1
|
Xiong H, Yin P, Luo W, Li Y, Wang S. A Radiomics Model for the Differentiation of Intracranial Solitary Fibrous Tumor/Hemangiopericytoma and Meningioma Based on Multiparametric Magnetic Resonance Imaging. Neurol India 2024; 72:779-783. [PMID: 39216033 DOI: 10.4103/neurol-india.ni_213_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/18/2020] [Indexed: 09/04/2024]
Abstract
BACKGROUND Although the imaging findings of intracranial solitary fibrous tumor (SFT)/hemangiopericytoma (HPC) and meningioma are similar, their treatment and prognosis are quite different. Accurate preoperative identification of these two types of tumors is crucial for individualized treatment. OBJECTIVE The aim of this study was to develop a radiomics model for the differentiation of intracranial SFT/HPC and meningioma based on multiparametric magnetic resonance imaging (mpMRI). MATERIAL AND METHODS A total of 99 patients from July 2012 to July 2018 with histologically and immunohistochemically confirmed SFT/HPC (n = 40) or meningiomas (n = 59) were retrospectively analyzed. A total of 1118 features were extracted based on its image shape, intensity and texture features. The logistic regression (LR) and multi-layer artificial neural network (ANN) classifiers were used to classify SFT/HPC and meningioma. The predictive performance was calculated using receiver operating characteristic curves (ROC). RESULTS We found significant difference in terms of sex between the SFT/HPC and meningioma group (χ2= 4.829, P < 0.05), but no significant difference was found in age (P > 0.05). The most significant radiomics features included five shape and four first-order level features. For the LR classifier, the prediction accuracy of SFT/HPC was 71.0% and meningioma was 78.7%. For the ANN classifier, the prediction accuracy of SFT/HPC was 83.9% and meningioma was 80.9%. Both of the two classifiers achieved a high accuracy rate, but ANN was better. CONCLUSIONS Radiomics features, especially when combined with an ANN classifier, can provide satisfactory performance in distinguishing SFT/HPC and meningioma.
Collapse
Affiliation(s)
- Hua Xiong
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, 104 Pibashan Zhen Street, Yuzhong District, Chongqing, P. R. China
| | - Ping Yin
- Department of Radiology, Peking University People's Hospital, 11 Xizhimen Nandajie, Xicheng District, Beijing, P. R. China
| | - Weiqiang Luo
- Department of Radiology, Zhuzhou Central Hospital, Hunan, P. R. China
| | - Yihui Li
- Department of Radiology, Zhuzhou Central Hospital, Hunan, P. R. China
| | - Sicong Wang
- GE Healthcare, Shanghai, China Shanghai, P. R. China
| |
Collapse
|
2
|
Vidiri A, Marzi S, Piludu F, Lucchese S, Dolcetti V, Polito E, Mazzola F, Marchesi P, Merenda E, Sperduti I, Pellini R, Covello R. Magnetic resonance imaging-based prediction models for tumor stage and cervical lymph node metastasis of tongue squamous cell carcinoma. Comput Struct Biotechnol J 2023; 21:4277-4287. [PMID: 37701020 PMCID: PMC10493896 DOI: 10.1016/j.csbj.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose To evaluate the ability of preoperative MRI-based measurements to predict the pathological T (pT) stage and cervical lymph node metastasis (CLNM) via machine learning (ML)-driven models trained in oral tongue squamous cell carcinoma (OTSCC). Materials and methods 108 patients with a new diagnosis of OTSCC were enrolled. The preoperative MRI study included post-contrast high-resolution T1-weighted images acquired in all patients. MRI-based depth of invasion (DOI) and tumor dimension-together with shape-based and intensity-based features-were extracted from the lesion volume segmentation. The entire dataset was randomly divided into a training set and a validation set, and the performances of different types of ML algorithms were evaluated and compared. Results MRI-based DOI and tumor dimension together with several shape-based and intensity-based signatures significantly discriminated the pT stage and LN status. The overall accuracy of the model for predicting the pT stage was 0.86 (95%CI, 0.78-0.92) and 0.81 (0.64-0.91) in the training and validation sets, respectively. There was no improvement in the model performance upon including shape-based and intensity-based features. The model for predicting CLNM based on DOI and tumor dimensions had a fair accuracy of 0.68 (0.57-0.78) and 0.69 (0.51-0.84) in the training and validation sets, respectively. The shape-based and intensity-based signatures have shown potential for improving the model sensitivity, with a comparable accuracy. Conclusion MRI-based models driven by ML algorithms could stratify patients with OTSCC according to the pT stages. They had a moderate ability to predict cervical lymph node metastasis.
