1
|
Shen T, Hu Z, Sun S, Liu D, Wong F, Wang J, Chen J, Wang Y, Hong L, Xiao J, Zheng L, Krishnamoorthi T, King I, Wang S, Yin P, Collins JJ, Li Y. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat Methods 2024; 21:2287-2298. [PMID: 39572716 PMCID: PMC11621015 DOI: 10.1038/s41592-024-02487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024]
Abstract
Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.
Collapse
Affiliation(s)
- Tao Shen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Zhihang Hu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Di Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| | - Felix Wong
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Integrated Biosciences, Redwood City, CA, USA
| | - Jiuming Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- OneAIM Ltd, Hong Kong SAR, China
| | - Jiayang Chen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yixuan Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Hong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jin Xiao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangzhen Zheng
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Tejas Krishnamoorthi
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Irwin King
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd, Shanghai, China.
- Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Yu Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
2
|
Shin JH, Cuevas LM, Roy R, Bonilla SL, Al-Hashimi H, Greenleaf WJ, Herschlag D. Exploring the energetic and conformational properties of the sequence space connecting naturally occurring RNA tetraloop receptor motifs. RNA (NEW YORK, N.Y.) 2024; 30:1646-1659. [PMID: 39362695 PMCID: PMC11571812 DOI: 10.1261/rna.080039.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Folded RNAs contain tertiary contact motifs whose structures and energetics are conserved across different RNAs. The transferable properties of RNA motifs simplify the RNA folding problem, but measuring energetic and conformational properties of many motifs remains a challenge. Here, we use a high-throughput thermodynamic approach to investigate how sequence changes alter the binding properties of naturally occurring motifs, the GAAA tetraloop • tetraloop receptor (TLR) interactions. We measured the binding energies and conformational preferences of TLR sequences that span mutational pathways from the canonical 11ntR to two other natural TLRs, the IC3R and Vc2R. While the IC3R and Vc2R share highly similar energetic and conformational properties, the landscapes that map the sequence changes for their conversion from the 11ntR to changes in these properties differ dramatically. Differences in the energetic landscapes stem from the mutations needed to convert the 11ntR to the IC3R and Vc2R rather than a difference in the intrinsic energetic architectures of these TLRs. The conformational landscapes feature several nonnative TLR variants with conformational preferences that differ from both the initial and final TLRs; these species represent potential branching points along the multidimensional sequence space to sequences with greater fitness in other RNA contexts with alternative conformational preferences. Our high-throughput, quantitative approach reveals the complex nature of sequence-fitness landscapes and leads to models for their molecular origins. Systematic and quantitative molecular approaches provide critical insights into understanding the evolution of natural RNAs as they traverse complex landscapes in response to selective pressures.
Collapse
Affiliation(s)
- John H Shin
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Lena M Cuevas
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Steve L Bonilla
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, New York, New York 10065, USA
| | - Hashim Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Chem-H Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
3
|
Mukherjee S, Moafinejad SN, Badepally NG, Merdas K, Bujnicki JM. Advances in the field of RNA 3D structure prediction and modeling, with purely theoretical approaches, and with the use of experimental data. Structure 2024; 32:1860-1876. [PMID: 39321802 DOI: 10.1016/j.str.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Recent advancements in RNA three-dimensional (3D) structure prediction have provided significant insights into RNA biology, highlighting the essential role of RNA in cellular functions and its therapeutic potential. This review summarizes the latest developments in computational methods, particularly the incorporation of artificial intelligence and machine learning, which have improved the efficiency and accuracy of RNA structure predictions. We also discuss the integration of new experimental data types, including cryoelectron microscopy (cryo-EM) techniques and high-throughput sequencing, which have transformed RNA structure modeling. The combination of experimental advances with computational methods represents a significant leap in RNA structure determination. We review the outcomes of RNA-Puzzles and critical assessment of structure prediction (CASP) challenges, which assess the state of the field and limitations of existing methods. Future perspectives are discussed, focusing on the impact of RNA 3D structure prediction on understanding RNA mechanisms and its implications for drug discovery and RNA-targeted therapies, opening new avenues in molecular biology.
Collapse
Affiliation(s)
- Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - S Naeim Moafinejad
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Katarzyna Merdas
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.
| |
Collapse
|
4
|
Zeng C, Zhuo C, Gao J, Liu H, Zhao Y. Advances and Challenges in Scoring Functions for RNA-Protein Complex Structure Prediction. Biomolecules 2024; 14:1245. [PMID: 39456178 PMCID: PMC11506084 DOI: 10.3390/biom14101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
RNA-protein complexes play a crucial role in cellular functions, providing insights into cellular mechanisms and potential therapeutic targets. However, experimental determination of these complex structures is often time-consuming and resource-intensive, and it rarely yields high-resolution data. Many computational approaches have been developed to predict RNA-protein complex structures in recent years. Despite these advances, achieving accurate and high-resolution predictions remains a formidable challenge, primarily due to the limitations inherent in current RNA-protein scoring functions. These scoring functions are critical tools for evaluating and interpreting RNA-protein interactions. This review comprehensively explores the latest advancements in scoring functions for RNA-protein docking, delving into the fundamental principles underlying various approaches, including coarse-grained knowledge-based, all-atom knowledge-based, and machine-learning-based methods. We critically evaluate the strengths and limitations of existing scoring functions, providing a detailed performance assessment. Considering the significant progress demonstrated by machine learning techniques, we discuss emerging trends and propose future research directions to enhance the accuracy and efficiency of scoring functions in RNA-protein complex prediction. We aim to inspire the development of more sophisticated and reliable computational tools in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | | | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China; (C.Z.); (C.Z.); (J.G.); (H.L.)
| |
Collapse
|
5
|
Sha CM, Wang J, Dokholyan NV. Predicting 3D RNA structure from the nucleotide sequence using Euclidean neural networks. Biophys J 2024; 123:2671-2681. [PMID: 37838833 PMCID: PMC11393712 DOI: 10.1016/j.bpj.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
Fast and accurate 3D RNA structure prediction remains a major challenge in structural biology, mostly due to the size and flexibility of RNA molecules, as well as the lack of diverse experimentally determined structures of RNA molecules. Unlike DNA structure, RNA structure is far less constrained by basepair hydrogen bonding, resulting in an explosion of potential stable states. Here, we propose a convolutional neural network that predicts all pairwise distances between residues in an RNA, using a recently described smooth parametrization of Euclidean distance matrices. We achieve high-accuracy predictions on RNAs up to 100 nt in length in fractions of a second, a factor of 107 faster than existing molecular dynamics-based methods. We also convert our coarse-grained machine learning output into an all-atom model using discrete molecular dynamics with constraints. Our proposed computational pipeline predicts all-atom RNA models solely from the nucleotide sequence. However, this method suffers from the same limitation as nucleic acid molecular dynamics: the scarcity of available RNA crystal structures for training.
Collapse
Affiliation(s)
- Congzhou M Sha
- Department of Engineering Science and Mechanics, Penn State University, State College, Pennsylvania; Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Nikolay V Dokholyan
- Department of Engineering Science and Mechanics, Penn State University, State College, Pennsylvania; Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania; Department of Chemistry, Penn State University, State College, Pennsylvania; Department of Biomedical Engineering, Penn State University, State College, Pennsylvania.
| |
Collapse
|
6
|
Zhang S, Li J, Chen SJ. Machine learning in RNA structure prediction: Advances and challenges. Biophys J 2024; 123:2647-2657. [PMID: 38297836 PMCID: PMC11393687 DOI: 10.1016/j.bpj.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
RNA molecules play a crucial role in various biological processes, with their functionality closely tied to their structures. The remarkable advancements in machine learning techniques for protein structure prediction have shown promise in the field of RNA structure prediction. In this perspective, we discuss the advances and challenges encountered in constructing machine learning-based models for RNA structure prediction. We explore topics including model building strategies, specific challenges involved in predicting RNA secondary (2D) and tertiary (3D) structures, and approaches to these challenges. In addition, we highlight the advantages and challenges of constructing RNA language models. Given the rapid advances of machine learning techniques, we anticipate that machine learning-based models will serve as important tools for predicting RNA structures, thereby enriching our understanding of RNA structures and their corresponding functions.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri
| | - Jun Li
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri
| | - Shi-Jie Chen
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri; Department of Biochemistry, University of Missouri, Columbia, Missouri.
| |
Collapse
|
7
|
Szikszai M, Magnus M, Sanghi S, Kadyan S, Bouatta N, Rivas E. RNA3DB: A structurally-dissimilar dataset split for training and benchmarking deep learning models for RNA structure prediction. J Mol Biol 2024; 436:168552. [PMID: 38552946 PMCID: PMC11377173 DOI: 10.1016/j.jmb.2024.168552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
With advances in protein structure prediction thanks to deep learning models like AlphaFold, RNA structure prediction has recently received increased attention from deep learning researchers. RNAs introduce substantial challenges due to the sparser availability and lower structural diversity of the experimentally resolved RNA structures in comparison to protein structures. These challenges are often poorly addressed by the existing literature, many of which report inflated performance due to using training and testing sets with significant structural overlap. Further, the most recent Critical Assessment of Structure Prediction (CASP15) has shown that deep learning models for RNA structure are currently outperformed by traditional methods. In this paper we present RNA3DB, a dataset of structured RNAs, derived from the Protein Data Bank (PDB), that is designed for training and benchmarking deep learning models. The RNA3DB method arranges the RNA 3D chains into distinct groups (Components) that are non-redundant both with regard to sequence as well as structure, providing a robust way of dividing training, validation, and testing sets. Any split of these structurally-dissimilar Components are guaranteed to produce test and validations sets that are distinct by sequence and structure from those in the training set. We provide the RNA3DB dataset, a particular train/test split of the RNA3DB Components (in an approximate 70/30 ratio) that will be updated periodically. We also provide the RNA3DB methodology along with the source-code, with the goal of creating a reproducible and customizable tool for producing structurally-dissimilar dataset splits for structural RNAs.
