1
|
Bagci H, Winkler M, Grädel B, Uliana F, Boulais J, Mohamed WI, Park SL, Côté JF, Pertz O, Peter M. The hGID GID4 E3 ubiquitin ligase complex targets ARHGAP11A to regulate cell migration. Life Sci Alliance 2024; 7:e202403046. [PMID: 39389782 PMCID: PMC11467045 DOI: 10.26508/lsa.202403046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
The human CTLH/GID (hGID) complex emerged as an important E3 ligase regulating multiple cellular processes, including cell cycle progression and metabolism. However, the range of biological functions controlled by hGID remains unexplored. Here, we used proximity-dependent biotinylation (BioID2) to identify proteins interacting with the hGID complex, among them, substrate candidates that bind GID4 in a pocket-dependent manner. Biochemical and cellular assays revealed that the hGIDGID4 E3 ligase binds and ubiquitinates ARHGAP11A, thereby targeting this RhoGAP for proteasomal degradation. Indeed, GID4 depletion or impeding the GID4 substrate binding pocket with the PFI-7 inhibitor stabilizes ARHGAP11A protein amounts, although it carries no functional N-terminal degron. Interestingly, GID4 inactivation impairs cell motility and directed cell movement by increasing ARHGAP11A levels at the cell periphery, where it inactivates RhoA. Together, we identified a wide range of hGIDGID4 E3 ligase substrates and uncovered a unique function of the hGIDGID4 E3 ligase regulating cell migration by targeting ARHGAP11A.
Collapse
Affiliation(s)
- Halil Bagci
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Martin Winkler
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Benjamin Grädel
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Weaam I Mohamed
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sophia L Park
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, Canada
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Alfeghaly C, Castel G, Cazottes E, Moscatelli M, Moinard E, Casanova M, Boni J, Mahadik K, Lammers J, Freour T, Chauviere L, Piqueras C, Boers R, Boers J, Gribnau J, David L, Ouimette JF, Rougeulle C. XIST dampens X chromosome activity in a SPEN-dependent manner during early human development. Nat Struct Mol Biol 2024; 31:1589-1600. [PMID: 38834912 PMCID: PMC11479943 DOI: 10.1038/s41594-024-01325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
XIST (X-inactive specific transcript) long noncoding RNA (lncRNA) is responsible for X chromosome inactivation (XCI) in placental mammals, yet it accumulates on both X chromosomes in human female preimplantation embryos without triggering X chromosome silencing. The XACT (X-active coating transcript) lncRNA coaccumulates with XIST on active X chromosomes and may antagonize XIST function. Here, we used human embryonic stem cells in a naive state of pluripotency to assess the function of XIST and XACT in shaping the X chromosome chromatin and transcriptional landscapes during preimplantation development. We show that XIST triggers the deposition of polycomb-mediated repressive histone modifications and dampens the transcription of most X-linked genes in a SPEN-dependent manner, while XACT deficiency does not significantly affect XIST activity or X-linked gene expression. Our study demonstrates that XIST is functional before XCI, confirms the existence of a transient process of X chromosome dosage compensation and reveals that XCI and dampening rely on the same set of factors.
Collapse
Affiliation(s)
- Charbel Alfeghaly
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Gaël Castel
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Emmanuel Cazottes
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | | | - Eva Moinard
- Center for Research in Transplantation and Translational Immunology (CR2TI), CHU Nantes, Inserm, Nantes Université, Nantes, France
| | - Miguel Casanova
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Juliette Boni
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Kasturi Mahadik
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Jenna Lammers
- Service de Biologie de la Reproduction, CHU Nantes, Nantes Université, Nantes, France
| | - Thomas Freour
- Service de Biologie de la Reproduction, CHU Nantes, Nantes Université, Nantes, France
| | - Louis Chauviere
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Carla Piqueras
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Ruben Boers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Laurent David
- Center for Research in Transplantation and Translational Immunology (CR2TI), CHU Nantes, Inserm, Nantes Université, Nantes, France
- BioCore, CNRS, CHU Nantes, Inserm, Nantes Université, Nantes, France
| | | | - Claire Rougeulle
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Barrero M, Lazarenkov A, Blanco E, Palma LG, López-Rubio AV, Bauer M, Bigas A, Di Croce L, Sardina JL, Payer B. The interferon γ pathway enhances pluripotency and X-chromosome reactivation in iPSC reprogramming. SCIENCE ADVANCES 2024; 10:eadj8862. [PMID: 39110794 PMCID: PMC11305397 DOI: 10.1126/sciadv.adj8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) requires activation of the pluripotency network and resetting of the epigenome by erasing the epigenetic memory of the somatic state. In female mouse cells, a critical epigenetic reprogramming step is the reactivation of the inactive X chromosome. Despite its importance, a systematic understanding of the regulatory networks linking pluripotency and X-reactivation is missing. Here, we reveal important pathways for pluripotency acquisition and X-reactivation using a genome-wide CRISPR screen during neural precursor to iPSC reprogramming. In particular, we discover that activation of the interferon γ (IFNγ) pathway early during reprogramming accelerates pluripotency acquisition and X-reactivation. IFNγ stimulates STAT3 signaling and the pluripotency network and leads to enhanced TET-mediated DNA demethylation, which consequently boosts X-reactivation. We therefore gain a mechanistic understanding of the role of IFNγ in reprogramming and X-reactivation and provide a comprehensive resource of the molecular networks involved in these processes.