Collapse
Affiliation(s)
- Antonello Vidiri
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome,Italy
| | - Simona Marzi
- Medical Physics Laboratory, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 0 0144 Rome, Italy
| | - Francesca Piludu
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome,Italy
| | - Sonia Lucchese
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome,Italy
- Scuola di Specializzazione in Radiodiagnostica, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy
| | - Vincenzo Dolcetti
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome,Italy
- Scuola di Specializzazione in Radiodiagnostica, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy
| | - Eleonora Polito
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome,Italy
| | - Francesco Mazzola
- Department of Otolaryngology and Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Paolo Marchesi
- Department of Otolaryngology and Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Elisabetta Merenda
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Isabella Sperduti
- Biostatistics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Raul Pellini
- Department of Otolaryngology and Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Renato Covello
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
3
|
External validation of an MR-based radiomic model predictive of locoregional control in oropharyngeal cancer. Eur Radiol 2023; 33:2850-2860. [PMID: 36460924 DOI: 10.1007/s00330-022-09255-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVES To externally validate a pre-treatment MR-based radiomics model predictive of locoregional control in oropharyngeal squamous cell carcinoma (OPSCC) and to assess the impact of differences between datasets on the predictive performance. METHODS Radiomic features, as defined in our previously published radiomics model, were extracted from the primary tumor volumes of 157 OPSCC patients in a different institute. The developed radiomics model was validated using this cohort. Additionally, parameters influencing performance, such as patient subgroups, MRI acquisition, and post-processing steps on prediction performance will be investigated. For this analysis, matched subgroups (based on human papillomavirus (HPV) status of the tumor, T-stage, and tumor subsite) and a subgroup with only patients with 4-mm slice thickness were studied. Also the influence of harmonization techniques (ComBat harmonization, quantile normalization) and the impact of feature stability across observers and centers were studied. Model performances were assessed by area under the curve (AUC), sensitivity, and specificity. RESULTS Performance of the published model (AUC/sensitivity/specificity: 0.74/0.75/0.60) drops when applied on the validation cohort (AUC/sensitivity/specificity: 0.64/0.68/0.60). The performance of the full validation cohort improves slightly when the model is validated using a patient group with comparable HPV status of the tumor (AUC/sensitivity/specificity: 0.68/0.74/0.60), using patients acquired with a slice thickness of 4 mm (AUC/sensitivity/specificity: 0.67/0.73/0.57), or when quantile harmonization was performed (AUC/sensitivity/specificity: 0.66/0.69/0.60). CONCLUSION The previously published model shows its generalizability and can be applied on data acquired from different vendors and protocols. Harmonization techniques and subgroup definition influence performance of predictive radiomics models. KEY POINTS • Radiomics, a noninvasive quantitative image analysis technique, can support the radiologist by enhancing diagnostic accuracy and/or treatment decision-making. • A previously published model shows its generalizability and could be applied on data acquired from different vendors and protocols.
Collapse
|
4
|
Volpe S, Gaeta A, Colombo F, Zaffaroni M, Mastroleo F, Vincini MG, Pepa M, Isaksson LJ, Turturici I, Marvaso G, Ferrari A, Cammarata G, Santamaria R, Franzetti J, Raimondi S, Botta F, Ansarin M, Gandini S, Cremonesi M, Orecchia R, Alterio D, Jereczek-Fossa BA. Blood- and Imaging-Derived Biomarkers for Oncological Outcome Modelling in Oropharyngeal Cancer: Exploring the Low-Hanging Fruit. Cancers (Basel) 2023; 15:cancers15072022. [PMID: 37046683 PMCID: PMC10093133 DOI: 10.3390/cancers15072022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Aims: To assess whether CT-based radiomics and blood-derived biomarkers could improve the prediction of overall survival (OS) and locoregional progression-free survival (LRPFS) in patients with oropharyngeal cancer (OPC) treated with curative-intent RT. Methods: Consecutive OPC patients with primary tumors treated between 2005 and 2021 were included. Analyzed clinical variables included gender, age, smoking history, staging, subsite, HPV status, and blood parameters (baseline hemoglobin levels, neutrophils, monocytes, and platelets, and derived measurements). Radiomic features were extracted from the gross tumor volumes (GTVs) of the primary tumor using pyradiomics. Outcomes of interest were LRPFS and OS. Following feature selection, a radiomic score (RS) was calculated for each patient. Significant variables, along with age and gender, were included in multivariable analysis, and models were retained if statistically significant. The models’ performance was compared by the C-index. Results: One hundred and five patients, predominately male (71%), were included in the analysis. The median age was 59 (IQR: 52–66) years, and stage IVA was the most represented (70%). HPV status was positive in 63 patients, negative in 7, and missing in 35 patients. The median OS follow-up was 6.3 (IQR: 5.5–7.9) years. A statistically significant association between low Hb levels and poorer LRPFS in the HPV-positive subgroup (p = 0.038) was identified. The calculation of the RS successfully stratified patients according to both OS (log-rank p < 0.0001) and LRPFS (log-rank p = 0.0002). The C-index of the clinical and radiomic model resulted in 0.82 [CI: 0.80–0.84] for OS and 0.77 [CI: 0.75–0.79] for LRPFS. Conclusions: Our results show that radiomics could provide clinically significant informative content in this scenario. The best performances were obtained by combining clinical and quantitative imaging variables, thus suggesting the potential of integrative modeling for outcome predictions in this setting of patients.