Collapse
Affiliation(s)
- Marcell Szikszai
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Marcin Magnus
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Siddhant Sanghi
- Department of Systems Biology, Columbia University, New York 10027, NY, USA; College of Biological Sciences, UC Davis, Davis 95616, CA, USA
| | - Sachin Kadyan
- Department of Systems Biology, Columbia University, New York 10027, NY, USA
| | - Nazim Bouatta
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston 02115, MA, USA
| | - Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, MA, USA
| |
Collapse
|
8
|
Nithin C, Kmiecik S, Błaszczyk R, Nowicka J, Tuszyńska I. Comparative analysis of RNA 3D structure prediction methods: towards enhanced modeling of RNA-ligand interactions. Nucleic Acids Res 2024; 52:7465-7486. [PMID: 38917327 PMCID: PMC11260495 DOI: 10.1093/nar/gkae541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Accurate RNA structure models are crucial for designing small molecule ligands that modulate their functions. This study assesses six standalone RNA 3D structure prediction methods-DeepFoldRNA, RhoFold, BRiQ, FARFAR2, SimRNA and Vfold2, excluding web-based tools due to intellectual property concerns. We focus on reproducing the RNA structure existing in RNA-small molecule complexes, particularly on the ability to model ligand binding sites. Using a comprehensive set of RNA structures from the PDB, which includes diverse structural elements, we found that machine learning (ML)-based methods effectively predict global RNA folds but are less accurate with local interactions. Conversely, non-ML-based methods demonstrate higher precision in modeling intramolecular interactions, particularly with secondary structure restraints. Importantly, ligand-binding site accuracy can remain sufficiently high for practical use, even if the overall model quality is not optimal. With the recent release of AlphaFold 3, we included this advanced method in our tests. Benchmark subsets containing new structures, not used in the training of the tested ML methods, show that AlphaFold 3's performance was comparable to other ML-based methods, albeit with some challenges in accurately modeling ligand binding sites. This study underscores the importance of enhancing binding site prediction accuracy and the challenges in modeling RNA-ligand interactions accurately.
Collapse
Affiliation(s)
- Chandran Nithin
- Molecure SA, 02-089 Warsaw, Poland
- Laboratory of Computational Biology, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Sebastian Kmiecik
- Laboratory of Computational Biology, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | | | | | | |
Collapse
|
9
|
Bernard C, Postic G, Ghannay S, Tahi F. State-of-the-RNArt: benchmarking current methods for RNA 3D structure prediction. NAR Genom Bioinform 2024; 6:lqae048. [PMID: 38745991 PMCID: PMC11091930 DOI: 10.1093/nargab/lqae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
RNAs are essential molecules involved in numerous biological functions. Understanding RNA functions requires the knowledge of their 3D structures. Computational methods have been developed for over two decades to predict the 3D conformations from RNA sequences. These computational methods have been widely used and are usually categorised as either ab initio or template-based. The performances remain to be improved. Recently, the rise of deep learning has changed the sight of novel approaches. Deep learning methods are promising, but their adaptation to RNA 3D structure prediction remains difficult. In this paper, we give a brief review of the ab initio, template-based and novel deep learning approaches. We highlight the different available tools and provide a benchmark on nine methods using the RNA-Puzzles dataset. We provide an online dashboard that shows the predictions made by benchmarked methods, freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr/evryrna/state_of_the_rnart/.
Collapse
Affiliation(s)
- Clément Bernard
- Université Paris-Saclay, Univ. Evry, IBISC, 91020 Evry-Courcouronnes, France
- LISN - CNRS/Université Paris-Saclay, 91400 Orsay, France
| | - Guillaume Postic
- Université Paris-Saclay, Univ. Evry, IBISC, 91020 Evry-Courcouronnes, France
| | - Sahar Ghannay
- LISN - CNRS/Université Paris-Saclay, 91400 Orsay, France
| | - Fariza Tahi
- Université Paris-Saclay, Univ. Evry, IBISC, 91020 Evry-Courcouronnes, France
| |
Collapse
|
10
|
Bernard C, Postic G, Ghannay S, Tahi F. RNAdvisor: a comprehensive benchmarking tool for the measure and prediction of RNA structural model quality. Brief Bioinform 2024; 25:bbae064. [PMID: 38436560 PMCID: PMC10939302 DOI: 10.1093/bib/bbae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
RNA is a complex macromolecule that plays central roles in the cell. While it is well known that its structure is directly related to its functions, understanding and predicting RNA structures is challenging. Assessing the real or predictive quality of a structure is also at stake with the complex 3D possible conformations of RNAs. Metrics have been developed to measure model quality while scoring functions aim at assigning quality to guide the discrimination of structures without a known and solved reference. Throughout the years, many metrics and scoring functions have been developed, and no unique assessment is used nowadays. Each developed assessment method has its specificity and might be complementary to understanding structure quality. Therefore, to evaluate RNA 3D structure predictions, it would be important to calculate different metrics and/or scoring functions. For this purpose, we developed RNAdvisor, a comprehensive automated software that integrates and enhances the accessibility of existing metrics and scoring functions. In this paper, we present our RNAdvisor tool, as well as state-of-the-art existing metrics, scoring functions and a set of benchmarks we conducted for evaluating them. Source code is freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr.
Collapse
Affiliation(s)
- Clement Bernard
- Université Paris Saclay, Univ Evry, IBISC, 91020 Evry-Courcouronnes, France
| | - Guillaume Postic
- Université Paris Saclay, Univ Evry, IBISC, 91020 Evry-Courcouronnes, France
| | - Sahar Ghannay
- LISN - CNRS/Université Paris-Saclay, France, 91400 Orsay, France
| | - Fariza Tahi
- Université Paris Saclay, Univ Evry, IBISC, 91020 Evry-Courcouronnes, France
| |
Collapse
|
11
|
Das R, Kretsch RC, Simpkin AJ, Mulvaney T, Pham P, Rangan R, Bu F, Keegan RM, Topf M, Rigden DJ, Miao Z, Westhof E. Assessment of three-dimensional RNA structure prediction in CASP15. Proteins 2023; 91:1747-1770. [PMID: 37876231 PMCID: PMC10841292 DOI: 10.1002/prot.26602] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023]
Abstract
The prediction of RNA three-dimensional structures remains an unsolved problem. Here, we report assessments of RNA structure predictions in CASP15, the first CASP exercise that involved RNA structure modeling. Forty-two predictor groups submitted models for at least one of twelve RNA-containing targets. These models were evaluated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assessment of proteins and generalized here for RNA assessment. The two assessments independently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen), and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches were significantly worse than these top ranked groups, which did not use deep learning. Further analyses based on direct comparison of predicted models to cryogenic electron microscopy (cryo-EM) maps and x-ray diffraction data support these rankings. With the exception of two RNA-protein complexes, models submitted by CASP15 groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15 submissions to designed RNA nanostructures as well as molecular replacement trials highlight the potential utility of current RNA modeling approaches for RNA nanotechnology and structural biology, respectively. Nevertheless, challenges remain in modeling fine details such as noncanonical pairs, in ranking among submitted models, and in prediction of multiple structures resolved by cryo-EM or crystallography.
Collapse
Affiliation(s)
- Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, CA USA
- Biophysics Program, Stanford University School of Medicine, CA USA
- Howard Hughes Medical Institute, Stanford University, CA USA
| | | | - Adam J. Simpkin
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Phillip Pham
- Department of Biochemistry, Stanford University School of Medicine, CA USA
| | - Ramya Rangan
- Biophysics Program, Stanford University School of Medicine, CA USA
| | - Fan Bu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Ronan M. Keegan
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
- Life Science, Diamond Light Source, Harwell Science, UK
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Daniel J. Rigden
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| |
Collapse
|
12
|
Li J, Zhang S, Chen SJ. Advancing RNA 3D structure prediction: Exploring hierarchical and hybrid approaches in CASP15. Proteins 2023; 91:1779-1789. [PMID: 37615235 PMCID: PMC10841231 DOI: 10.1002/prot.26583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/19/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
In CASP15, we used an integrated hierarchical and hybrid approach to predict RNA structures. The approach involves three steps. First, with the use of physics-based methods, Vfold2D-MC and VfoldMCPX, we predict the 2D structures from the sequence. Second, we employ template-based methods, Vfold3D and VfoldLA, to build 3D scaffolds for the predicted 2D structures. Third, using the 3D scaffolds as initial structures and the predicted 2D structures as constraints, we predict the 3D structure from coarse-grained molecular dynamics simulations, IsRNA and RNAJP. Our approach was evaluated on 12 RNA targets in CASP15 and ranked second among all the 34 participating teams. The result demonstrated the reliability of our method in predicting RNA 2D structures with high accuracy and RNA 3D structures with moderate accuracy. Further improvements in RNA structure prediction for the next round of CASP may come from the incorporation of the physics-based method with machine learning techniques.
