1
|
Vennarini S, Colombo F, Mirandola A, Orlandi E, Pecori E, Chiaravalli S, Massimino M, Casanova M, Ferrari A. Proton Therapy in Non-Rhabdomyosarcoma Soft Tissue Sarcomas of Children and Adolescents. Cancers (Basel) 2024; 16:1694. [PMID: 38730646 PMCID: PMC11083115 DOI: 10.3390/cancers16091694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This paper provides insights into the use of Proton Beam Therapy (PBT) in pediatric patients with non-rhabdomyosarcoma soft tissue sarcomas (NRSTS). NRSTS are a heterogeneous group of rare and aggressive mesenchymal extraskeletal tumors, presenting complex and challenging clinical management scenarios. The overall survival rate for patients with NRSTS is around 70%, but the outcome is strictly related to the presence of various variables, such as the histological subtype, grade of malignancy and tumor stage at diagnosis. Multimodal therapy is typically considered the preferred treatment for high-grade NRSTS. Radiotherapy plays a key role in the treatment of children and adolescents with NRSTS. However, the potential for radiation-induced side effects partially limits its use. Therefore, PBT represents a very suitable therapeutic option for these patients. The unique depth-dose characteristics of protons can be leveraged to minimize doses to healthy tissue significantly, potentially allowing for increased tumor doses and enhanced preservation of surrounding tissues. These benefits suggest that PBT may improve local control while reducing toxicity and improving quality of life. While clear evidence of therapeutic superiority of PBT over other modern photon techniques in NRSTS is still lacking-partly due to the limited data available-PBT can be an excellent treatment option for young patients with these tumors. A dedicated international comprehensive collaborative approach is essential to better define its role within the multidisciplinary management of NRSTS. Shared guidelines for PBT indications-based on the patient's age, estimated outcome, and tumor location-and centralization in high-level referral centers are needed to optimize the use of resources, since access to PBT remains a challenge due to the limited number of available proton therapy facilities.
Collapse
Affiliation(s)
- Sabina Vennarini
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (S.V.); (E.P.)
| | - Francesca Colombo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (F.C.); (E.O.)
| | - Alfredo Mirandola
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy; (F.C.); (E.O.)
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Emilia Pecori
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (S.V.); (E.P.)
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy; (S.C.); (M.M.); (M.C.)
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy; (S.C.); (M.M.); (M.C.)
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy; (S.C.); (M.M.); (M.C.)
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy; (S.C.); (M.M.); (M.C.)
| |
Collapse
|
2
|
Vennarini S, Colombo F, Mirandola A, Chiaravalli S, Orlandi E, Massimino M, Casanova M, Ferrari A. Clinical Insight on Proton Therapy for Paediatric Rhabdomyosarcoma. Cancer Manag Res 2023; 15:1125-1139. [PMID: 37842128 PMCID: PMC10576457 DOI: 10.2147/cmar.s362664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
This paper offers an insight into the use of Proton Beam Therapy (PBT) in paediatric patients with rhabdomyosarcoma (RMS). This paper provides a comprehensive analysis of the literature, investigating comparative photon-proton dosimetry, outcome, and toxicity. In the complex and multimodal scenario of the treatment of RMS, clear evidence of the therapeutic superiority of PBT compared to other modern photon techniques has not yet been demonstrated; however, PBT can be considered an excellent treatment option, in particular for young children and patients with specific primary sites, such as the head and neck area (and especially the parameningeal regions), genito-urinary, pelvic, and paravertebral regions. The unique depth-dose characteristics of protons can be exploited to achieve significant reductions in normal tissue doses and may allow an escalation of tumour doses and greater sparing of normal tissues, thus potentially improving local control while at the same time reducing toxicity and improving quality of life. However, access of children with RMS (and more in general with solid tumors) to PBT remains a challenge, due to the limited number of available proton therapy installations.
Collapse
Affiliation(s)
- Sabina Vennarini
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Francesca Colombo
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| |
Collapse
|
3
|
Yan AP, Venkatramani R, Bradley JA, Lautz TB, Urla CI, Merks JHM, Oberoi S. Clinical Characteristics, Treatment Considerations, and Outcomes of Infants with Rhabdomyosarcoma. Cancers (Basel) 2023; 15:cancers15082296. [PMID: 37190224 DOI: 10.3390/cancers15082296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
RMS most commonly presents in children and adolescents, however a subset of tumors are diagnosed in infants under one year of age. Due to the rarity of infant RMS, utilization of different treatment approaches and goals, and small sample sizes, the published studies of infants with RMS have yielded heterogeneous results. In this review, we discuss the outcomes of infants with RMS treated in various clinical trials and the strategies that various international cooperative groups have employed to reduce the morbidity and mortality related to treatment without compromising the overall survival of this population. This review discusses the unique scenarios of diagnosing and managing congenitals or neonatal RMS, spindle cell RMS and relapsed RMS. This review concludes by exploring novel approaches to diagnosis and management of infants with RMS that are currently being studied by various international cooperative groups.
