerosis along multiple intracranial arterial segments and highlight its potential use in characterizing plaque composition and monitoring plaque development. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yin Guo
- Department of Bioengineering, University of Washington, Seattle, Washington, 98109, USA
| | - Gador Canton
- Department of Radiology, University of Washington, Seattle, Washington, 98109, USA
| | - Li Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, 98109, USA
| | - Jie Sun
- Department of Radiology, University of Washington, Seattle, Washington, 98109, USA
| | - Duygu Baylam Geleri
- Department of Radiology, University of Washington, Seattle, Washington, 98109, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, Washington, 98109, USA
| | - Dongxiang Xu
- Department of Radiology, University of Washington, Seattle, Washington, 98109, USA
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington, Seattle, Washington, 98109, USA
| | - Thomas S Hatsukami
- Department of Surgery, University of Washington, Seattle, Washington, 98109, USA
| | - Chun Yuan
- Department of Bioengineering, University of Washington, Seattle, Washington, 98109, USA.,Department of Radiology, University of Washington, Seattle, Washington, 98109, USA
| |
Collapse
|
8
|
Frankhouser DE, Dietze E, Mahabal A, Seewaldt VL. Vascularity and Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging. FRONTIERS IN RADIOLOGY 2021; 1:735567. [PMID: 37492179 PMCID: PMC10364989 DOI: 10.3389/fradi.2021.735567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/11/2021] [Indexed: 07/27/2023]
Abstract
Angiogenesis is a key step in the initiation and progression of an invasive breast cancer. High microvessel density by morphological characterization predicts metastasis and poor survival in women with invasive breast cancers. However, morphologic characterization is subject to variability and only can evaluate a limited portion of an invasive breast cancer. Consequently, breast Magnetic Resonance Imaging (MRI) is currently being evaluated to assess vascularity. Recently, through the new field of radiomics, dynamic contrast enhanced (DCE)-MRI is being used to evaluate vascular density, vascular morphology, and detection of aggressive breast cancer biology. While DCE-MRI is a highly sensitive tool, there are specific features that limit computational evaluation of blood vessels. These include (1) DCE-MRI evaluates gadolinium contrast and does not directly evaluate biology, (2) the resolution of DCE-MRI is insufficient for imaging small blood vessels, and (3) DCE-MRI images are very difficult to co-register. Here we review computational approaches for detection and analysis of blood vessels in DCE-MRI images and present some of the strategies we have developed for co-registry of DCE-MRI images and early detection of vascularization.
Collapse
Affiliation(s)
- David E. Frankhouser
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Eric Dietze
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Ashish Mahabal
- Department of Astronomy, Division of Physics, Mathematics, and Astronomy, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Victoria L. Seewaldt
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
9
|
Mossa-Basha M, Zhu C, Wu L. Vessel Wall MR Imaging in the Pediatric Head and Neck. Magn Reson Imaging Clin N Am 2021; 29:595-604. [PMID: 34717847 DOI: 10.1016/j.mric.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vessel wall MR imaging (VWI) is a technique that progressively has gained traction in clinical diagnostic applications for evaluation of intracranial and extracranial vasculopathies, with increasing use in pediatric populations. The technique has shown promise in detection, differentiation, and characterization of both inflammatory and noninflammatory vasculopathies. In this article, optimal techniques for intracranial and extracranial VWI as well as applications and value for pediatric vascular disease evaluation are discussed.