Collapse
Affiliation(s)
- Jun Li
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Sicheng Zhang
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
13
|
Kretsch RC, Andersen ES, Bujnicki JM, Chiu W, Das R, Luo B, Masquida B, McRae EK, Schroeder GM, Su Z, Wedekind JE, Xu L, Zhang K, Zheludev IN, Moult J, Kryshtafovych A. RNA target highlights in CASP15: Evaluation of predicted models by structure providers. Proteins 2023; 91:1600-1615. [PMID: 37466021 PMCID: PMC10792523 DOI: 10.1002/prot.26550] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
The first RNA category of the Critical Assessment of Techniques for Structure Prediction competition was only made possible because of the scientists who provided experimental structures to challenge the predictors. In this article, these scientists offer a unique and valuable analysis of both the successes and areas for improvement in the predicted models. All 10 RNA-only targets yielded predictions topologically similar to experimentally determined structures. For one target, experimentalists were able to phase their x-ray diffraction data by molecular replacement, showing a potential application of structure predictions for RNA structural biologists. Recommended areas for improvement include: enhancing the accuracy in local interaction predictions and increased consideration of the experimental conditions such as multimerization, structure determination method, and time along folding pathways. The prediction of RNA-protein complexes remains the most significant challenge. Finally, given the intrinsic flexibility of many RNAs, we propose the consideration of ensemble models.
Collapse
Affiliation(s)
- Rachael C. Kretsch
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Ebbe S. Andersen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Janusz M. Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Wah Chiu
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Rhiju Das
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, Sichuan, China
| | - Benoît Masquida
- UMR 7156, CNRS – Universite de Strasbourg, Strasbourg, France
| | - Ewan K.S. McRae
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Griffin M. Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, Sichuan, China
| | - Joseph E. Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Lily Xu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ivan N. Zheludev
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - John Moult
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | | |
Collapse
|
14
|
Baulin EF, Mukherjee S, Moafinejad SN, Wirecki TK, Badepally NG, Jaryani F, Stefaniak F, Amiri Farsani M, Ray A, Rocha de Moura T, Bujnicki JM. RNA tertiary structure prediction in CASP15 by the GeneSilico group: Folding simulations based on statistical potentials and spatial restraints. Proteins 2023; 91:1800-1810. [PMID: 37622458 DOI: 10.1002/prot.26575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Ribonucleic acid (RNA) molecules serve as master regulators of cells by encoding their biological function in the ribonucleotide sequence, particularly their ability to interact with other molecules. To understand how RNA molecules perform their biological tasks and to design new sequences with specific functions, it is of great benefit to be able to computationally predict how RNA folds and interacts in the cellular environment. Our workflow for computational modeling of the 3D structures of RNA and its interactions with other molecules uses a set of methods developed in our laboratory, including MeSSPredRNA for predicting canonical and non-canonical base pairs, PARNASSUS for detecting remote homology based on comparisons of sequences and secondary structures, ModeRNA for comparative modeling, the SimRNA family of programs for modeling RNA 3D structure and its complexes with other molecules, and QRNAS for model refinement. In this study, we present the results of testing this workflow in predicting RNA 3D structures in the CASP15 experiment. The overall high score of the computational models predicted by our group demonstrates the robustness of our workflow and its individual components in terms of predicting RNA 3D structures of acceptable quality that are close to the target structures. However, the variance in prediction quality is still quite high, and the results are still too far from the level of protein 3D structure predictions. This exercise led us to consider several improvements, especially to better predict and enforce stacking interactions and non-canonical base pairs.
Collapse
Affiliation(s)
- Eugene F Baulin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - S Naeim Moafinejad
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Tomasz K Wirecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Farhang Jaryani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Filip Stefaniak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Masoud Amiri Farsani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Angana Ray
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Tales Rocha de Moura
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Kryshtafovych A, Antczak M, Szachniuk M, Zok T, Kretsch RC, Rangan R, Pham P, Das R, Robin X, Studer G, Durairaj J, Eberhardt J, Sweeney A, Topf M, Schwede T, Fidelis K, Moult J. New prediction categories in CASP15. Proteins 2023; 91:1550-1557. [PMID: 37306011 PMCID: PMC10713864 DOI: 10.1002/prot.26515] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Prediction categories in the Critical Assessment of Structure Prediction (CASP) experiments change with the need to address specific problems in structure modeling. In CASP15, four new prediction categories were introduced: RNA structure, ligand-protein complexes, accuracy of oligomeric structures and their interfaces, and ensembles of alternative conformations. This paper lists technical specifications for these categories and describes their integration in the CASP data management system.
Collapse
Affiliation(s)
| | - Maciej Antczak
- Institute of Computing Science, Poznan University of TechnologyPoznanPoland
- Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznanPoland
| | - Marta Szachniuk
- Institute of Computing Science, Poznan University of TechnologyPoznanPoland
- Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznanPoland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of TechnologyPoznanPoland
- Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznanPoland
| | - Rachael C. Kretsch
- Biophysics Program, Stanford University School of MedicineStanfordCaliforniaUSA
| | - Ramya Rangan
- Biophysics Program, Stanford University School of MedicineStanfordCaliforniaUSA
| | - Phillip Pham
- Biochemistry DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | - Rhiju Das
- Biochemistry DepartmentStanford University School of MedicineStanfordCaliforniaUSA
- Howard Hughes Medical Institute, Stanford UniversityStanfordCaliforniaUSA
| | - Xavier Robin
- Biozentrum, University of BaselBaselSwitzerland
- SIB Swiss Institute of BioinformaticsBaselSwitzerland
| | - Gabriel Studer
- Biozentrum, University of BaselBaselSwitzerland
- SIB Swiss Institute of BioinformaticsBaselSwitzerland
| | - Janani Durairaj
- Biozentrum, University of BaselBaselSwitzerland
- SIB Swiss Institute of BioinformaticsBaselSwitzerland
| | - Jerome Eberhardt
- Biozentrum, University of BaselBaselSwitzerland
- SIB Swiss Institute of BioinformaticsBaselSwitzerland
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB), Leibniz‐Institut für Virologie (LIV)HamburgGermany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Leibniz‐Institut für Virologie (LIV)HamburgGermany
- Universitätsklinikum Hamburg Eppendorf (UKE)HamburgGermany
| | - Torsten Schwede
- Biozentrum, University of BaselBaselSwitzerland
- SIB Swiss Institute of BioinformaticsBaselSwitzerland
| | | | - John Moult
- Institute for Bioscience and Biotechnology Research, Department of Cell Biology and Molecular genetics, University of MarylandRockvilleMarylandUSA
| |
Collapse
|
16
|
Wang W, Feng C, Han R, Wang Z, Ye L, Du Z, Wei H, Zhang F, Peng Z, Yang J. trRosettaRNA: automated prediction of RNA 3D structure with transformer network. Nat Commun 2023; 14:7266. [PMID: 37945552 PMCID: PMC10636060 DOI: 10.1038/s41467-023-42528-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
RNA 3D structure prediction is a long-standing challenge. Inspired by the recent breakthrough in protein structure prediction, we developed trRosettaRNA, an automated deep learning-based approach to RNA 3D structure prediction. The trRosettaRNA pipeline comprises two major steps: 1D and 2D geometries prediction by a transformer network; and 3D structure folding by energy minimization. Benchmark tests suggest that trRosettaRNA outperforms traditional automated methods. In the blind tests of the 15th Critical Assessment of Structure Prediction (CASP15) and the RNA-Puzzles experiments, the automated trRosettaRNA predictions for the natural RNAs are competitive with the top human predictions. trRosettaRNA also outperforms other deep learning-based methods in CASP15 when measured by the Z-score of the Root-Mean-Square Deviation. Nevertheless, it remains challenging to predict accurate structures for synthetic RNAs with an automated approach. We hope this work could be a good start toward solving the hard problem of RNA structure prediction with deep learning.
Collapse
Affiliation(s)
- Wenkai Wang
- School of Mathematical Sciences, Nankai University, Tianjin, 300071, China
| | - Chenjie Feng
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
- School of Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Renmin Han
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Ziyi Wang
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Lisha Ye
- School of Mathematical Sciences, Nankai University, Tianjin, 300071, China
| | - Zongyang Du
- School of Mathematical Sciences, Nankai University, Tianjin, 300071, China
| | - Hong Wei
- School of Mathematical Sciences, Nankai University, Tianjin, 300071, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhenling Peng
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China.
| | - Jianyi Yang
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
17
|
Schneider B, Sweeney BA, Bateman A, Cerny J, Zok T, Szachniuk M. When will RNA get its AlphaFold moment? Nucleic Acids Res 2023; 51:9522-9532. [PMID: 37702120 PMCID: PMC10570031 DOI: 10.1093/nar/gkad726] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
The protein structure prediction problem has been solved for many types of proteins by AlphaFold. Recently, there has been considerable excitement to build off the success of AlphaFold and predict the 3D structures of RNAs. RNA prediction methods use a variety of techniques, from physics-based to machine learning approaches. We believe that there are challenges preventing the successful development of deep learning-based methods like AlphaFold for RNA in the short term. Broadly speaking, the challenges are the limited number of structures and alignments making data-hungry deep learning methods unlikely to succeed. Additionally, there are several issues with the existing structure and sequence data, as they are often of insufficient quality, highly biased and missing key information. Here, we discuss these challenges in detail and suggest some steps to remedy the situation. We believe that it is possible to create an accurate RNA structure prediction method, but it will require solving several data quality and volume issues, usage of data beyond simple sequence alignments, or the development of new less data-hungry machine learning methods.
