1
|
Abstract
The innate immune system has numerous signal transduction pathways that lead to the production of type I interferons in response to exposure of cells to external stimuli. One of these pathways comprises RNA polymerase (Pol) III that senses common DNA viruses, such as cytomegalovirus, vaccinia, herpes simplex virus-1 and varicella zoster virus. This polymerase detects and transcribes viral genomic regions to generate AU-rich transcripts that bring to the induction of type I interferons. Remarkably, Pol III is also stimulated by foreign non-viral DNAs and expression of one of its subunits is induced by an RNA virus, the Sindbis virus. Moreover, a protein subunit of RNase P, which is known to associate with Pol III in initiation complexes, is induced by viral infection. Accordingly, alliance of the two tRNA enzymes in innate immunity merits a consideration.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Israel-Canada
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Israel-Canada.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
2
|
Crystal structure of human RPP20-RPP25 proteins in complex with the P3 domain of lncRNA RMRP. J Struct Biol 2021; 213:107704. [PMID: 33571640 DOI: 10.1016/j.jsb.2021.107704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/21/2022]
Abstract
Human RNase MRP ribonucleoprotein complex is an essential endoribonuclease involved in the processing of ribosomal RNAs, mitochondrial RNAs and certain messenger RNAs. Its RNA subunit RMRP catalyzes the cleavage of substrate RNAs, and the protein components of RNase MRP are required for activity. RMRP mutations are associated with several types of inherited developmental disorders, but the pathogenic mechanism is largely unknown. Recent structural studies shed lights on the catalytic mechanism of yeast RNase MRP and the closely related RNase P; however, the structural and catalytic mechanism of RMRP in human RNase MRP complex remains unclear. Here we report the crystal structure of the P3 domain of RMRP in complex with the RPP20 and RPP25 proteins of human RNase MRP, which shows that the P3 RNA binds to a conserved positively-charged surface of the RPP20-RPP25 heterodimer through its distal stem and internal loop regions. The disease-related mutations of RMRPP3 are mostly located at the protein-RNA interface and are likely to weaken the binding of P3 to RPP20-RPP25. Moreover, the structure reveals a homodimeric organization of the entire RPP20-RPP25-RMRPP3 complex, which might mediate the dimerization of human RNase MRP complex in cells. These findings provide structural clues to the assembly and pathogenesis of human RNase MRP complex and also reveal a tetrameric feature of RPP20-RPP25 evolutionarily conserved with that of the archaeal Alba proteins.
Collapse
|
3
|
Perederina A, Li D, Lee H, Bator C, Berezin I, Hafenstein SL, Krasilnikov AS. Cryo-EM structure of catalytic ribonucleoprotein complex RNase MRP. Nat Commun 2020; 11:3474. [PMID: 32651392 PMCID: PMC7351766 DOI: 10.1038/s41467-020-17308-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
RNase MRP is an essential eukaryotic ribonucleoprotein complex involved in the maturation of rRNA and the regulation of the cell cycle. RNase MRP is related to the ribozyme-based RNase P, but it has evolved to have distinct cellular roles. We report a cryo-EM structure of the S. cerevisiae RNase MRP holoenzyme solved to 3.0 Å. We describe the structure of this 450 kDa complex, interactions between its components, and the organization of its catalytic RNA. We show that some of the RNase MRP proteins shared with RNase P undergo an unexpected RNA-driven remodeling that allows them to bind to divergent RNAs. Further, we reveal how this RNA-driven protein remodeling, acting together with the introduction of new auxiliary elements, results in the functional diversification of RNase MRP and its progenitor, RNase P, and demonstrate structural underpinnings of the acquisition of new functions by catalytic RNPs.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Di Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Carol Bator
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA.,Department of Medicine, Pennsylvania State University, Hershey, 17033, PA, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA. .,Center for RNA Biology, Pennsylvania State University, University Park, 16802, PA, USA.