Collapse
Affiliation(s)
- Adam P Yan
- Division of Pediatric Hematology Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1R1, Canada
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Rajkumar Venkatramani
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida, Jacksonville, FL 33024, USA
| | - Timothy B Lautz
- Department of Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL 60208, USA
| | - Cristian I Urla
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital of Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Johannes H M Merks
- Princess Ma'xima Center for Paediatric Oncology, 3584 CS Utrecht, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Sapna Oberoi
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3T 0A1, Canada
- Department of Pediatric Hematology-Oncology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
4
|
A Feasibility Study on Proton Range Monitoring Using 13N Peak in Inhomogeneous Targets. Tomography 2022; 8:2313-2329. [PMID: 36136889 PMCID: PMC9498793 DOI: 10.3390/tomography8050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Proton irradiations are highly sensitive to spatial variations, mainly due to their high linear energy transfer (LET) and densely ionizing nature. In realistic clinical applications, the targets of ionizing radiation are inhomogeneous in terms of geometry and chemical composition (i.e., organs in the human body). One of the main methods for proton range monitoring is to utilize the production of proton induced positron emitting radionuclides; these could be measured precisely with positron emission tomography (PET) systems. One main positron emitting radionuclide that could be used for proton range monitoring and verification was found to be 13N that produces a peak close to the Bragg peak. In the present work, we have employed the Monte Carlo method and Spectral Analysis (SA) technique to investigate the feasibility of utilizing the 13N peak for proton range monitoring and verification in inhomogeneous targets. Two different phantom types, namely, (1) ordinary slab and (2) MIRD anthropomorphic phantoms, were used. We have found that the generated 13N peak in such highly inhomogeneous targets (ordinary slab and human phantom) is close to the actual Bragg peak, when irradiated by incident proton beam. The feasibility of using the SA technique to estimate the distribution of positron emitter was also investigated. The current findings and the developed tools in the present work would be helpful in proton range monitoring and verification in realistic clinical radiation therapy using proton beams.
Collapse
|
5
|
Kaderka R, Liu KC, Liu L, VanderStraeten R, Liu TL, Lee KM, Tu YCE, MacEwan I, Simpson D, Urbanic J, Chang C. Toward automatic beam angle selection for pencil-beam scanning proton liver Treatments: A deep learning-based approach. Med Phys 2022; 49:4293-4304. [PMID: 35488864 DOI: 10.1002/mp.15676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Dose deposition characteristics of proton radiation can be advantageous over photons. Proton treatment planning however poses additional challenges for the planners. Proton therapy is usually delivered with only a small number of beam angles, and the quality of a proton treatment plan is largely determined by the beam angles employed. Finding the optimal beam angles for a proton treatment plan requires time and experience, motivating the investigation of automatic beam angle selection methods. PURPOSE A deep learning-based approach to automatic beam angle selection is proposed for proton pencil-beam scanning treatment planning of liver lesions. METHODS We cast beam-angle selection as a multi-label classification problem. To account for angular boundary discontinuity, the underlying convolution neural network is trained with the proposed Circular Earth Mover's Distance based regularization and multi-label circular-smooth label technique. Furthermore, an analytical algorithm emulating proton treatment planners' clinical practice is employed in post-processing to improve the output of the model. Forty-nine patients that received proton liver treatments between 2017 and 2020 were randomly divided into training (n = 31), validation (n = 7), and test sets (n = 11). AI-selected beam angles were compared with those angles selected by human planners, and the dosimetric outcome was investigated by creating plans using knowledge-based treatment planning. RESULTS For 7 of the 11 cases in the test set, AI-selected beam angles agreed with those chosen by human planners to within 20 degrees (median angle difference = 10°; mean = 18.6°). Moreover, out of the total 22 beam angles predicted by the model, 15 (68%) were within 10 degrees of the human-selected angles. The high correlation in beam angles resulted in comparable dosimetric statistics between proton treatment plans generated using AI- and human-selected angles. For the cases with beam angle differences exceeding 20°, the dosimetric analysis showed similar plan quality although with different emphases on organ-at-risk sparing. CONCLUSIONS This pilot study demonstrated the feasibility of a novel deep learning-based beam angle selection technique. Testing on liver cancer patients showed that the resulting plans were clinically viable with comparable dosimetric quality to those using human-selected beam angles. In tandem with auto-contouring and knowledge-based treatment planning tools, the proposed model could represent a pathway for nearly fully automated treatment planning in proton therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Kaderka
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,Department of Radiation Oncology, University of Miami, Miami, FL, 33136
| | | | - Lawrence Liu
- California Protons Cancer Therapy Center, San Diego, CA, 92121