Collapse
Affiliation(s)
- Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
| | - Blake Alexander Sweeney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Jiri Cerny
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
| | - Tomasz Zok
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
18
|
Das R, Kretsch RC, Simpkin AJ, Mulvaney T, Pham P, Rangan R, Bu F, Keegan RM, Topf M, Rigden DJ, Miao Z, Westhof E. Assessment of three-dimensional RNA structure prediction in CASP15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538330. [PMID: 37162955 PMCID: PMC10168427 DOI: 10.1101/2023.04.25.538330] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The prediction of RNA three-dimensional structures remains an unsolved problem. Here, we report assessments of RNA structure predictions in CASP15, the first CASP exercise that involved RNA structure modeling. Forty two predictor groups submitted models for at least one of twelve RNA-containing targets. These models were evaluated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assessment of proteins and generalized here for RNA assessment. The two assessments independently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen), and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches were significantly worse than these top ranked groups, which did not use deep learning. Further analyses based on direct comparison of predicted models to cryogenic electron microscopy (cryo-EM) maps and X-ray diffraction data support these rankings. With the exception of two RNA-protein complexes, models submitted by CASP15 groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15 submissions to designed RNA nanostructures as well as molecular replacement trials highlight the potential utility of current RNA modeling approaches for RNA nanotechnology and structural biology, respectively. Nevertheless, challenges remain in modeling fine details such as non-canonical pairs, in ranking among submitted models, and in prediction of multiple structures resolved by cryo-EM or crystallography.
Collapse
Affiliation(s)
- Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, CA USA
- Biophysics Program, Stanford University School of Medicine, CA USA
- Howard Hughes Medical Institute, Stanford University, CA USA
| | | | - Adam J. Simpkin
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV)
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Phillip Pham
- Department of Biochemistry, Stanford University School of Medicine, CA USA
| | - Ramya Rangan
- Biophysics Program, Stanford University School of Medicine, CA USA
| | - Fan Bu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
- Division of Life Sciences and Medicine,University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Ronan M. Keegan
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
- Life Science, Diamond Light Source, Harwell Science, UK
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV)
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Daniel J. Rigden
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| |
Collapse
|
19
|
Kagaya Y, Zhang Z, Ibtehaz N, Wang X, Nakamura T, Huang D, Kihara D. NuFold: A Novel Tertiary RNA Structure Prediction Method Using Deep Learning with Flexible Nucleobase Center Representation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558715. [PMID: 37790488 PMCID: PMC10542152 DOI: 10.1101/2023.09.20.558715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
RNA is not only playing a core role in the central dogma as mRNA between DNA and protein, but also many non-coding RNAs have been discovered to have unique and diverse biological functions. As genome sequences become increasingly available and our knowledge of RNA sequences grows, the study of RNA's structure and function has become more demanding. However, experimental determination of three-dimensional RNA structures is both costly and time-consuming, resulting in a substantial disparity between RNA sequence data and structural insights. In response to this challenge, we propose a novel computational approach that harnesses state-of-the-art deep learning architecture NuFold to accurately predict RNA tertiary structures. This approach aims to offer a cost-effective and efficient means of bridging the gap between RNA sequence information and structural comprehension. NuFold implements a nucleobase center representation, which allows it to reproduce all possible nucleotide conformations accurately.
Collapse
Affiliation(s)
- Yuki Kagaya
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Nabil Ibtehaz
- Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Tsukasa Nakamura
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - David Huang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
20
|
Perry ZR, Pyle AM, Zhang C. Arena: Rapid and Accurate Reconstruction of Full Atomic RNA Structures From Coarse-grained Models. J Mol Biol 2023; 435:168210. [PMID: 37479079 DOI: 10.1016/j.jmb.2023.168210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
RNA tertiary structures from experiments or computational predictions often contain missing atoms, which prevent analyses requiring full atomic structures. Current programs for RNA reconstruction can be slow, inaccurate, and/or require specific atoms to be present in the input. We present Arena (Atomic Reconstruction of RNA), which reconstructs a full atomic RNA structure from residues that can have as few as one atom. Arena first fills in missing atoms and then iteratively refines their placement to reduce nonideal geometries. We benchmarked Arena on a dataset of 361 RNA structures, where Arena achieves high accuracy and speed compared to other structure reconstruction programs. For example, Arena was used to reconstruct full atomic structures from a single phosphorus atom per nucleotide to, on average, within 3.63 Å RMSD of the experimental structure, while virtually removing all clashes and running in <3 s, which is 353× and 46× faster than state-of-the-art programs PDBFixer and C2A, respectively. The Arena source code is available at https://github.com/pylelab/Arena and the webserver at https://zhanggroup.org/Arena/.
Collapse
Affiliation(s)
- Zion R Perry
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA. https://twitter.com/@zionrperry
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA.
| | - Chengxin Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Lazzeri G, Micheletti C, Pasquali S, Faccioli P. RNA folding pathways from all-atom simulations with a variationally improved history-dependent bias. Biophys J 2023; 122:3089-3098. [PMID: 37355771 PMCID: PMC10432211 DOI: 10.1016/j.bpj.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Atomically detailed simulations of RNA folding have proven very challenging in view of the difficulties of developing realistic force fields and the intrinsic computational complexity of sampling rare conformational transitions. As a step forward in tackling these issues, we extend to RNA an enhanced path-sampling method previously successfully applied to proteins. In this scheme, the information about the RNA's native structure is harnessed by a soft history-dependent biasing force promoting the generation of productive folding trajectories in an all-atom force field with explicit solvent. A rigorous variational principle is then applied to minimize the effect of the bias. Here, we report on an application of this method to RNA molecules from 20 to 47 nucleotides long and increasing topological complexity. By comparison with analog simulations performed on small proteins with similar size and architecture, we show that the RNA folding landscape is significantly more frustrated, even for relatively small chains with a simple topology. The predicted RNA folding mechanisms are found to be consistent with the available experiments and some of the existing coarse-grained models. Due to its computational performance, this scheme provides a promising platform to efficiently gather atomistic RNA folding trajectories, thus retain the information about the chemical composition of the sequence.
Collapse
Affiliation(s)
- Gianmarco Lazzeri
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany; Physics Department of Trento University, Povo (Trento), Italy
| | | | - Samuela Pasquali
- Laboratoire Cibles Thérapeutiques et Conception de Médicaments, Université Paris Cité, Paris, France; Laboratoire Biologie Fonctionnelle et Adaptative, Université Paris Cité, Paris, France.
| | - Pietro Faccioli
- Physics Department of Trento University, Povo (Trento), Italy; INFN-TIFPA, Povo (Trento), Italy.
| |
Collapse
|
22
|
Ropii B, Bethasari M, Anshori I, Koesoema AP, Shalannanda W, Satriawan A, Setianingsih C, Akbar MR, Aditama R. The assessment of molecular dynamics results of three-dimensional RNA aptamer structure prediction. PLoS One 2023; 18:e0288684. [PMID: 37498889 PMCID: PMC10373999 DOI: 10.1371/journal.pone.0288684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA that bind to specific targets such as proteins, thus having similar characteristics to antibodies. It can be synthesized at a lower cost, with no batch-to-batch variations, and is easier to modify chemically than antibodies, thus potentially being used as therapeutic and biosensing agents. The current method for RNA aptamer identification in vitro uses the SELEX method, which is considered inefficient due to its complex process. Computational models of aptamers have been used to predict and study the molecular interaction of modified aptamers to improve affinity. In this study, we generated three-dimensional models of five RNA aptamers from their sequence using mFold, RNAComposer web server, and molecular dynamics simulation. The model structures were then evaluated and compared with the experimentally determined structures. This study showed that the combination of mFold, RNAComposer, and molecular dynamics simulation could generate 14-16, 28, or 29 nucleotides length of 3D RNA aptamer with similar geometry and topology to the experimentally determined structures. The non-canonical basepair structure of the aptamer loop was formed through the MD simulation, which also improved the three-dimensional RNA aptamers model. Clustering analysis was recommended to choose the more representative model.
Collapse
Affiliation(s)
- Bejo Ropii
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Maulidwina Bethasari
- Department of Pharmacy, Universitas Muhammadiyah Bandung, Bandung, West Java, Indonesia
| | - Isa Anshori
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, West Java, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Allya Paramita Koesoema
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Wervyan Shalannanda
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Ardianto Satriawan
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Casi Setianingsih
- Department of Computer Engineering, School of Electrical Engineering, Telkom University, Bandung Regency, West Java, Indonesia
| | - Mohammad Rizki Akbar
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran and Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Reza Aditama
- Biochemistry Research Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, West Java, Indonesia
| |
Collapse
|
23
|
Wang X, Yu S, Lou E, Tan YL, Tan ZJ. RNA 3D Structure Prediction: Progress and Perspective. Molecules 2023; 28:5532. [PMID: 37513407 PMCID: PMC10386116 DOI: 10.3390/molecules28145532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ribonucleic acid (RNA) molecules play vital roles in numerous important biological functions such as catalysis and gene regulation. The functions of RNAs are strongly coupled to their structures or proper structure changes, and RNA structure prediction has been paid much attention in the last two decades. Some computational models have been developed to predict RNA three-dimensional (3D) structures in silico, and these models are generally composed of predicting RNA 3D structure ensemble, evaluating near-native RNAs from the structure ensemble, and refining the identified RNAs. In this review, we will make a comprehensive overview of the recent advances in RNA 3D structure modeling, including structure ensemble prediction, evaluation, and refinement. Finally, we will emphasize some insights and perspectives in modeling RNA 3D structures.