Collapse
|
5
|
Nie K, Xiao Y. Radiomics in clinical trials: perspectives on standardization. Phys Med Biol 2022; 68. [PMID: 36384049 DOI: 10.1088/1361-6560/aca388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
The term biomarker is used to describe a biological measure of the disease behavior. The existing imaging biomarkers are associated with the known tissue biological characteristics and follow a well-established roadmap to be implemented in routine clinical practice. Recently, a new quantitative imaging analysis approach named radiomics has emerged. It refers to the extraction of a large number of advanced imaging features with high-throughput computing. Extensive research has demonstrated its value in predicting disease behavior, progression, and response to therapeutic options. However, there are numerous challenges to establishing it as a clinically viable solution, including lack of reproducibility and transparency. The data-driven nature also does not offer insights into the underpinning biology of the observed relationships. As such, additional effort is needed to establish it as a qualified biomarker to inform clinical decisions. Here we review the technical difficulties encountered in the clinical applications of radiomics and current effort in addressing some of these challenges in clinical trial designs. By addressing these challenges, the true potential of radiomics can be unleashed.
Collapse
Affiliation(s)
- Ke Nie
- Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Department of Radiation Oncology, New Brunswick, NJ, 08901, United States of America
| | - Ying Xiao
- University of Pennsylvania, Department of Radiation Oncology, 3400 Civic Center Blvd, TRC-2 West Philadelphia, PA 19104, United States of America
| |
Collapse
|
6
|
Touska P, Connor S. Imaging of human papilloma virus associated oropharyngeal squamous cell carcinoma and its impact on diagnosis, prognostication, and response assessment. Br J Radiol 2022; 95:20220149. [PMID: 35687667 PMCID: PMC9815738 DOI: 10.1259/bjr.20220149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/22/2022] [Accepted: 06/07/2022] [Indexed: 01/13/2023] Open
Abstract
The clinical behaviour and outcomes of patients with oropharyngeal cancer (OPC) may be dichotomised according to their association with human papilloma virus (HPV) infection. Patients with HPV-associated disease (HPV+OPC) have a distinct demographic profile, clinical phenotype and demonstrate considerably better responses to chemoradiotherapy. This has led to a reappraisal of staging and treatment strategies for HPV+OPC, which are underpinned by radiological data. Structural modalities, such as CT and MRI can provide accurate staging information. These can be combined with ultrasound-guided tissue sampling and functional techniques (such as diffusion-weighted MRI and 18F-fludeoxyglucose positron emission tomography-CT) to monitor response to treatment, derive prognostic information, and to identify individuals who might benefit from intensification or deintensification strategies. Furthermore, advanced MRI techniques, such as intravoxel incoherent motion and perfusion MRI as well as application of artificial intelligence and radiomic techniques, have shown promise in treatment response monitoring and prognostication. The following review will consider the contemporary role and knowledge on imaging in HPV+OPC.
Collapse
Affiliation(s)
- Philip Touska
- Department of Radiology, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | | |
Collapse
|
7
|
Iliadou V, Kakkos I, Karaiskos P, Kouloulias V, Platoni K, Zygogianni A, Matsopoulos GK. Early Prediction of Planning Adaptation Requirement Indication Due to Volumetric Alterations in Head and Neck Cancer Radiotherapy: A Machine Learning Approach. Cancers (Basel) 2022; 14:cancers14153573. [PMID: 35892831 PMCID: PMC9331795 DOI: 10.3390/cancers14153573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: During RT cycles, the tumor response pattern could affect tumor coverage and may lead to organs at risk of overdose. As such, early prediction of significant volumetric changes could therefore reduce potential radiation-related adverse effects. Nevertheless, effective machine learning approaches based on the radiomic features of the clinically used CBCT images to determine the tumor volume variations due to RT not having been implemented so far. Methods: CBCT images from 40 HN cancer patients were collected weekly during RT treatment. From the obtained images, the Clinical Target Volume (CTV) and Parotid Glands (PG) regions of interest were utilized to calculate 104 delta-radiomics features. These features were fed on a feature selection and classification procedure for the early prediction of significant volumetric alterations. Results: The proposed framework was able to achieve 0.90 classification performance accuracy while detecting a small subset of discriminative characteristics from the 1st week of RT. The selected features were further analyzed regarding their effects on temporal changes in anatomy and tumor response modeling. Conclusion: The use of machine learning algorithms offers promising perspectives for fast and reliable early prediction of large volumetric deviations as a result of RT treatment, exploiting hidden patterns in the overall anatomical characteristics.