Collapse
Affiliation(s)
- Mahmud Mossa-Basha
- Department of Radiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, 325 9th Avenue, Seattle, WA 98104, USA
| | - Lei Wu
- Department of Radiology, University of Washington, 1660 South Columbian Way, Seattle, WA 98108, USA
| |
Collapse
|
10
|
Li X, Sun B, Wang L, Zhang J, Zhang J, Zhao Z, Wu H, Liu X, Zhou Y, Mossa-Basha M, Tirschwell DL, Xu J, Zhao H, Zhu C. Association of Type 2 Diabetes Mellitus and Glycemic Control With Intracranial Plaque Characteristics in Patients With Acute Ischemic Stroke. J Magn Reson Imaging 2021; 54:655-666. [PMID: 33786939 DOI: 10.1002/jmri.27614] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has shown to be associated with carotid plaque vulnerability. However, the impact of T2DM on intracranial artery atherosclerosis is not well-understood. PURPOSE To evaluate the association of diabetes and glycemic control with intracranial atherosclerotic plaque characteristics identified by three-dimensional contrast enhanced MR vessel wall imaging in patients after acute ischemic stroke. STUDY TYPE Prospective. POPULATION Two hundred and eighty-eight symptomatic patients with acute ischemic stroke due to intracranial atherosclerotic plaque. FIELD STRENGTH/SEQUENCE T1 WI volume isotropic turbo spin-echo acquisition sequence at 3.0 T. ASSESSMENT Clinical profiles, blood biomarkers, the number of intracranial plaques, plaque enhanced score, and the features (location, luminal stenotic rate, intraplaque hemorrhage, length, burden, enhancement grade, and ratio) of culprit plaque (defined as the most stenotic lesion ipsilateral to the ischemic event) and nonculprit plaque were analyzed by three radiologists. STATISTICAL TESTS Analysis of variance (ANOVA), Shapiro-Wilk normality test, Levene's test, ANOVA with Bonferroni post-hoc test, Kruskal Wallis H test with subsequent pairwise comparisons, chi-square with Bonferroni post-hoc test, generalized linear regression, Pearson correlation test, Kendall's W and intra-class correlation coefficient. RESULTS Two hundred and twenty-five participants (age 60 ± 10 years, 58.7% male) with 958 intracranial plaques were included. More intracranial plaques were found in the T2DM group than the non-T2DM group (4.80 ± 2.22 vs. 3.60 ± 1.78, P < 0.05). Patients with poorly-controlled T2DM exhibited higher culprit plaque enhancement ratio than patients with well-controlled T2DM and non-T2DM (2.32 ± 0.61 vs. 1.60 ± 0.62 and 1.39 ± 0.39; respectively, P < 0.05). After adjusting for other clinical variables, T2DM was independently associated with increased intracranial plaque number (β = 0.269, P < 0.05), and HbA1c level was independently associated with culprit plaque enhancement ratio (β = 0.641, P < 0.05) in multivariate analysis. DATA CONCLUSION T2DM is associated with an increased intracranial plaque number. Higher HbA1c is associated with stronger plaque enhancement. 3D contrast enhanced MR vessel wall imaging may help better understand the association of T2DM and glycemic control with intracranial plaque. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Xiao Li
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Beibei Sun
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lingling Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Zhang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jianjian Zhang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zizhou Zhao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hengqu Wu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaosheng Liu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - David L Tirschwell
- Department of Neurology, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jianrong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huilin Zhao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Vranic JE, Hartman JB, Mossa-Basha M. High-Resolution Magnetic Resonance Vessel Wall Imaging for the Evaluation of Intracranial Vascular Pathology. Neuroimaging Clin N Am 2021; 31:223-233. [PMID: 33902876 DOI: 10.1016/j.nic.2021.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intracranial vessel wall imaging (IVWI) is an advanced MR imaging technique that allows for direct visualization of the walls of intracranial blood vessels and detection of subtle pathologic vessel wall changes before they become apparent on conventional luminal imaging. When performed correctly, IVWI can increase diagnostic confidence, aid in the differentiation of intracranial vasculopathies, and assist in patient risk stratification and prognostication. This review covers the essential technical underpinnings of IVWI and presents emerging clinical research highlighting its utility for the evaluation of multiple intracranial vascular pathologies.
Collapse
Affiliation(s)
- Justin E Vranic
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Gray 2, Room 273A, 55 Fruit Street, Boston, MA 02114, USA.
| | - Jason B Hartman
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, Box 357115, Seattle, WA 98195, USA
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, Box 357115, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Sarikaya B, Colip C, Hwang WD, Hippe DS, Zhu C, Sun J, Balu N, Yuan C, Mossa-Basha M. Comparison of time-of-flight MR angiography and intracranial vessel wall MRI for luminal measurements relative to CT angiography. Br J Radiol 2020; 94:20200743. [PMID: 33180559 DOI: 10.1259/bjr.20200743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To assess whether intracranial vessel wall (IVW) MRI luminal measurements are more accurate than non-contrast 3D-TOF-MRA measurements for intracranial atherosclerotic stenosis, relative to CTA. METHODS Consecutive patients with non-calcified intracranial atherosclerotic stenosis seen on CTA, who had non-contrast 3D-TOF-MRA and IVW performed between 1 January 2013 and 20 April 2014 were selected, and images with stenosis were pre-selected by a single independent rater. The pre-selected CTA, MRA, and IVW (T1-weighted) images were then reviewed by two independent raters blinded to the other measurements in random order. Measurements were made in a plane perpendicular to the lumen on each modality. MRA and IVW measurements were compared to CTA, to determine which more accurately matched the degree of stenosis. RESULTS 18 patients with 33 intracranial atherosclerotic stenoses were included. Relative to CTA, IVW had 40% less variance than MRA (p = .004). IVW had a significantly higher concordance correlation coefficient (CCC) relative to CTA than MRA (.87 vs .68, p = .002). IVW and MRA did not have significant bias relative to CTA, however, 8/33 lesions showed >20% overestimation of the degree of stenosis on MRA, compared to 1/33 for IVW. CCC between raters were 0.84 (95% CI 0.67-0.93) for CTA, 0.83 (0.67-0.93) for TOF-MRA, and 0.85 (0.71-0.94) for IVW. For stenosis >50% sensitivity was 82% for IVW and 64% for MRA, while specificity was 73% for both. CONCLUSION IVW provides more accurate stenosis measurements than MRA when compared to CTA. ADVANCES IN KNOWLEDGE Considering higher stenosis measurement accuracy of IVW, it can be more reliably used for quantitative evaluation relative to MRA.