Collapse
Affiliation(s)
- Mercedes Barrero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis G. Palma
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | | | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Anna Bigas
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - José Luis Sardina
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
4
|
Li JD, Taipale M, Blencowe BJ. Efficient, specific, and combinatorial control of endogenous exon splicing with dCasRx-RBM25. Mol Cell 2024; 84:2573-2589.e5. [PMID: 38917795 DOI: 10.1016/j.molcel.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Efficient targeted control of splicing is a major goal of functional genomics and therapeutic applications. Guide (g)RNA-directed, deactivated (d)Cas CRISPR enzymes fused to splicing effectors represent a promising strategy due to the flexibility of these systems. However, efficient, specific, and generalizable activation of endogenous exons using this approach has not been previously reported. By screening over 300 dCasRx-splicing factor fusion proteins tethered to splicing reporters, we identify dCasRx-RBM25 as a potent activator of exons. Moreover, dCasRx-RBM25 efficiently activates the splicing of ∼90% of targeted endogenous alternative exons and displays high on-target specificity. Using gRNA arrays for combinatorial targeting, we demonstrate that dCasRx-RBM25 enables multiplexed activation and repression of exons. Using this feature, the targeting of neural-regulated exons in Ptpb1 and Puf60 in embryonic stem cells reveals combinatorial effects on downstream alternative splicing events controlled by these factors. Collectively, our results enable versatile, combinatorial exon-resolution functional assays and splicing-directed therapeutic applications.
Collapse
Affiliation(s)
- Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mikko Taipale
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Djajawi TM, Wichmann J, Vervoort SJ, Kearney CJ. Tumor immune evasion: insights from CRISPR screens and future directions. FEBS J 2024; 291:1386-1399. [PMID: 37971319 DOI: 10.1111/febs.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Despite the clinical success of cancer immunotherapies including immune checkpoint blockade and adoptive cellular therapies across a variety of cancer types, many patients do not respond or ultimately relapse; however, the molecular underpinnings of this are not fully understood. Thus, a system-level understating of the routes to tumor immune evasion is required to inform the design of the next generation of immunotherapy approaches. CRISPR screening approaches have proved extremely powerful in identifying genes that promote tumor immune evasion or sensitize tumor cells to destruction by the immune system. These large-scale efforts have brought to light decades worth of fundamental immunology and have uncovered the key immune-evasion pathways subverted in cancers in an acquired manner in patients receiving immune-modulatory therapies. The comprehensive discovery of the main pathways involved in immune evasion has spurred the development and application of novel immune therapies to target this process. Although successful, conventional CRISPR screening approaches are hampered by a number of limitations, which obfuscate a complete understanding of the precise molecular regulation of immune evasion in cancer. Here, we provide a perspective on screening approaches to interrogate tumor-lymphocyte interactions and their limitations, and discuss further development of technologies to improve such approaches and discovery capability.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | - Johannes Wichmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Stephin J Vervoort
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Conor J Kearney
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| |
Collapse
|
6
|
Li J, Zhao D, Zhang T, Xiong H, Hu M, Liu H, Zhao F, Sun X, Fan P, Qian Y, Wang D, Lai L, Sui T, Li Z. Precise large-fragment deletions in mammalian cells and mice generated by dCas9-controlled CRISPR/Cas3. SCIENCE ADVANCES 2024; 10:eadk8052. [PMID: 38489357 PMCID: PMC10942115 DOI: 10.1126/sciadv.adk8052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Currently, the Cas9 and Cas12a systems are widely used for genome editing, but their ability to precisely generate large chromosome fragment deletions is limited. Type I-E CRISPR mediates broad and unidirectional DNA degradation, but controlling the size of Cas3-mediated DNA deletions has proven elusive thus far. Here, we demonstrate that the endonuclease deactivation of Cas9 (dCas9) can precisely control Cas3-mediated large-fragment deletions in mammalian cells. In addition, we report the elimination of the Y chromosome and precise retention of the Sry gene in mice using CRISPR/Cas3 and dCas9-controlled CRISPR/Cas3, respectively. In conclusion, dCas9-controlled CRISPR/Cas3-mediated precise large-fragment deletion provides an approach for establishing animal models by chromosome elimination. This method also holds promise as a potential therapeutic strategy for treating fragment mutations or human aneuploidy diseases that involve additional chromosomes.