Collapse
Affiliation(s)
- Vasiliki Iliadou
- School of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Athens, Greece; (I.K.); (G.K.M.)
- Correspondence: ; Tel.: +30-21-0772-3577
| | - Ioannis Kakkos
- School of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Athens, Greece; (I.K.); (G.K.M.)
- Department of Biomedical Engineering, University of West Attica, 122 43 Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Vassilis Kouloulias
- 2nd Department of Radiology, Radiotherapy Unit, ATTIKON University Hospital, 124 62 Athens, Greece; (V.K.); (K.P.)
| | - Kalliopi Platoni
- 2nd Department of Radiology, Radiotherapy Unit, ATTIKON University Hospital, 124 62 Athens, Greece; (V.K.); (K.P.)
| | - Anna Zygogianni
- 1st Department of Radiology, Radiotherapy Unit, ARETAIEION University Hospital, 115 28 Athens, Greece;
| | - George K. Matsopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Athens, Greece; (I.K.); (G.K.M.)
| |
Collapse
|
8
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
9
|
Radiomics as a New Frontier of Imaging for Cancer Prognosis: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11101796. [PMID: 34679494 PMCID: PMC8534713 DOI: 10.3390/diagnostics11101796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evaluation of the efficacy of different therapies is of paramount importance for the patients and the clinicians in oncology, and it is usually possible by performing imaging investigations that are interpreted, taking in consideration different response evaluation criteria. In the last decade, texture analysis (TA) has been developed in order to help the radiologist to quantify and identify parameters related to tumor heterogeneity, which cannot be appreciated by the naked eye, that can be correlated with different endpoints, including cancer prognosis. The aim of this work is to analyze the impact of texture in the prediction of response and in prognosis stratification in oncology, taking into consideration different pathologies (lung cancer, breast cancer, gastric cancer, hepatic cancer, rectal cancer). Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used. This paper contains a narrative report and a critical discussion of radiomics approaches related to cancer prognosis in different fields of diseases.
Collapse
|
10
|
Iancu RI, Zara AD, Mirestean CC, Iancu DPT. Radiomics in Head and Neck Cancers Radiotherapy. Promises and Challenges. MAEDICA 2021; 16:482-488. [PMID: 34925606 DOI: 10.26574/maedica.2020.16.3.482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiomics, a subdomain of artificial intelligence, consists in extracting a large volume of data from all medical imaging techniques and correlating them with clinical data in order to build predictive and prognostic models. Radiomics is related to radiogenomics that correlates genetic mutations and molecular and biological characteristics of tissues with information extracted from medical imaging. Both are state-of-the-art fields of translational biomedical research. The ability to predict early patient survival and response to treatment, but also the capacity to identify tumor subtypes non-invasively, could make radiomics a key player with an essential role in personalized oncology. In head and neck cancer radiotherapy, radiomic algorithms can predict not only the response to radiochemotherapy or induction chemotherapy but also the need for planning through adaptive radiotherapy (ART). Radiomics can also predict the risk of severe toxicities, especially that of xerostomia. Given the benefit that a de-escalation of treatment can bring in selected cases to improve the quality of life, radiomics is expected to be part of the therapeutic decision for head and neck cancers in the near future, and may help identify cases where de-escalation of multimodal therapy will not jeopardize the therapeutic benefit.