| |
Collapse
|
4
|
Single-nucleotide control of tRNA folding cooperativity under near-cellular conditions. Proc Natl Acad Sci U S A 2019; 116:23075-23082. [PMID: 31666318 DOI: 10.1073/pnas.1913418116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RNA folding is often studied by renaturing full-length RNA in vitro and tracking folding transitions. However, the intracellular transcript folds as it emerges from the RNA polymerase. Here, we investigate the folding pathways and stability of numerous late-transcriptional intermediates of yeast and Escherichia coli transfer RNAs (tRNAs). Transfer RNA is a highly regulated functional RNA that undergoes multiple steps of posttranscriptional processing and is found in very different lengths during its lifetime in the cell. The precursor transcript is extended on both the 5' and 3' ends of the cloverleaf core, and these extensions get trimmed before addition of the 3'-CCA and aminoacylation. We studied the thermodynamics and structures of the precursor tRNA and of late-transcriptional intermediates of the cloverleaf structure. We examined RNA folding at both the secondary and tertiary structural levels using multiple biochemical and biophysical approaches. Our findings suggest that perhaps nature has selected for a single-base addition to control folding to the functional 3D structure. In near-cellular conditions, yeast tRNAPhe and E. coli tRNAAla transcripts fold in a single, cooperative transition only when nearly all of the nucleotides in the cloverleaf are transcribed by indirectly enhancing folding cooperativity. Furthermore, native extensions on the 5' and 3' ends do not interfere with cooperative core folding. This highly controlled cooperative folding has implications for recognition of tRNA by processing and modification enzymes and quality control of tRNA in cells.
Collapse
|
5
|
Perederina A, Berezin I, Krasilnikov AS. In vitro reconstitution and analysis of eukaryotic RNase P RNPs. Nucleic Acids Res 2019; 46:6857-6868. [PMID: 29722866 PMCID: PMC6061874 DOI: 10.1093/nar/gky333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/22/2018] [Indexed: 12/23/2022] Open
Abstract
RNase P is a ubiquitous site-specific endoribonuclease primarily responsible for the maturation of tRNA. Throughout the three domains of life, the canonical form of RNase P is a ribonucleoprotein (RNP) built around a catalytic RNA. The core RNA is well conserved from bacteria to eukaryotes, whereas the protein parts vary significantly. The most complex and the least understood form of RNase P is found in eukaryotes, where multiple essential proteins playing largely unknown roles constitute the bulk of the enzyme. Eukaryotic RNase P was considered intractable to in vitro reconstitution, mostly due to insolubility of its protein components, which hindered its studies. We have developed a robust approach to the in vitro reconstitution of Saccharomyces cerevisiae RNase P RNPs and used it to analyze the interplay and roles of RNase P components. The results eliminate the major obstacle to biochemical and structural studies of eukaryotic RNase P, identify components required for the activation of the catalytic RNA, reveal roles of proteins in the enzyme stability, localize proteins on RNase P RNA, and demonstrate the interdependence of the binding of RNase P protein modules to the core RNA.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Chan CW, Kiesel BR, Mondragón A. Crystal Structure of Human Rpp20/Rpp25 Reveals Quaternary Level Adaptation of the Alba Scaffold as Structural Basis for Single-stranded RNA Binding. J Mol Biol 2018; 430:1403-1416. [PMID: 29625199 DOI: 10.1016/j.jmb.2018.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 11/25/2022]
Abstract
Ribonuclease P (RNase P) catalyzes the removal of 5' leaders of tRNA precursors and its central catalytic RNA subunit is highly conserved across all domains of life. In eukaryotes, RNase P and RNase MRP, a closely related ribonucleoprotein enzyme, share several of the same protein subunits, contain a similar catalytic RNA core, and exhibit structural features that do not exist in their bacterial or archaeal counterparts. A unique feature of eukaryotic RNase P/MRP is the presence of two relatively long and unpaired internal loops within the P3 region of their RNA subunit bound by a heterodimeric protein complex, Rpp20/Rpp25. Here we present a crystal structure of the human Rpp20/Rpp25 heterodimer and we propose, using comparative structural analyses, that the evolutionary divergence of the single-stranded and helical nucleic acid binding specificities of eukaryotic Rpp20/Rpp25 and their related archaeal Alba chromatin protein dimers, respectively, originate primarily from quaternary level differences observed in their heterodimerization interface. Our work provides structural insights into how the archaeal Alba protein scaffold was adapted evolutionarily for incorporation into several functionally-independent eukaryotic ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Clarence W Chan
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, United States
| | - Benjamin R Kiesel
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, United States
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, United States.