Collapse
Affiliation(s)
- Xunxun Wang
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shixiong Yu
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - En Lou
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Lan Tan
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
| | - Zhi-Jie Tan
- Department of Physics, Key Laboratory of Artificial Micro & Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Kamga Youmbi FI, Kengne Tchendji V, Tayou Djamegni C. P-FARFAR2: A multithreaded greedy approach to sampling low-energy RNA structures in Rosetta FARFAR2. Comput Biol Chem 2023; 104:107878. [PMID: 37167861 DOI: 10.1016/j.compbiolchem.2023.107878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
RNA (ribonucleic acid) structure prediction finds many applications in health science and drug discovery due to its importance in several life regulatory processes. But despite significant advances in the close field of protein prediction, RNA 3D structure still poses a tremendous challenge to predict, especially for large sequences. In this regard, the approach unfolded by Rosetta FARFAR2 (Fragment Assembly of RNA with Full-Atom Refinement, version 2) has shown promising results, but the algorithm is non-deterministic by nature. In this paper, we develop P-FARFAR2: a parallel enhancement of FARFAR2 that increases its ability to assemble low-energy structures via multithreaded exploration of random configurations in a greedy manner. This strategy, appearing in the literature under the term "parallel mechanism", is made viable through two measures: first, the synchronization window is coarsened to several Monte Carlo cycles; second, all but one of the threads are differentiated as auxiliary and set to perform a weakened version of the problem. Following empirical analysis on a diverse range of RNA structures, we report achieving statistical significance in lowering the energy levels of ensuing samples. And consequently, despite the moderate-to-weak correlation between energy levels and prediction accuracy, this achievement happens to propagate to accuracy measurements.
Collapse
Affiliation(s)
| | - Vianney Kengne Tchendji
- Department of Mathematics and Computer Science, University of Dschang, PO Box 67, Dschang, Cameroon.
| | - Clémentin Tayou Djamegni
- Department of Mathematics and Computer Science, University of Dschang, PO Box 67, Dschang, Cameroon; Department of Computer Engineering, University of Dschang, PO Box 134, Bandjoun, Cameroon.
| |
Collapse
|
25
|
Wang X, Tan YL, Yu S, Shi YZ, Tan ZJ. Predicting 3D structures and stabilities for complex RNA pseudoknots in ion solutions. Biophys J 2023; 122:1503-1516. [PMID: 36924021 PMCID: PMC10147842 DOI: 10.1016/j.bpj.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
RNA pseudoknots are a kind of important tertiary motif, and the structures and stabilities of pseudoknots are generally critical to the biological functions of RNAs with the motifs. In this work, we have carefully refined our previously developed coarse-grained model with salt effect through involving a new coarse-grained force field and a replica-exchange Monte Carlo algorithm, and employed the model to predict structures and stabilities of complex RNA pseudoknots in ion solutions beyond minimal H-type pseudoknots. Compared with available experimental data, the newly refined model can successfully predict 3D structures from sequences for the complex RNA pseudoknots including SARS-CoV-2 programming-1 ribosomal frameshifting element and Zika virus xrRNA, and can reliably predict the thermal stabilities of RNA pseudoknots with various sequences and lengths over broad ranges of monovalent/divalent salts. In addition, for complex pseudoknots including SARS-CoV-2 frameshifting element, our analyses show that their thermally unfolding pathways are mainly dependent on the relative stabilities of unfolded intermediate states, in analogy to those of minimal H-type pseudoknots.
Collapse
Affiliation(s)
- Xunxun Wang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science and School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Shixiong Yu
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science and School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Tan YL, Wang X, Yu S, Zhang B, Tan ZJ. cgRNASP: coarse-grained statistical potentials with residue separation for RNA structure evaluation. NAR Genom Bioinform 2023; 5:lqad016. [PMID: 36879898 PMCID: PMC9985339 DOI: 10.1093/nargab/lqad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 03/07/2023] Open
Abstract
Knowledge-based statistical potentials are very important for RNA 3-dimensional (3D) structure prediction and evaluation. In recent years, various coarse-grained (CG) and all-atom models have been developed for predicting RNA 3D structures, while there is still lack of reliable CG statistical potentials not only for CG structure evaluation but also for all-atom structure evaluation at high efficiency. In this work, we have developed a series of residue-separation-based CG statistical potentials at different CG levels for RNA 3D structure evaluation, namely cgRNASP, which is composed of long-ranged and short-ranged interactions by residue separation. Compared with the newly developed all-atom rsRNASP, the short-ranged interaction in cgRNASP was involved more subtly and completely. Our examinations show that, the performance of cgRNASP varies with CG levels and compared with rsRNASP, cgRNASP has similarly good performance for extensive types of test datasets and can have slightly better performance for the realistic dataset-RNA-Puzzles dataset. Furthermore, cgRNASP is strikingly more efficient than all-atom statistical potentials/scoring functions, and can be apparently superior to other all-atom statistical potentials and scoring functions trained from neural networks for the RNA-Puzzles dataset. cgRNASP is available at https://github.com/Tan-group/cgRNASP.
Collapse
Affiliation(s)
- Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430073, China.,Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xunxun Wang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shixiong Yu
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Bengong Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
27
|
Moafinejad SN, Pandaranadar Jeyeram IPN, Jaryani F, Shirvanizadeh N, Baulin EF, Bujnicki JM. 1D2DSimScore: A novel method for comparing contacts in biomacromolecules and their complexes. Protein Sci 2023; 32:e4503. [PMID: 36369832 PMCID: PMC9795538 DOI: 10.1002/pro.4503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
The biologically relevant structures of proteins and nucleic acids and their complexes are dynamic. They include a combination of regions ranging from rigid structural segments to structural switches to regions that are almost always disordered, which interact with each other in various ways. Comparing conformational changes and variation in contacts between different conformational states is essential to understand the biological functions of proteins, nucleic acids, and their complexes. Here, we describe a new computational tool, 1D2DSimScore, for comparing contacts and contact interfaces in all kinds of macromolecules and macromolecular complexes, including proteins, nucleic acids, and other molecules. 1D2DSimScore can be used to compare structural features of macromolecular models between alternative structures obtained in a particular experiment or to score various predictions against a defined "ideal" reference structure. Comparisons at the level of contacts are particularly useful for flexible molecules, for which comparisons in 3D that require rigid-body superpositions are difficult, and in biological systems where the formation of specific inter-residue contacts is more relevant for the biological function than the maintenance of a specific global 3D structure. Similarity/dissimilarity scores calculated by 1D2DSimScore can be used to complement scores describing 3D structural similarity measures calculated by the existing tools.
Collapse
Affiliation(s)
- S. Naeim Moafinejad
- Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Farhang Jaryani
- Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Niloofar Shirvanizadeh
- Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Eugene F. Baulin
- Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| |
Collapse
|
28
|
NARall: a novel tool for reconstruction of the all-atom structure of nucleic acids from heavily coarse-grained model. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractNucleic acids are one of the most important cellular components. These molecules have been studied both experimentally and theoretically. As all-atom simulations are still limited to short time scales, coarse-grain modeling allows to study of those molecules on a longer time scale. Nucleic-Acid united RESidue (NARES-2P) is a low-resolution coarse-grained model with two centers of interaction per repeating unit. It has been successfully applied to study DNA self-assembly and telomeric properties. This force field enables the study of nucleic acids Behavior on a long time scale but lacks atomistic details. In this article, we present new software to reconstruct atomistic details from the NARES-2P model. It has been applied to RNA pseudoknot, nucleic acid four-way junction, G-quadruplex and DNA duplex converted to NARES-2P model and back. Moreover, it was applied to DNA structure folded and self-assembled with NARES-2P.
Collapse
|
29
|
Paloncýová M, Pykal M, Kührová P, Banáš P, Šponer J, Otyepka M. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204408. [PMID: 36216589 DOI: 10.1002/smll.202204408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Utilization of nucleic acids (NAs) in nanotechnologies and nanotechnology-related applications is a growing field with broad application potential, ranging from biosensing up to targeted cell delivery. Computer simulations are useful techniques that can aid design and speed up development in this field. This review focuses on computer simulations of hybrid nanomaterials composed of NAs and other components. Current state-of-the-art molecular dynamics simulations, empirical force fields (FFs), and coarse-grained approaches for the description of deoxyribonucleic acid and ribonucleic acid are critically discussed. Challenges in combining biomacromolecular and nanomaterial FFs are emphasized. Recent applications of simulations for modeling NAs and their interactions with nano- and biomaterials are overviewed in the fields of sensing applications, targeted delivery, and NA templated materials. Future perspectives of development are also highlighted.