Collapse
Affiliation(s)
- Basar Sarikaya
- Department of Radiology, University of Washington School of Medicine, Washington, SA, USA
| | - Charles Colip
- Department of Radiology, University of Washington School of Medicine, Washington, SA, USA
| | - William D Hwang
- Department of Radiology, University of Washington School of Medicine, Washington, SA, USA
| | - Daniel S Hippe
- Department of Radiology, University of Washington School of Medicine, Washington, SA, USA
| | - Chengcheng Zhu
- Department of Radiology, University of Washington School of Medicine, Washington, SA, USA
| | - Jie Sun
- Department of Radiology, University of Washington School of Medicine, Washington, SA, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington School of Medicine, Washington, SA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington School of Medicine, Washington, SA, USA
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington School of Medicine, Washington, SA, USA
| |
Collapse
|
13
|
Song JW, Pavlou A, Burke MP, Shou H, Atsina KB, Xiao J, Loevner LA, Mankoff D, Fan Z, Kasner SE. Imaging endpoints of intracranial atherosclerosis using vessel wall MR imaging: a systematic review. Neuroradiology 2020; 63:847-856. [PMID: 33029735 DOI: 10.1007/s00234-020-02575-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE The vessel wall MR imaging (VWI) literature was systematically reviewed to assess the criteria and measurement methods of VWI-related imaging endpoints for symptomatic intracranial plaque in patients with ischemic events. METHODS PubMed, Scopus, Web of Science, EMBASE, and Cochrane databases were searched up to October 2019. Two independent reviewers extracted data from 47 studies. A modified Guideline for Reporting Reliability and Agreement Studies was used to assess completeness of reporting. RESULTS The specific VWI-pulse sequence used to identify plaque was reported in 51% of studies. A VWI-based criterion to define plaque was reported in 38% of studies. A definition for culprit plaque was reported in 40% of studies. Frequently scored qualitative imaging endpoints were plaque quadrant (21%) and enhancement (21%). Frequently measured quantitative imaging endpoints were stenosis (19%), lumen area (15%), and remodeling index (14%). Reproducibility for all endpoints ranged from good to excellent (range: ICCT1 hyperintensity = 0.451 to ICCstenosis = 0.983). However, rater specialty and years of experience varied among studies. CONCLUSIONS Investigators are using different criteria to identify and measure VWI-imaging endpoints for culprit intracranial plaque. Early awareness of these differences to address methods of acquisition and measurement will help focus research resources and efforts in technique optimization and measurement reproducibility. Consensual definitions to detect plaque will be important to develop automatic lesion detection tools particularly in the era of radiomics.
Collapse
Affiliation(s)
- Jae W Song
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Athanasios Pavlou
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Morgan P Burke
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Kofi-Buaku Atsina
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Jiayu Xiao
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Laurie A Loevner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - David Mankoff
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Zhaoyang Fan
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Scott E Kasner
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Wu F, Yu H, Yang Q. Imaging of intracranial atherosclerotic plaques using 3.0 T and 7.0 T magnetic resonance imaging-current trends and future perspectives. Cardiovasc Diagn Ther 2020; 10:994-1004. [PMID: 32968656 DOI: 10.21037/cdt.2020.02.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intracranial atherosclerotic disease (ICAD) is one of the most common causes of ischemic stroke and carries a relatively high risk of stroke recurrence. Advances in high-resolution magnetic resonance imaging (HRMRI) techniques of intracranial arteries now have made it possible to directly visualize atherosclerotic plaque itself, allowing detailed assessments of plaque morphology and components. Currently available intracranial HRMRI could be performed with 2-dimensional (2D) and 3D acquisitions, and multicontrast weightings in clinically reasonable scan times. Until now, HRMRI research of ICAD has focused on the identification of plaque vulnerability, and the relationship between plaque characteristics and ischemic stroke. HRMRI at ultra-high-field strength (7.0 T) holds promise in better visualizing intracranial vessel walls, as well as identifying early lesions and total burden of ICAD. As a result, intracranial HRMRI provides great insights into pathology of intracranial atherosclerotic plaques, stroke mechanisms, and future stroke risk. In this article, we will review the technical implementation, preclinical research, clinical applications, and future directions of HRMRI for the evaluation of ICAD at 3.0 T and 7.0 T.