| |
Collapse
|
7
|
Gopalan V, Jarrous N, Krasilnikov AS. Chance and necessity in the evolution of RNase P. RNA (NEW YORK, N.Y.) 2018; 24:1-5. [PMID: 28971852 PMCID: PMC5733564 DOI: 10.1261/rna.063107.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/22/2017] [Indexed: 05/20/2023]
Abstract
RNase P catalyzes 5'-maturation of tRNAs in all three domains of life. This primary function is accomplished by either a ribozyme-centered ribonucleoprotein (RNP) or a protein-only variant (with one to three polypeptides). The large, multicomponent archaeal and eukaryotic RNase P RNPs appear disproportionate to the simplicity of their role in tRNA 5'-maturation, prompting the question of why the seemingly gratuitously complex RNP forms of RNase P were not replaced with simpler protein counterparts. Here, motivated by growing evidence, we consider the hypothesis that the large RNase P RNP was retained as a direct consequence of multiple roles played by its components in processes that are not related to the canonical RNase P function.
Collapse
Affiliation(s)
- Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
8
|
Jarrous N. Roles of RNase P and Its Subunits. Trends Genet 2017; 33:594-603. [PMID: 28697848 DOI: 10.1016/j.tig.2017.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022]
Abstract
Recent studies show that nuclear RNase P is linked to chromatin structure and function. Thus, variants of this ribonucleoprotein (RNP) complex bind to chromatin of small noncoding RNA genes; integrate into initiation complexes of RNA polymerase (Pol) III; repress histone H3.3 nucleosome deposition; control tRNA and PIWI-interacting RNA (piRNA) gene clusters for genome defense; and respond to Werner syndrome helicase (WRN)-related replication stress and DNA double-strand breaks (DSBs). Likewise, the related RNase MRP and RMRP-TERT (telomerase reverse transcriptase) are implicated in RNA-dependent RNA polymerization for chromatin silencing, whereas the telomerase carries out RNA-dependent DNA polymerization for telomere lengthening. Remarkably, the four RNPs share several protein subunits, including two Alba-like chromatin proteins that possess DEAD-like and ATPase motifs found in chromatin modifiers and remodelers. Based on available data, RNase P and related RNPs act in transition processes of DNA to RNA and vice versa and connect these processes to genome preservation, including replication, DNA repair, and chromatin remodeling.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
9
|
Lemieux B, Laterreur N, Perederina A, Noël JF, Dubois ML, Krasilnikov AS, Wellinger RJ. Active Yeast Telomerase Shares Subunits with Ribonucleoproteins RNase P and RNase MRP. Cell 2016; 165:1171-1181. [PMID: 27156450 DOI: 10.1016/j.cell.2016.04.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/20/2016] [Accepted: 04/01/2016] [Indexed: 01/01/2023]
Abstract
Telomerase is the ribonucleoprotein enzyme that replenishes telomeric DNA and maintains genome integrity. Minimally, telomerase activity requires a templating RNA and a catalytic protein. Additional proteins are required for activity on telomeres in vivo. Here, we report that the Pop1, Pop6, and Pop7 proteins, known components of RNase P and RNase MRP, bind to yeast telomerase RNA and are essential constituents of the telomerase holoenzyme. Pop1/Pop6/Pop7 binding is specific and involves an RNA domain highly similar to a protein-binding domain in the RNAs of RNase P/MRP. The results also show that Pop1/Pop6/Pop7 function to maintain the essential components Est1 and Est2 on the RNA in vivo. Consistently, addition of Pop1 allows for telomerase activity reconstitution with wild-type telomerase RNA in vitro. Thus, the same chaperoning module has allowed the evolution of functionally and, remarkably, structurally distinct RNPs, telomerase, and RNases P/MRP from unrelated progenitor RNAs.