Collapse
Affiliation(s)
- Markéta Paloncýová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Martin Pykal
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Petra Kührová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Pavel Banáš
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Jiří Šponer
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Michal Otyepka
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
30
|
Yan S, Ilgu M, Nilsen-Hamilton M, Lamm MH. Computational Modeling of RNA Aptamers: Structure Prediction of the Apo State. J Phys Chem B 2022; 126:7114-7125. [PMID: 36097649 PMCID: PMC9512008 DOI: 10.1021/acs.jpcb.2c04649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Indexed: 11/28/2022]
Abstract
RNA aptamers are single-stranded oligonucleotides that bind to specific molecular targets with high affinity and specificity. To design aptamers for new applications, it is critical to understand the ligand binding mechanism in terms of the structure and dynamics of the ligand-bound and apo states. The problem is that most of the NMR or X-ray crystal structures available for RNA aptamers are for ligand-bound states. Available apo state structures, mostly characterized by crystallization under nonphysiological conditions or probed by low resolution techniques, might fail to represent the diverse structural variations of the apo state in solution. Here, we develop an approach to obtain a representative ensemble of apo structures that are based on in silico RNA 3D structure prediction and in vitro experiments that characterize base stacking. Using the neomycin-B aptamer as a case study, an ensemble of structures for the aptamer in the apo (unbound) state are validated and then used to investigate the ligand-binding mechanism for the aptamer in complex with neomycin-B.
Collapse
Affiliation(s)
- Shuting Yan
- Iowa
State University, Ames, Iowa 50011, United States
| | - Muslum Ilgu
- Iowa
State University, Ames, Iowa 50011, United States
- Ames
National Laboratory, Ames, Iowa 50011, United States
- Aptalogic
Inc., Ames, Iowa 50014, United States
| | - Marit Nilsen-Hamilton
- Iowa
State University, Ames, Iowa 50011, United States
- Ames
National Laboratory, Ames, Iowa 50011, United States
- Aptalogic
Inc., Ames, Iowa 50014, United States
| | | |
Collapse
|
31
|
Zhou L, Wang X, Yu S, Tan YL, Tan ZJ. FebRNA: An automated fragment-ensemble-based model for building RNA 3D structures. Biophys J 2022; 121:3381-3392. [PMID: 35978551 PMCID: PMC9515226 DOI: 10.1016/j.bpj.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Knowledge of RNA three-dimensional (3D) structures is critical to understanding the important biological functions of RNAs. Although various structure prediction models have been developed, the high-accuracy predictions of RNA 3D structures are still limited to the RNAs with short lengths or with simple topology. In this work, we proposed a new model, namely FebRNA, for building RNA 3D structures through fragment assembly based on coarse-grained (CG) fragment ensembles. Specifically, FebRNA is composed of four processes: establishing the library of different types of non-redundant CG fragment ensembles regardless of the sequences, building CG 3D structure ensemble through fragment assembly, identifying top-scored CG structures through a specific CG scoring function, and rebuilding the all-atom structures from the top-scored CG ones. Extensive examination against different types of RNA structures indicates that FebRNA consistently gives the reliable predictions on RNA 3D structures, including pseudoknots, three-way junctions, four-way and five-way junctions, and RNAs in the RNA-Puzzles. FebRNA is available on the Web site: https://github.com/Tan-group/FebRNA.
Collapse
Affiliation(s)
- Li Zhou
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xunxun Wang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shixiong Yu
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430073, China.
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
32
|
Matarrese MAG, Loppini A, Nicoletti M, Filippi S, Chiodo L. Assessment of tools for RNA secondary structure prediction and extraction: a final-user perspective. J Biomol Struct Dyn 2022:1-20. [DOI: 10.1080/07391102.2022.2116110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Margherita A. G. Matarrese
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Jane and John Justin Neurosciences Center, Cook Children’s Health Care System, TX, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Alessandro Loppini
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
| | - Martina Nicoletti
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
| | - Simonetta Filippi
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Letizia Chiodo
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
33
|
Kallert E, Fischer TR, Schneider S, Grimm M, Helm M, Kersten C. Protein-Based Virtual Screening Tools Applied for RNA-Ligand Docking Identify New Binders of the preQ 1-Riboswitch. J Chem Inf Model 2022; 62:4134-4148. [PMID: 35994617 DOI: 10.1021/acs.jcim.2c00751] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeting RNA with small molecules is an emerging field. While several ligands for different RNA targets are reported, structure-based virtual screenings (VSs) against RNAs are still rare. Here, we elucidated the general capabilities of protein-based docking programs to reproduce native binding modes of small-molecule RNA ligands and to discriminate known binders from decoys by the scoring function. The programs were found to perform similar compared to the RNA-based docking tool rDOCK, and the challenges faced during docking, namely, protomer and tautomer selection, target dynamics, and explicit solvent, do not largely differ from challenges in conventional protein-ligand docking. A prospective VS with the Bacillus subtilis preQ1-riboswitch aptamer domain performed with FRED, HYBRID, and FlexX followed by microscale thermophoresis assays identified six active compounds out of 23 tested VS hits with potencies between 29.5 nM and 11.0 μM. The hits were selected not solely based on their docking score but for resembling key interactions of the native ligand. Therefore, this study demonstrates the general feasibility to perform structure-based VSs against RNA targets, while at the same time it highlights pitfalls and their potential solutions when executing RNA-ligand docking.
Collapse
Affiliation(s)
- Elisabeth Kallert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Simon Schneider
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Maike Grimm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| |
Collapse
|
34
|
Wiedemann J, Kaczor J, Milostan M, Zok T, Blazewicz J, Szachniuk M, Antczak M. RNAloops: a database of RNA multiloops. Bioinformatics 2022; 38:4200-4205. [PMID: 35809063 PMCID: PMC9438955 DOI: 10.1093/bioinformatics/btac484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Knowledge of the 3D structure of RNA supports discovering its functions and is crucial for designing drugs and modern therapeutic solutions. Thus, much attention is devoted to experimental determination and computational prediction targeting the global fold of RNA and its local substructures. The latter include multi-branched loops-functionally significant elements that highly affect the spatial shape of the entire molecule. Unfortunately, their computational modeling constitutes a weak point of structural bioinformatics. A remedy for this is in collecting these motifs and analyzing their features. RESULTS RNAloops is a self-updating database that stores multi-branched loops identified in the PDB-deposited RNA structures. A description of each loop includes angular data-planar and Euler angles computed between pairs of adjacent helices to allow studying their mutual arrangement in space. The system enables search and analysis of multiloops, presents their structure details numerically and visually, and computes data statistics. AVAILABILITY AND IMPLEMENTATION RNAloops is freely accessible at https://rnaloops.cs.put.poznan.pl. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jakub Wiedemann
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Jacek Kaczor
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Maciej Milostan
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Poznan Supercomputing and Networking Center, 61-131 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Poznan Supercomputing and Networking Center, 61-131 Poznan, Poland
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | | | | |
Collapse
|
35
|
Singh J, Paliwal K, Litfin T, Singh J, Zhou Y. Predicting RNA distance-based contact maps by integrated deep learning on physics-inferred secondary structure and evolutionary-derived mutational coupling. Bioinformatics 2022; 38:3900-3910. [PMID: 35751593 PMCID: PMC9364379 DOI: 10.1093/bioinformatics/btac421] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Recently, AlphaFold2 achieved high experimental accuracy for the majority of proteins in Critical Assessment of Structure Prediction (CASP 14). This raises the hope that one day, we may achieve the same feat for RNA structure prediction for those structured RNAs, which is as fundamentally and practically important similar to protein structure prediction. One major factor in the recent advancement of protein structure prediction is the highly accurate prediction of distance-based contact maps of proteins. RESULTS Here, we showed that by integrated deep learning with physics-inferred secondary structures, co-evolutionary information and multiple sequence-alignment sampling, we can achieve RNA contact-map prediction at a level of accuracy similar to that in protein contact-map prediction. More importantly, highly accurate prediction for top L long-range contacts can be assured for those RNAs with a high effective number of homologous sequences (Neff > 50). The initial use of the predicted contact map as distance-based restraints confirmed its usefulness in 3D structure prediction. AVAILABILITY AND IMPLEMENTATION SPOT-RNA-2D is available as a web server at https://sparks-lab.org/server/spot-rna-2d/ and as a standalone program at https://github.com/jaswindersingh2/SPOT-RNA-2D. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Thomas Litfin
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- To whom correspondence should be addressed. or or
| |
Collapse
|
36
|
Magnus M. rna-tools.online: a Swiss army knife for RNA 3D structure modeling workflow. Nucleic Acids Res 2022; 50:W657-W662. [PMID: 35580057 PMCID: PMC9252763 DOI: 10.1093/nar/gkac372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
Significant improvements have been made in the efficiency and accuracy of RNA 3D structure prediction methods in recent years; however, many tools developed in the field stay exclusive to only a few bioinformatic groups. To perform a complete RNA 3D structure modeling analysis as proposed by the RNA-Puzzles community, researchers must familiarize themselves with a quite complex set of tools. In order to facilitate the processing of RNA sequences and structures, we previously developed the rna-tools package. However, using rna-tools requires the installation of a mixture of libraries and tools, basic knowledge of the command line and the Python programming language. To provide an opportunity for the broader community of biologists to take advantage of the new developments in RNA structural biology, we developed rna-tools.online. The web server provides a user-friendly platform to perform many standard analyses required for the typical modeling workflow: 3D structure manipulation and editing, structure minimization, structure analysis, quality assessment, and comparison. rna-tools.online supports biologists to start benefiting from the maturing field of RNA 3D structural bioinformatics and can be used for educational purposes. The web server is available at https://rna-tools.online.