Collapse
Affiliation(s)
- Fang Wu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Huan Yu
- Department of Radiology, Liangxiang Teaching Hospital, Capital Medical University, Beijing 102401, China
| | - Qi Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
15
|
Song JW, Moon BF, Burke MP, Kamesh Iyer S, Elliott MA, Shou H, Messé SR, Kasner SE, Loevner LA, Schnall MD, Kirsch JE, Witschey WR, Fan Z. MR Intracranial Vessel Wall Imaging: A Systematic Review. J Neuroimaging 2020; 30:428-442. [PMID: 32391979 DOI: 10.1111/jon.12719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/22/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
The purpose of this systematic review is to identify trends and extent of variability in intracranial vessel wall MR imaging (VWI) techniques and protocols. Although variability in selection of protocol design and pulse sequence type is known, data on what and how protocols vary are unknown. Three databases were searched to identify publications using intracranial VWI. Publications were screened by predetermined inclusion/exclusion criteria. Technical development publications were scored for completeness of reporting using a modified Nature Reporting Summary Guideline to assess reproducibility. From 2,431 articles, 122 met the inclusion criteria. Trends over the last 23 years (1995-2018) show increased use of 3-Tesla MR (P < .001) and 3D volumetric T1-weighted acquisitions (P < .001). Most (65%) clinical VWI publications report achieving a noninterpolated in-plane spatial resolution of ≤.55 mm. In the last decade, an increasing number of technical development (n = 20) and 7 Tesla (n = 12) publications have been published, focused on pulse sequence development, improving cerebrospinal fluid suppression, scan efficiency, and imaging ex vivo specimen for histologic validation. Mean Reporting Summary Score for the technical development publications was high (.87, range: .63-1.0) indicating strong scientific technical reproducibility. Innovative work continues to emerge to address implementation challenges. Gradual adoption into the research and scientific community was suggested by a shift in the name in the literature from "high-resolution MR" to "vessel wall imaging," specifying diagnostic intent. Insight into current practices and identifying the extent of technical variability in the literature will help to direct future clinical and technical efforts to address needs for implementation.
Collapse
Affiliation(s)
- Jae W Song
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Brianna F Moon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Morgan P Burke
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Mark A Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Steven R Messé
- Department of Neurology, Hospital of University of Pennsylvania, Philadelphia, PA
| | - Scott E Kasner
- Department of Neurology, Hospital of University of Pennsylvania, Philadelphia, PA.,Department of Emergency Medicine, Hospital of University of Pennsylvania, Philadelphia, PA
| | - Laurie A Loevner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA.,Department of Otolaryngology, Hospital of University of Pennsylvania, Philadelphia, PA
| | | | - John E Kirsch
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Walter R Witschey
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Zhaoyang Fan
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
16
|
Young CC, Bonow RH, Barros G, Mossa-Basha M, Kim LJ, Levitt MR. Magnetic resonance vessel wall imaging in cerebrovascular diseases. Neurosurg Focus 2019; 47:E4. [DOI: 10.3171/2019.9.focus19599] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebrovascular diseases manifest as abnormalities of and disruption to the intracranial vasculature and its capacity to carry blood to the brain. However, the pathogenesis of many cerebrovascular diseases begins in the vessel wall. Traditional luminal and perfusion imaging techniques do not provide adequate information regarding the differentiation, onset, or progression of disease. Intracranial high-resolution MR vessel wall imaging (VWI) has emerged as an invaluable technique for understanding and evaluating cerebrovascular diseases. The location and pattern of contrast enhancement in intracranial VWI provides new insight into the inflammatory etiology of cerebrovascular diseases and has potential to permit earlier diagnosis and treatment. In this report, technical considerations of VWI are discussed and current applications of VWI in vascular malformations, blunt cerebrovascular injury/dissection, and steno-occlusive cerebrovascular vasculopathies are reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Louis J. Kim
- Departments of 1Neurological Surgery,
- 2Radiology, and
- 4Stroke and Applied Neuroscience Center, University of Washington, Seattle, Washington
| | - Michael R. Levitt
- Departments of 1Neurological Surgery,
- 2Radiology, and
- 3Mechanical Engineering, and
- 4Stroke and Applied Neuroscience Center, University of Washington, Seattle, Washington
| |
Collapse
|