Collapse
Affiliation(s)
| | - A D Zara
- Regional Institute of Oncology, Iasi, Romania
| | - C C Mirestean
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - D P T Iancu
- "Gr. T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
11
|
Liu X, Maleki F, Muthukrishnan N, Ovens K, Huang SH, Pérez-Lara A, Romero-Sanchez G, Bhatnagar SR, Chatterjee A, Pusztaszeri MP, Spatz A, Batist G, Payabvash S, Haider SP, Mahajan A, Reinhold C, Forghani B, O’Sullivan B, Yu E, Forghani R. Site-Specific Variation in Radiomic Features of Head and Neck Squamous Cell Carcinoma and Its Impact on Machine Learning Models. Cancers (Basel) 2021; 13:cancers13153723. [PMID: 34359623 PMCID: PMC8345201 DOI: 10.3390/cancers13153723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma (HNSCC) is the most common mucosal malignancy of the head and neck and a leading cause of cancer death. HNSCC arises from different primary anatomical locations that are typically combined during radiomic analyses assuming that the radiomic features, i.e., quantitative image-based features, are similar based on histopathologic characteristics. However, whether these quantitative features are comparable across tumor sites remains unknown. The aim of our retrospective study was to assess if systematic differences exist between radiomic features based on different tumor sites in HNSCC and how they might affect machine learning model performance in endpoint prediction. Using a population of 605 HNSCC patients, we observed significant differences in radiomic features of tumors from different locations and showed that these differences can impact machine learning model performance. This suggests that tumor site should be considered when developing and evaluating radiomics-based models. Abstract Current radiomic studies of head and neck squamous cell carcinomas (HNSCC) are typically based on datasets combining tumors from different locations, assuming that the radiomic features are similar based on histopathologic characteristics. However, molecular pathogenesis and treatment in HNSCC substantially vary across different tumor sites. It is not known if a statistical difference exists between radiomic features from different tumor sites and how they affect machine learning model performance in endpoint prediction. To answer these questions, we extracted radiomic features from contrast-enhanced neck computed tomography scans (CTs) of 605 patients with HNSCC originating from the oral cavity, oropharynx, and hypopharynx/larynx. The difference in radiomic features of tumors from these sites was assessed using statistical analyses and Random Forest classifiers on the radiomic features with 10-fold cross-validation to predict tumor sites, nodal metastasis, and HPV status. We found statistically significant differences (p-value ≤ 0.05) between the radiomic features of HNSCC depending on tumor location. We also observed that differences in quantitative features among HNSCC from different locations impact the performance of machine learning models. This suggests that radiomic features may reveal biologic heterogeneity complementary to current gold standard histopathologic evaluation. We recommend considering tumor site in radiomic studies of HNSCC.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Princess Margaret Hospital, University of Toronto, University Health Network, Toronto, ON M5G 2C1, Canada; (X.L.); (S.H.H.); (B.O.)
- Department of Radiology, Brigham and Women’s Hospital, Harvard University, Cambridge, MA 02115, USA
- Department of Medical Imaging, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Farhad Maleki
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.M.); (N.M.); (K.O.); (S.R.B.); (C.R.); (B.F.)
| | - Nikesh Muthukrishnan
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.M.); (N.M.); (K.O.); (S.R.B.); (C.R.); (B.F.)
| | - Katie Ovens
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.M.); (N.M.); (K.O.); (S.R.B.); (C.R.); (B.F.)
| | - Shao Hui Huang
- Princess Margaret Hospital, University of Toronto, University Health Network, Toronto, ON M5G 2C1, Canada; (X.L.); (S.H.H.); (B.O.)
- Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Almudena Pérez-Lara
- Segal Cancer Centre & Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (A.P.-L.); (G.R.-S.); (G.B.)
| | - Griselda Romero-Sanchez
- Segal Cancer Centre & Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (A.P.-L.); (G.R.-S.); (G.B.)
| | - Sahir Rai Bhatnagar
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.M.); (N.M.); (K.O.); (S.R.B.); (C.R.); (B.F.)
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC H3A 1A2, Canada
| | | | | | - Alan Spatz
- Division of Pathology, Jewish General Hospital, Montreal, QC H3Y 1E2, Canada; (M.P.P.); (A.S.)
| | - Gerald Batist
- Segal Cancer Centre & Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (A.P.-L.); (G.R.-S.); (G.B.)
| | - Seyedmehdi Payabvash
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; (S.P.); (S.P.H.); (A.M.)
| | - Stefan P. Haider
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; (S.P.); (S.P.H.); (A.M.)
| | - Amit Mahajan
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; (S.P.); (S.P.H.); (A.M.)
| | - Caroline Reinhold
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.M.); (N.M.); (K.O.); (S.R.B.); (C.R.); (B.F.)
| | - Behzad Forghani
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.M.); (N.M.); (K.O.); (S.R.B.); (C.R.); (B.F.)
- Segal Cancer Centre & Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (A.P.-L.); (G.R.-S.); (G.B.)
| | - Brian O’Sullivan
- Princess Margaret Hospital, University of Toronto, University Health Network, Toronto, ON M5G 2C1, Canada; (X.L.); (S.H.H.); (B.O.)
- Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Eugene Yu
- Princess Margaret Hospital, University of Toronto, University Health Network, Toronto, ON M5G 2C1, Canada; (X.L.); (S.H.H.); (B.O.)
- Department of Medical Imaging, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence: (E.Y.); (R.F.)
| | - Reza Forghani
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.M.); (N.M.); (K.O.); (S.R.B.); (C.R.); (B.F.)
- Segal Cancer Centre & Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (A.P.-L.); (G.R.-S.); (G.B.)