| | | | | | | | | | - Iain MacEwan
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,California Protons Cancer Therapy Center, San Diego, CA, 92121
| | - Daniel Simpson
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121
| | - James Urbanic
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,California Protons Cancer Therapy Center, San Diego, CA, 92121
| | - Chang Chang
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,California Protons Cancer Therapy Center, San Diego, CA, 92121
| |
Collapse
|
6
|
Islam MR, Shahmohammadi Beni M, Ng CY, Miyake M, Rahman M, Ito S, Gotoh S, Yamaya T, Watabe H. Proton range monitoring using 13N peak for proton therapy applications. PLoS One 2022; 17:e0263521. [PMID: 35167589 PMCID: PMC8846528 DOI: 10.1371/journal.pone.0263521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
The Monte Carlo method is employed in this study to simulate the proton irradiation of a water-gel phantom. Positron-emitting radionuclides such as 11C, 15O, and 13N are scored using the Particle and Heavy Ion Transport Code System Monte Carlo code package. Previously, it was reported that as a result of 16O(p,2p2n)13N nuclear reaction, whose threshold energy is relatively low (5.660 MeV), a 13N peak is formed near the actual Bragg peak. Considering the generated 13N peak, we obtain offset distance values between the 13N peak and the actual Bragg peak for various incident proton energies ranging from 45 to 250 MeV, with an energy interval of 5 MeV. The offset distances fluctuate between 1.0 and 2.0 mm. For example, the offset distances between the 13N peak and the Bragg peak are 2.0, 2.0, and 1.0 mm for incident proton energies of 80, 160, and 240 MeV, respectively. These slight fluctuations for different incident proton energies are due to the relatively stable energy-dependent cross-section data for the 16O(p,2p2n)13N nuclear reaction. Hence, we develop an open-source computer program that performs linear and non-linear interpolations of offset distance data against the incident proton energy, which further reduces the energy interval from 5 to 0.1 MeV. In addition, we perform spectral analysis to reconstruct the 13N Bragg peak, and the results are consistent with those predicted from Monte Carlo computations. Hence, the results are used to generate three-dimensional scatter plots of the 13N radionuclide distribution in the modeled phantom. The obtained results and the developed methodologies will facilitate future investigations into proton range monitoring for therapeutic applications.
Collapse
Affiliation(s)
- M. Rafiqul Islam
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Institute of Nuclear Medical Physics, AERE, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Mehrdad Shahmohammadi Beni
- Division of Radiation Protection and Safety control, CYRIC, Tohoku University, Sendai, Japan
- Department of Physics, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Chor-yi Ng
- Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Masayasu Miyake
- Division of Radiation Protection and Safety control, CYRIC, Tohoku University, Sendai, Japan
| | - Mahabubur Rahman
- Nuclear Safety Security Safeguard Division, Bangladesh Atomic Energy Regularity Authority, Dhaka, Bangladesh
| | | | | | - Taiga Yamaya
- National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Watabe
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Division of Radiation Protection and Safety control, CYRIC, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
7
|
Espinosa Rodriguez A, Onecha V, Sánchez-Tembleque V, Gutiérrez-Neira C, García-Díez M, Ibáñez P, España S, Sánchez-Parcerisa D, Udías J, Fraile L. Can iodine be used as a contrast agent for protontherapy range verification? Measurement of the 127I(p,n)127mXe (reaction) cross section in the 4.5–10 MeV energy range. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Jackson SA, Prise KM. 125 years of BJR and radiological research: reflecting on the anniversary series in celebration of the world's oldest radiology journal. Br J Radiol 2021; 94:bjr20219001. [PMID: 33305997 DOI: 10.1259/bjr.20219001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Simon A Jackson
- Peninsula Radiology Academy, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Kevin M Prise
- Patrick G, Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
9
|
Schaub L, Harrabi SB, Debus J. Particle therapy in the future of precision therapy. Br J Radiol 2020; 93:20200183. [PMID: 32795176 DOI: 10.1259/bjr.20200183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first hospital-based treatment facilities for particle therapy started operation about thirty years ago. Since then, the clinical experience with protons and carbon ions has grown continuously and more than 200,000 patients have been treated to date. The promising clinical results led to a rapidly increasing number of treatment facilities and many new facilities are planned or under construction all over the world. An inverted depth-dose profile combined with potential radiobiological advantages make charged particles a precious tool for the treatment of tumours that are particularly radioresistant or located nearby sensitive structures. A rising number of trials have already confirmed the benefits of particle therapy in selected clinical situations and further improvements in beam delivery, image guidance and treatment planning are expected. This review summarises some physical and biological characteristics of accelerated charged particles and gives some examples of their clinical application. Furthermore, challenges and future perspectives of particle therapy will be discussed.
Collapse
Affiliation(s)
- Lukas Schaub
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|