Collapse
Affiliation(s)
- Marcin Magnus
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
37
|
Carrascoza F, Antczak M, Miao Z, Westhof E, Szachniuk M. Evaluation of the stereochemical quality of predicted RNA 3D models in the RNA-Puzzles submissions. RNA (NEW YORK, N.Y.) 2022; 28:250-262. [PMID: 34819324 PMCID: PMC8906551 DOI: 10.1261/rna.078685.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
In silico prediction is a well-established approach to derive a general shape of an RNA molecule based on its sequence or secondary structure. This paper reports an analysis of the stereochemical quality of the RNA three-dimensional models predicted using dedicated computer programs. The stereochemistry of 1052 RNA 3D structures, including 1030 models predicted by fully automated and human-guided approaches within 22 RNA-Puzzles challenges and reference structures, is analyzed. The evaluation is based on standards of RNA stereochemistry that the Protein Data Bank requires from deposited experimental structures. Deviations from standard bond lengths and angles, planarity, or chirality are quantified. A reduction in the number of such deviations should help in the improvement of RNA 3D structure modeling approaches.
Collapse
Affiliation(s)
- Francisco Carrascoza
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire CNRS, Architecture et Réactivité de l'ARN, 67084 Strasbourg, France
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
38
|
rsRNASP: A residue-separation-based statistical potential for RNA 3D structure evaluation. Biophys J 2022; 121:142-156. [PMID: 34798137 PMCID: PMC8758408 DOI: 10.1016/j.bpj.2021.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Knowledge-based statistical potentials have been shown to be rather effective in protein 3-dimensional (3D) structure evaluation and prediction. Recently, several statistical potentials have been developed for RNA 3D structure evaluation, while their performances are either still at a low level for the test datasets from structure prediction models or dependent on the "black-box" process through neural networks. In this work, we have developed an all-atom distance-dependent statistical potential based on residue separation for RNA 3D structure evaluation, namely rsRNASP, which is composed of short- and long-ranged potentials distinguished by residue separation. The extensive examinations against available RNA test datasets show that rsRNASP has apparently higher performance than the existing statistical potentials for the realistic test datasets with large RNAs from structure prediction models, including the newly released RNA-Puzzles dataset, and is comparable to the existing top statistical potentials for the test datasets with small RNAs or near-native decoys. In addition, rsRNASP is superior to RNA3DCNN, a recently developed scoring function through 3D convolutional neural networks. rsRNASP and the relevant databases are available to the public.
Collapse
|
39
|
Amirloo B, Staroseletz Y, Yousaf S, Clarke DJ, Brown T, Aojula H, Zenkova MA, Bichenkova EV. "Bind, cleave and leave": multiple turnover catalysis of RNA cleavage by bulge-loop inducing supramolecular conjugates. Nucleic Acids Res 2021; 50:651-673. [PMID: 34967410 PMCID: PMC8789077 DOI: 10.1093/nar/gkab1273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Antisense sequence-specific knockdown of pathogenic RNA offers opportunities to find new solutions for therapeutic treatments. However, to gain a desired therapeutic effect, the multiple turnover catalysis is critical to inactivate many copies of emerging RNA sequences, which is difficult to achieve without sacrificing the sequence-specificity of cleavage. Here, engineering two or three catalytic peptides into the bulge-loop inducing molecular framework of antisense oligonucleotides achieved catalytic turnover of targeted RNA. Different supramolecular configurations revealed that cleavage of the RNA backbone upon sequence-specific hybridization with the catalyst accelerated with increase in the number of catalytic guanidinium groups, with almost complete demolition of target RNA in 24 h. Multiple sequence-specific cuts at different locations within and around the bulge-loop facilitated release of the catalyst for subsequent attacks of at least 10 further RNA substrate copies, such that delivery of only a few catalytic molecules could be sufficient to maintain knockdown of typical RNA copy numbers. We have developed fluorescent assay and kinetic simulation tools to characterise how the limited availability of different targets and catalysts had restrained catalytic reaction progress considerably, and to inform how to accelerate the catalytic destruction of shorter linear and larger RNAs even further.
Collapse
Affiliation(s)
- Bahareh Amirloo
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yaroslav Staroseletz
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Sameen Yousaf
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David J Clarke
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Harmesh Aojula
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
40
|
Zerihun MB, Pucci F, Schug A. CoCoNet-boosting RNA contact prediction by convolutional neural networks. Nucleic Acids Res 2021; 49:12661-12672. [PMID: 34871451 PMCID: PMC8682773 DOI: 10.1093/nar/gkab1144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Co-evolutionary models such as direct coupling analysis (DCA) in combination with machine learning (ML) techniques based on deep neural networks are able to predict accurate protein contact or distance maps. Such information can be used as constraints in structure prediction and massively increase prediction accuracy. Unfortunately, the same ML methods cannot readily be applied to RNA as they rely on large structural datasets only available for proteins. Here, we demonstrate how the available smaller data for RNA can be used to improve prediction of RNA contact maps. We introduce an algorithm called CoCoNet that is based on a combination of a Coevolutionary model and a shallow Convolutional Neural Network. Despite its simplicity and the small number of trained parameters, the method boosts the positive predictive value (PPV) of predicted contacts by about 70% with respect to DCA as tested by cross-validation of about eighty RNA structures. However, the direct inclusion of the CoCoNet contacts in 3D modeling tools does not result in a proportional increase of the 3D RNA structure prediction accuracy. Therefore, we suggest that the field develops, in addition to contact PPV, metrics which estimate the expected impact for 3D structure modeling tools better. CoCoNet is freely available and can be found at https://github.com/KIT-MBS/coconet.
Collapse
Affiliation(s)
- Mehari B Zerihun
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Steinbuch Centre for Computing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Fabrizio Pucci
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Computational Biology and Bioinformatics, Université Libre de Bruxelles 1050, Brussels, Belgium
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
41
|
Zhang D, Chen SJ, Zhou R. Modeling Noncanonical RNA Base Pairs by a Coarse-Grained IsRNA2 Model. J Phys Chem B 2021; 125:11907-11915. [PMID: 34694128 DOI: 10.1021/acs.jpcb.1c07288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noncanonical base pairs contribute crucially to the three-dimensional architecture of large RNA molecules; however, how to accurately model them remains an open challenge in RNA 3D structure prediction. Here, we report a promising coarse-grained (CG) IsRNA2 model to predict noncanonical base pairs in large RNAs through molecular dynamics simulations. By introducing a five-bead per nucleotide CG representation to reserve the three interacting edges of nucleobases, IsRNA2 accurately models various base-pairing interactions, including both canonical and noncanonical base pairs. A benchmark test indicated that IsRNA2 achieves a comparable performance to the atomic model in de novo modeling of noncanonical RNA structures. In addition, IsRNA2 was able to refine the 3D structure predictions for large RNAs in RNA-puzzle challenges. Finally, the graphics processing unit acceleration was introduced to speed up the sampling efficiency in IsRNA2 for very large RNA molecules. Therefore, the CG IsRNA2 model reported here offers a reliable approach to predict the structures and dynamics of large RNAs.
Collapse
Affiliation(s)
- Dong Zhang
- College of Life Sciences and Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Ruhong Zhou
- College of Life Sciences and Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
42
|
Popenda M, Zok T, Sarzynska J, Korpeta A, Adamiak R, Antczak M, Szachniuk M. Entanglements of structure elements revealed in RNA 3D models. Nucleic Acids Res 2021; 49:9625-9632. [PMID: 34432024 PMCID: PMC8464073 DOI: 10.1093/nar/gkab716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/14/2023] Open
Abstract
Computational methods to predict RNA 3D structure have more and more practical applications in molecular biology and medicine. Therefore, it is crucial to intensify efforts to improve the accuracy and quality of predicted three-dimensional structures. A significant role in this is played by the RNA-Puzzles initiative that collects, evaluates, and shares RNAs built computationally within currently nearly 30 challenges. RNA-Puzzles datasets, subjected to multi-criteria analysis, allow revealing the strengths and weaknesses of computer prediction methods. Here, we study the issue of entangled RNA fragments in the predicted RNA 3D structure models. By entanglement, we mean an arrangement of two structural elements such that one of them passes through the other. We propose the classification of entanglements driven by their topology and components. It distinguishes two general classes, interlaces and lassos, and subclasses characterized by element types-loops, dinucleotide steps, open single-stranded fragments-and puncture multiplicity. Our computational pipeline for entanglement detection, applied for 1,017 non-redundant models from RNA-Puzzles, has shown the frequency of different entanglements and allowed identifying 138 structures with intersected assemblies.
Collapse
Affiliation(s)
- Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Agnieszka Korpeta
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Ryszard W Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Maciej Antczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| |
Collapse
|
43
|
Abstract
Machine learning is poised to transform RNA structure and function discovery
Collapse
Affiliation(s)
- Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Singh J, Paliwal K, Singh J, Zhou Y. RNA Backbone Torsion and Pseudotorsion Angle Prediction Using Dilated Convolutional Neural Networks. J Chem Inf Model 2021; 61:2610-2622. [PMID: 34037398 DOI: 10.1021/acs.jcim.1c00153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA three-dimensional structure prediction has been relied on using a predicted or experimentally determined secondary structure as a restraint to reduce the conformational sampling space. However, the secondary-structure restraints are limited to paired bases, and the conformational space of the ribose-phosphate backbone is still too large to be sampled efficiently. Here, we employed the dilated convolutional neural network to predict backbone torsion and pseudotorsion angles using a single RNA sequence as input. The method called SPOT-RNA-1D was trained on a high-resolution training data set and tested on three independent, nonredundant, and high-resolution test sets. The proposed method yields substantially smaller mean absolute errors than the baseline predictors based on random predictions and based on helix conformations according to actual angle distributions. The mean absolute errors for three test sets range from 14°-44° for different angles, compared to 17°-62° by random prediction and 14°-58° by helix prediction. The method also accurately recovers the overall patterns of single or pairwise angle distributions. In general, torsion angles further away from the bases and associated with unpaired bases and paired bases involved in tertiary interactions are more difficult to predict. Compared to the best models in RNA-puzzles experiments, SPOT-RNA-1D yielded more accurate dihedral angles and, thus, are potentially useful as model quality indicators and restraints for RNA structure prediction as in protein structure prediction.