- Correspondence: (E.Y.); (R.F.)
| |
Collapse
|
12
|
Wesdorp NJ, Hellingman T, Jansma EP, van Waesberghe JHTM, Boellaard R, Punt CJA, Huiskens J, Kazemier G. Advanced analytics and artificial intelligence in gastrointestinal cancer: a systematic review of radiomics predicting response to treatment. Eur J Nucl Med Mol Imaging 2021; 48:1785-1794. [PMID: 33326049 PMCID: PMC8113210 DOI: 10.1007/s00259-020-05142-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/29/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Advanced medical image analytics is increasingly used to predict clinical outcome in patients diagnosed with gastrointestinal tumors. This review provides an overview on the value of radiomics in predicting response to treatment in patients with gastrointestinal tumors. METHODS A systematic review was conducted, according to PRISMA guidelines. The protocol was prospectively registered (PROSPERO: CRD42019128408). PubMed, Embase, and Cochrane databases were searched. Original studies reporting on the value of radiomics in predicting response to treatment in patients with a gastrointestinal tumor were included. A narrative synthesis of results was conducted. Results were stratified by tumor type. Quality assessment of included studies was performed, according to the radiomics quality score. RESULTS The comprehensive literature search identified 1360 unique studies, of which 60 articles were included for analysis. In 37 studies, radiomics models and individual radiomic features showed good predictive performance for response to treatment (area under the curve or accuracy > 0.75). Various strategies to construct predictive models were used. Internal validation of predictive models was often performed, while the majority of studies lacked external validation. None of the studies reported predictive models implemented in clinical practice. CONCLUSION Radiomics is increasingly used to predict response to treatment in patients suffering from gastrointestinal cancer. This review demonstrates its great potential to help predict response to treatment and improve patient selection and early adjustment of treatment strategy in a non-invasive manner.
Collapse
Affiliation(s)
- Nina J Wesdorp
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Tessa Hellingman
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Elise P Jansma
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jan-Hein T M van Waesberghe
- Department of Radiology and Molecular Imaging, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Cornelis J A Punt
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Rasmussen JH, Olin AB, Lelkaitis G, Hansen AE, Andersen FL, Johannesen HH, Kjaer A, Fischer BM, Specht L, Bentzen SM, von Buchwald C, Wessel I, Vogelius IR. Intratumor heterogeneity is biomarker specific and challenges the association with heterogeneity in multimodal functional imaging in head and neck squamous cell carcinoma. Eur J Radiol 2021; 139:109668. [PMID: 33848777 DOI: 10.1016/j.ejrad.2021.109668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
RATIONALE Tumor biopsy cannot detect heterogeneity and an association between heterogeneity in functional imaging and molecular biology will have an impact on both diagnostics and treatment possibilities. PURPOSE Multiparametric imaging can provide 3D information on functional aspects of a tumor and may be suitable for predicting intratumor heterogeneity. Here, we investigate the correlation between intratumor heterogeneity assessed with multiparametric imaging and multiple-biopsy immunohistochemistry. METHODS In this prospective study, patients with primary or recurrent head and neck squamous cell carcinoma (HNSCC) underwent PET/MRI scanning prior to surgery. Tumors were removed en bloc and six core biopsies were used for immunohistochemical (IHC) staining with a predefined list of biomarkers: p40, p53, EGFR, Ki-67, GLUT1, VEGF, Bcl-2, CAIX, PD-L1. Intratumor heterogeneity of each IHC biomarker was quantified by calculating the coefficient of variation (CV) in tumor proportion score among the six core biopsies within each tumor lesion. The heterogeneity in the imaging biomarkers was assessed by calculating CV in 18F-fluorodeoxyglucose (FDG)-uptake, diffusion and perfusion. Concordance of the two variance measures was quantified using Spearman's rank correlation RESULTS: Twenty-eight patients with a total of 33 lesions were included. There was considerable heterogeneity in most of the IHC biomarkers especially in GLUT1, PD-L1, Ki-67, CAIX and p53, however we only observed a correlation between the heterogeneity in GLUT1 and p53 and between Ki-67 and EGFR. Heterogeneity in FDG uptake and diffusion correlated with heterogeneity in cell density. CONCLUSION Considerable heterogeneity of IHC biomarkers was found, however, only few and weak correlations between the studied IHC markers were observed. The studied functional imaging biomarkers showed weak associations with heterogeneity in some of the IHC biomarkers. Thus, biological heterogeneity is not a general tumor characteristic but depends on the specific biomarker or imaging modality.