Collapse
Affiliation(s)
- Bruno Lemieux
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Nancy Laterreur
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jean-François Noël
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Marie-Line Dubois
- Department of Anatomy and Cellular Biology,Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Center of Excellence in RNA Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
10
|
Weinreb C, Riesselman AJ, Ingraham JB, Gross T, Sander C, Marks DS. 3D RNA and Functional Interactions from Evolutionary Couplings. Cell 2016; 165:963-75. [PMID: 27087444 DOI: 10.1016/j.cell.2016.03.030] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/15/2016] [Accepted: 03/18/2016] [Indexed: 11/18/2022]
Abstract
Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces the research on the structure and functional interactions of these RNA gene sequences. We mine the evolutionary sequence record to derive precise information about the function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions-e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by increasing sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA.
Collapse
Affiliation(s)
- Caleb Weinreb
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Adam J Riesselman
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - John B Ingraham
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Torsten Gross
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Institute of Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Chris Sander
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Newhart A, Powers SL, Shastrula PK, Sierra I, Joo LM, Hayden JE, Cohen AR, Janicki SM. RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition. Mol Biol Cell 2016; 27:1154-69. [PMID: 26842893 PMCID: PMC4814222 DOI: 10.1091/mbc.e15-02-0099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 01/28/2016] [Indexed: 11/15/2022] Open
Abstract
RNase P protein subunits Rpp29, POP1, and Rpp21 interact with histone H3.3 upstream of nucleosome deposition, suggesting that a variant of this enzyme regulates H3.3 function. Rpp29 knockdown increases H3.3 chromatin incorporation, suggesting that it represses H3.3 nucleosome deposition, which has important implications for epigenetic regulation. In mammals, histone H3.3 is a critical regulator of transcription state change and heritability at both euchromatin and heterochromatin. The H3.3-specific chaperone, DAXX, together with the chromatin-remodeling factor, ATRX, regulates H3.3 deposition and transcriptional silencing at repetitive DNA, including pericentromeres and telomeres. However, the events that precede H3.3 nucleosome incorporation have not been fully elucidated. We previously showed that the DAXX-ATRX-H3.3 pathway regulates a multi-copy array of an inducible transgene that can be visualized in single living cells. When this pathway is impaired, the array can be robustly activated. H3.3 is strongly recruited to the site during activation where it accumulates in a complex with transcribed sense and antisense RNA, which is distinct from the DNA/chromatin. This suggests that transcriptional events regulate H3.3 recruited to its incorporation sites. Here we report that the nucleolar RNA proteins Rpp29, fibrillarin, and RPL23a are also components of this H3.3/RNA complex. Rpp29 is a protein subunit of RNase P. Of the other subunits, POP1 and Rpp21 are similarly recruited suggesting that a variant of RNase P regulates H3.3 chromatin assembly. Rpp29 knockdown increases H3.3 chromatin incorporation, which suggests that Rpp29 represses H3.3 nucleosome deposition, a finding with implications for epigenetic regulation.
Collapse
Affiliation(s)
- Alyshia Newhart
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| | - Sara Lawrence Powers
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| | - Prashanth Krishna Shastrula
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104 Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| | - Isabel Sierra
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| | - Lucy M Joo
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| | - James E Hayden
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| | - Andrew R Cohen
- Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA 19104
| | - Susan M Janicki
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| |
Collapse
|
12
|
Smola MJ, Calabrese JM, Weeks KM. Detection of RNA-Protein Interactions in Living Cells with SHAPE. Biochemistry 2015; 54:6867-75. [PMID: 26544910 DOI: 10.1021/acs.biochem.5b00977] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA structural differences between any two states, and we use it here to detect RNA-protein interactions in healthy mouse trophoblast stem cells. We validate this approach by analysis of three model cytoplasmic and nuclear ribonucleoprotein complexes, in 2 min in-cell probing experiments. In contrast, data produced by alternative in-cell SHAPE probing methods correlate poorly (r = 0.2) with those generated by SHAPE-MaP and do not yield accurate signals for RNA-protein interactions. We then examine RNA-protein and RNA-substrate interactions in the RNase MRP complex and, by comparing in-cell interaction sites with disease-associated mutations, characterize these noncoding mutations in terms of molecular phenotype. Together, these results reveal that SHAPE-MaP can define true interaction sites and infer RNA functions under native cellular conditions with limited preexisting knowledge of the proteins or RNAs involved.