Collapse
Affiliation(s)
- Jaswinder Singh
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Southport, Queensland 4222, Australia.,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.,Peking University Shenzhen Graduate School, Shenzhen 518055, P.R. China
| |
Collapse
|
45
|
Zhang T, Singh J, Litfin T, Zhan J, Paliwal K, Zhou Y. RNAcmap: A Fully Automatic Pipeline for Predicting Contact Maps of RNAs by Evolutionary Coupling Analysis. Bioinformatics 2021; 37:3494-3500. [PMID: 34021744 DOI: 10.1093/bioinformatics/btab391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The accuracy of RNA secondary and tertiary structure prediction can be significantly improved by using structural restraints derived from evolutionary coupling or direct coupling analysis. Currently, these coupling analyses relied on manually curated multiple sequence alignments collected in the Rfam database, which contains 3016 families. By comparison, millions of non-coding RNA sequences are known. Here, we established RNAcmap, a fully automatic pipeline that enables evolutionary coupling analysis for any RNA sequences. The homology search was based on the covariance model built by INFERNAL according to two secondary structure predictors: a folding-based algorithm RNAfold and the latest deep-learning method SPOT-RNA. RESULTS We showed that the performance of RNAcmap is less dependent on the specific evolutionary coupling tool but is more dependent on the accuracy of secondary structure predictor with the best performance given by RNAcmap (SPOT-RNA). The performance of RNAcmap (SPOT-RNA) is comparable to that based on Rfam-supplied alignment and consistent for those sequences that are not in Rfam collections. Further improvement can be made with a simple meta predictor RNAcmap (SPOT-RNA/RNAfold) depending on which secondary structure predictor can find more homologous sequences. Reliable base-pairing information generated from RNAcmap, for RNAs with high effective homologous sequences, in particular, will be useful for aiding RNA structure prediction. AVAILABILITY RNAcmap is available as a web server at https://sparks-lab.org/server/rnacmap/ and as a standalone application along with the datasets at https://github.com/sparks-lab-org/RNAcmap_standalone. A platform independent and fully configured docker image of RNAcmap is also provided at https://hub.docker.com/r/jaswindersingh2/rnacmap.
Collapse
Affiliation(s)
- Tongchuan Zhang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Thomas Litfin
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jian Zhan
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia.,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
46
|
Schlick T, Portillo-Ledesma S, Myers CG, Beljak L, Chen J, Dakhel S, Darling D, Ghosh S, Hall J, Jan M, Liang E, Saju S, Vohr M, Wu C, Xu Y, Xue E. Biomolecular Modeling and Simulation: A Prospering Multidisciplinary Field. Annu Rev Biophys 2021; 50:267-301. [PMID: 33606945 PMCID: PMC8105287 DOI: 10.1146/annurev-biophys-091720-102019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We reassess progress in the field of biomolecular modeling and simulation, following up on our perspective published in 2011. By reviewing metrics for the field's productivity and providing examples of success, we underscore the productive phase of the field, whose short-term expectations were overestimated and long-term effects underestimated. Such successes include prediction of structures and mechanisms; generation of new insights into biomolecular activity; and thriving collaborations between modeling and experimentation, including experiments driven by modeling. We also discuss the impact of field exercises and web games on the field's progress. Overall, we note tremendous success by the biomolecular modeling community in utilization of computer power; improvement in force fields; and development and application of new algorithms, notably machine learning and artificial intelligence. The combined advances are enhancing the accuracy andscope of modeling and simulation, establishing an exemplary discipline where experiment and theory or simulations are full partners.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, New York 10003, USA;
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
| | | | - Christopher G Myers
- Department of Chemistry, New York University, New York, New York 10003, USA;
| | - Lauren Beljak
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Justin Chen
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sami Dakhel
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Daniel Darling
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sayak Ghosh
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Joseph Hall
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Mikaeel Jan
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Emily Liang
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sera Saju
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Mackenzie Vohr
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Chris Wu
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Yifan Xu
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Eva Xue
- College of Arts and Science, New York University, New York, New York 10003, USA
| |
Collapse
|
47
|
Thavarajah W, Hertz LM, Bushhouse DZ, Archuleta CM, Lucks JB. RNA Engineering for Public Health: Innovations in RNA-Based Diagnostics and Therapeutics. Annu Rev Chem Biomol Eng 2021; 12:263-286. [PMID: 33900805 PMCID: PMC9714562 DOI: 10.1146/annurev-chembioeng-101420-014055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems to solve pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems.
Collapse
Affiliation(s)
- Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Laura M Hertz
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - David Z Bushhouse
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Chloé M Archuleta
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA.,Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
48
|
Rangan R, Watkins AM, Chacon J, Kretsch R, Kladwang W, Zheludev IN, Townley J, Rynge M, Thain G, Das R. De novo 3D models of SARS-CoV-2 RNA elements from consensus experimental secondary structures. Nucleic Acids Res 2021; 49:3092-3108. [PMID: 33693814 PMCID: PMC8034642 DOI: 10.1093/nar/gkab119] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The rapid spread of COVID-19 is motivating development of antivirals targeting conserved SARS-CoV-2 molecular machinery. The SARS-CoV-2 genome includes conserved RNA elements that offer potential small-molecule drug targets, but most of their 3D structures have not been experimentally characterized. Here, we provide a compilation of chemical mapping data from our and other labs, secondary structure models, and 3D model ensembles based on Rosetta's FARFAR2 algorithm for SARS-CoV-2 RNA regions including the individual stems SL1-8 in the extended 5' UTR; the reverse complement of the 5' UTR SL1-4; the frameshift stimulating element (FSE); and the extended pseudoknot, hypervariable region, and s2m of the 3' UTR. For eleven of these elements (the stems in SL1-8, reverse complement of SL1-4, FSE, s2m and 3' UTR pseudoknot), modeling convergence supports the accuracy of predicted low energy states; subsequent cryo-EM characterization of the FSE confirms modeling accuracy. To aid efforts to discover small molecule RNA binders guided by computational models, we provide a second set of similarly prepared models for RNA riboswitches that bind small molecules. Both datasets ('FARFAR2-SARS-CoV-2', https://github.com/DasLab/FARFAR2-SARS-CoV-2; and 'FARFAR2-Apo-Riboswitch', at https://github.com/DasLab/FARFAR2-Apo-Riboswitch') include up to 400 models for each RNA element, which may facilitate drug discovery approaches targeting dynamic ensembles of RNA molecules.
Collapse
Affiliation(s)
- Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Jose Chacon
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Rachael Kretsch
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Ivan N Zheludev
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | | | - Mats Rynge
- Information Sciences Institute, University of Southern California, Marina Del Rey, CA 90292, USA
| | - Gregory Thain
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
49
|
An RNA-centric historical narrative around the Protein Data Bank. J Biol Chem 2021; 296:100555. [PMID: 33744291 PMCID: PMC8080527 DOI: 10.1016/j.jbc.2021.100555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/06/2023] Open
Abstract
Some of the amazing contributions brought to the scientific community by the Protein Data Bank (PDB) are described. The focus is on nucleic acid structures with a bias toward RNA. The evolution and key roles in science of the PDB and other structural databases for nucleic acids illustrate how small initial ideas can become huge and indispensable resources with the unflinching willingness of scientists to cooperate globally. The progress in the understanding of the molecular interactions driving RNA architectures followed the rapid increase in RNA structures in the PDB. That increase was consecutive to improvements in chemical synthesis and purification of RNA molecules, as well as in biophysical methods for structure determination and computer technology. The RNA modeling efforts from the early beginnings are also described together with their links to the state of structural knowledge and technological development. Structures of RNA and of its assemblies are physical objects, which, together with genomic data, allow us to integrate present-day biological functions and the historical evolution in all living species on earth.
Collapse
|
50
|
Abstract
The molecules of the ribonucleic acid (RNA) perform a variety of vital roles in all living cells. Their biological function depends on their structure and dynamics, both of which are difficult to experimentally determine but can be theoretically inferred based on the RNA sequence. SimRNA is one of the computational methods for molecular simulations of RNA 3D structure formation. The method is based on a simplified (coarse-grained) representation of nucleotide chains, a statistically derived model of interactions (statistical potential), and the Monte Carlo method as a conformational sampling scheme.The current version of SimRNA (3.22) is able to predict basic topologies of RNA molecules with sizes up to about 50-70 nucleotides, based on their sequences only, and larger molecules if supplied with appropriate distance restraints. The user can specify various types of restraints, including secondary structure, pairwise atom-atom distances, and positions of atoms. SimRNA can be also used for studying systems composed of several chains of RNA. SimRNA is a folding simulations method, thus it allows for examining folding pathways, getting an approximate view of the energy landscapes.
Collapse
|