Collapse
Affiliation(s)
- Jacob H Rasmussen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, Køge, Denmark.
| | - Anders B Olin
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Giedrius Lelkaitis
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Diagnostic Radiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Flemming L Andersen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Helle H Johannesen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Barbara M Fischer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; PET Centre, School of Biomedical Engineering and Imaging Sciences KCL, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Lena Specht
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Irene Wessel
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ivan R Vogelius
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Assessment of clinical radiosensitivity in patients with head-neck squamous cell carcinoma from pre-treatment quantitative ultrasound radiomics. Sci Rep 2021; 11:6117. [PMID: 33731738 PMCID: PMC7969626 DOI: 10.1038/s41598-021-85221-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
To investigate the role of quantitative ultrasound (QUS) radiomics to predict treatment response in patients with head and neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). Five spectral parameters, 20 texture, and 80 texture-derivative features were extracted from the index lymph node before treatment. Response was assessed initially at 3 months with complete responders labelled as early responders (ER). Patients with residual disease were followed to classify them as either late responders (LR) or patients with persistent/progressive disease (PD). Machine learning classifiers with leave-one-out cross-validation was used for the development of a binary response-prediction radiomics model. A total of 59 patients were included in the study (22 ER, 29 LR, and 8 PD). A support vector machine (SVM) classifier led to the best performance with accuracy and area under curve (AUC) of 92% and 0.91, responsively to define the response at 3 months (ER vs. LR/PD). The 2-year recurrence-free survival for predicted-ER, LR, PD using an SVM-model was 91%, 78%, and 27%, respectively (p < 0.01). Pretreatment QUS-radiomics using texture derivatives in HNSCC can predict the response to RT with an accuracy of more than 90% with a strong influence on the survival. Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.
Collapse
|
15
|
Studying local tumour heterogeneity on MRI and FDG-PET/CT to predict response to neoadjuvant chemoradiotherapy in rectal cancer. Eur Radiol 2021; 31:7031-7038. [PMID: 33569624 DOI: 10.1007/s00330-021-07724-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate whether quantifying local tumour heterogeneity has added benefit compared to global tumour features to predict response to chemoradiotherapy using pre-treatment multiparametric PET and MRI data. METHODS Sixty-one locally advanced rectal cancer patients treated with chemoradiotherapy and staged at baseline with MRI and FDG-PET/CT were retrospectively analyzed. Whole-tumour volumes were segmented on the MRI and PET/CT scans from which global tumour features (T2Wvolume/T2Wentropy/ADCmean/SUVmean/TLG/CTmean-HU) and local texture features (histogram features derived from local entropy/mean/standard deviation maps) were calculated. These respective feature sets were combined with clinical baseline parameters (e.g. age/gender/TN-stage) to build multivariable prediction models to predict a good (Mandard TRG1-2) versus poor (Mandard TRG3-5) response to chemoradiotherapy. Leave-one-out cross-validation (LOOCV) with bootstrapping was performed to estimate performance in an 'independent' dataset. RESULTS When using only imaging features, local texture features showed an AUC = 0.81 versus AUC = 0.74 for global tumour features. After internal cross-validation (LOOCV), AUC to predict a good response was the highest for the combination of clinical baseline variables + global tumour features (AUC = 0.83), compared to AUC = 0.79 for baseline + local texture and AUC = 0.76 for all combined (baseline + global + local texture). CONCLUSION In imaging-based prediction models, local texture analysis has potential added value compared to global tumour features to predict response. However, when combined with clinical baseline parameters such as cTN-stage, the added value of local texture analysis appears to be limited. The overall performance to predict response when combining baseline variables with quantitative imaging parameters is promising and warrants further research. KEY POINTS • Quantification of local tumour texture on pre-therapy FDG-PET/CT and MRI has potential added value compared to global tumour features to predict response to chemoradiotherapy in rectal cancer. • However, when combined with clinical baseline parameters such as cTN-stage, the added value of local texture over global tumour features is limited. • Predictive performance of our optimal model-combining clinical baseline variables with global quantitative tumour features-was encouraging (AUC 0.83), warranting further research in this direction on a larger scale.