Collapse
Affiliation(s)
- Matthew J Smola
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | - J Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
13
|
Fagerlund RD, Perederina A, Berezin I, Krasilnikov AS. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components. RNA (NEW YORK, N.Y.) 2015; 21:1591-605. [PMID: 26135751 PMCID: PMC4536320 DOI: 10.1261/rna.049007.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/03/2015] [Indexed: 05/06/2023]
Abstract
Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P.
Collapse
Affiliation(s)
- Robert D Fagerlund
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
14
|
Saito Y, Takeda J, Adachi K, Nobe Y, Kobayashi J, Hirota K, Oliveira DV, Taoka M, Isobe T. RNase MRP cleaves pre-tRNASer-Met in the tRNA maturation pathway. PLoS One 2014; 9:e112488. [PMID: 25401760 PMCID: PMC4234475 DOI: 10.1371/journal.pone.0112488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/17/2014] [Indexed: 01/07/2023] Open
Abstract
Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNASer-Met. To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNASer-Met, suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry–based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute “Domain 1” in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.
Collapse
Affiliation(s)
- Yuichiro Saito
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Jun Takeda
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Kousuke Adachi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuko Nobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Junya Kobayashi
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Douglas V. Oliveira
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Krasilnikov AS. Applying UV crosslinking to study RNA-protein interactions in multicomponent ribonucleoprotein complexes. Methods Mol Biol 2014; 1086:193-207. [PMID: 24136605 DOI: 10.1007/978-1-62703-667-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ribonucleoprotein complexes (RNPs) play crucial roles in a wide range of biological processes. Here, we describe experimental approaches to the UV crosslinking-based identification of protein-binding sites on RNA, using multicomponent Saccharomyces cerevisiae RNPs of the RNase P/MRP family as an example. To identify the binding sites of a protein component of interest, a hexahistidine affinity tag was fused to that protein. Then RNase P/MRP RNPs were purified from yeast cells that had expressed the protein component of interest with the fused tag, subjected to UV crosslinking, and disassembled to separate the non-covalently-bound components. The protein component of interest was isolated under denaturing conditions using the hexahistidine tag as a purification handle. Provided that the isolated protein formed UV-induced crosslinks with the RNA component of the studied RNP, the isolation of the protein resulted in the co-isolation of the covalently bound RNP RNA. The isolated protein was enzymatically degraded, and the UV crosslinked RNA was purified. The locations of the crosslinks formed between the protein component of interest and the RNP RNA were identified by primer extension with a reverse transcriptase followed by gel electrophoresis; this procedure was repeated for all of the protein components of RNases P/MRP.
Collapse
Affiliation(s)
- Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
16
|
Esakova O, Perederina A, Berezin I, Krasilnikov AS. Conserved regions of ribonucleoprotein ribonuclease MRP are involved in interactions with its substrate. Nucleic Acids Res 2013; 41:7084-91. [PMID: 23700311 PMCID: PMC3737539 DOI: 10.1093/nar/gkt432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 01/19/2023] Open
Abstract
Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.
Collapse
Affiliation(s)
| | | | | | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology and Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
A two-piece derivative of a group I intron RNA as a platform for designing self-assembling RNA templates to promote Peptide ligation. J Nucleic Acids 2012; 2012:305867. [PMID: 22966423 PMCID: PMC3432377 DOI: 10.1155/2012/305867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022] Open
Abstract
Multicomponent RNA-peptide complexes are attractive from the viewpoint of artificial design of functional biomacromolecular systems. We have developed self-folding and self-assembling RNAs that serve as templates to assist chemical ligation between two reactive peptides with RNA-binding capabilities. The design principle of previous templates, however, can be applied only to limited classes of RNA-binding peptides. In this study, we employed a two-piece derivative of a group I intron RNA from the Tetrahymena large subunit ribosomal RNA (LSU rRNA) as a platform for new template RNAs. In this group I intron-based self-assembling platform, modules for the recognition of substrate peptides can be installed independently from modules holding the platform structure. The new self-assembling platform allows us to expand the repertoire of substrate peptides in template RNA design.
Collapse
|