Collapse
|
16
|
Rabasco Meneghetti A, Zwanenburg A, Leger S, Leger K, Troost EG, Linge A, Lohaus F, Schreiber A, Kalinauskaite G, Tinhofer I, Guberina N, Guberina M, Balermpas P, von der Grün J, Ganswindt U, Belka C, Peeken JC, Combs SE, Böke S, Zips D, Krause M, Baumann M, Löck S. Definition and validation of a radiomics signature for loco-regional tumour control in patients with locally advanced head and neck squamous cell carcinoma. Clin Transl Radiat Oncol 2021. [DOI: 10.1016/j.ctro.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Haider SP, Zeevi T, Baumeister P, Reichel C, Sharaf K, Forghani R, Kann BH, Judson BL, Prasad ML, Burtness B, Mahajan A, Payabvash S. Potential Added Value of PET/CT Radiomics for Survival Prognostication beyond AJCC 8th Edition Staging in Oropharyngeal Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12071778. [PMID: 32635216 PMCID: PMC7407414 DOI: 10.3390/cancers12071778] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Accurate risk-stratification can facilitate precision therapy in oropharyngeal squamous cell carcinoma (OPSCC). We explored the potential added value of baseline positron emission tomography (PET)/computed tomography (CT) radiomic features for prognostication and risk stratification of OPSCC beyond the American Joint Committee on Cancer (AJCC) 8th edition staging scheme. Using institutional and publicly available datasets, we included OPSCC patients with known human papillomavirus (HPV) status, without baseline distant metastasis and treated with curative intent. We extracted 1037 PET and 1037 CT radiomic features quantifying lesion shape, imaging intensity, and texture patterns from primary tumors and metastatic cervical lymph nodes. Utilizing random forest algorithms, we devised novel machine-learning models for OPSCC progression-free survival (PFS) and overall survival (OS) using “radiomics” features, “AJCC” variables, and the “combined” set as input. We designed both single- (PET or CT) and combined-modality (PET/CT) models. Harrell’s C-index quantified survival model performance; risk stratification was evaluated in Kaplan–Meier analysis. A total of 311 patients were included. In HPV-associated OPSCC, the best “radiomics” model achieved an average C-index ± standard deviation of 0.62 ± 0.05 (p = 0.02) for PFS prediction, compared to 0.54 ± 0.06 (p = 0.32) utilizing “AJCC” variables. Radiomics-based risk-stratification of HPV-associated OPSCC was significant for PFS and OS. Similar trends were observed in HPV-negative OPSCC. In conclusion, radiomics imaging features extracted from pre-treatment PET/CT may provide complimentary information to the current AJCC staging scheme for survival prognostication and risk-stratification of HPV-associated OPSCC.
Collapse
Affiliation(s)
- Stefan P. Haider
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, New Haven, CT 06519, USA; (S.P.H.); (A.M.)
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Tal Zeevi
- Center for Translational Imaging Analysis and Machine Learning, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA;
| | - Philipp Baumeister
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Christoph Reichel
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Kariem Sharaf
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Reza Forghani
- Department of Diagnostic Radiology and Augmented Intelligence & Precision Health Laboratory, McGill University Health Centre & Research Institute, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada;
| | - Benjamin H. Kann
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA;
| | - Benjamin L. Judson
- Division of Otolaryngology, Department of Surgery, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA;
| | - Manju L. Prasad
- Department of Pathology, Yale School of Medicine, 310 Cedar Street, New Haven, CT 06520, USA;
| | - Barbara Burtness
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, 25 York Street, New Haven, CT 06520, USA;
| | - Amit Mahajan
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, New Haven, CT 06519, USA; (S.P.H.); (A.M.)
| | - Seyedmehdi Payabvash
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, New Haven, CT 06519, USA; (S.P.H.); (A.M.)
- Correspondence: ; Tel.: +1-(203)-214-4650
| |
Collapse
|
18
|
Haider SP, Burtness B, Yarbrough WG, Payabvash S. Applications of radiomics in precision diagnosis, prognostication and treatment planning of head and neck squamous cell carcinomas. CANCERS OF THE HEAD & NECK 2020; 5:6. [PMID: 32391171 PMCID: PMC7197186 DOI: 10.1186/s41199-020-00053-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Recent advancements in computational power, machine learning, and artificial intelligence technology have enabled automated evaluation of medical images to generate quantitative diagnostic and prognostic biomarkers. Such objective biomarkers are readily available and have the potential to improve personalized treatment, precision medicine, and patient selection for clinical trials. In this article, we explore the merits of the most recent addition to the “-omics” concept for the broader field of head and neck cancer – “Radiomics”. This review discusses radiomics studies focused on (molecular) characterization, classification, prognostication and treatment guidance for head and neck squamous cell carcinomas (HNSCC). We review the underlying hypothesis, general concept and typical workflow of radiomic analysis, and elaborate on current and future challenges to be addressed before routine clinical application.
Collapse
Affiliation(s)
- Stefan P Haider
- 1Department of Radiology and Biomedical Imaging, Division of Neuroradiology, Yale School of Medicine, New Haven, CT USA.,2Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians University of Munich, Munich, Germany
| | - Barbara Burtness
- 3Department of Internal Medicine, Division of Medical Oncology, Yale School of Medicine, New Haven, CT USA
| | - Wendell G Yarbrough
- 4Department of Otolaryngology/Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Seyedmehdi Payabvash
- 1Department of Radiology and Biomedical Imaging, Division of Neuroradiology, Yale School of Medicine, New Haven, CT USA
| |
Collapse
|