Collapse
Affiliation(s)
- Jinze Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Ding Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Tao Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Haoyang Xiong
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingyang Hu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Hongmei Liu
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Feiyu Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Xiaodi Sun
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Peng Fan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Yuqiang Qian
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Di Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tingting Sui
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|
7
|
Nuttle X, Burt ND, Currall B, Moysés-Oliveira M, Mohajeri K, Bhavsar R, Lucente D, Yadav R, Tai DJC, Gusella JF, Talkowski ME. Parallelized engineering of mutational models using piggyBac transposon delivery of CRISPR libraries. CELL REPORTS METHODS 2024; 4:100672. [PMID: 38091988 PMCID: PMC10831954 DOI: 10.1016/j.crmeth.2023.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 01/25/2024]
Abstract
New technologies and large-cohort studies have enabled novel variant discovery and association at unprecedented scale, yet functional characterization of these variants remains paramount to deciphering disease mechanisms. Approaches that facilitate parallelized genome editing of cells of interest or induced pluripotent stem cells (iPSCs) have become critical tools toward this goal. Here, we developed an approach that incorporates libraries of CRISPR-Cas9 guide RNAs (gRNAs) together with inducible Cas9 into a piggyBac (PB) transposon system to engineer dozens to hundreds of genomic variants in parallel against isogenic cellular backgrounds. This method empowers loss-of-function (LoF) studies through the introduction of insertions or deletions (indels) and copy-number variants (CNVs), though generating specific nucleotide changes is possible with prime editing. The ability to rapidly establish high-quality mutational models at scale will facilitate the development of isogenic cellular collections and catalyze comparative functional genomic studies investigating the roles of hundreds of genes and mutations in development and disease.
Collapse
Affiliation(s)
- Xander Nuttle
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| | - Nicholas D Burt
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin Currall
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mariana Moysés-Oliveira
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Kiana Mohajeri
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; PhD program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Riya Bhavsar
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Diane Lucente
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Rachita Yadav
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Derek J C Tai
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - James F Gusella
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
8
|
Cherney RE, Eberhard QE, Giri G, Mills CA, Porrello A, Zhang Z, White D, Trotman JB, Herring LE, Dominguez D, Calabrese JM. SAFB associates with nascent RNAs and can promote gene expression in mouse embryonic stem cells. RNA (NEW YORK, N.Y.) 2023; 29:1535-1556. [PMID: 37468167 PMCID: PMC10578485 DOI: 10.1261/rna.079569.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Scaffold attachment factor B (SAFB) is a conserved RNA-binding protein that is essential for early mammalian development. However, the functions of SAFB in mouse embryonic stem cells (ESCs) have not been characterized. Using RNA immunoprecipitation followed by RNA-seq (RIP-seq), we examined the RNAs associated with SAFB in wild-type and SAFB/SAFB2 double-knockout ESCs. SAFB predominantly associated with introns of protein-coding genes through purine-rich motifs. The transcript most enriched in SAFB association was the lncRNA Malat1, which also contains a purine-rich region in its 5' end. Knockout of SAFB/SAFB2 led to differential expression of approximately 1000 genes associated with multiple biological processes, including apoptosis, cell division, and cell migration. Knockout of SAFB/SAFB2 also led to splicing changes in a set of genes that were largely distinct from those that exhibited changes in expression level. The spliced and nascent transcripts of many genes whose expression levels were positively regulated by SAFB also associated with high levels of SAFB, implying that SAFB binding promotes their expression. Reintroduction of SAFB into double-knockout cells restored gene expression toward wild-type levels, an effect again observable at the level of spliced and nascent transcripts. Proteomics analysis revealed a significant enrichment of nuclear speckle-associated and RS domain-containing proteins among SAFB interactors. Neither Xist nor Polycomb functions were dramatically altered in SAFB/2 knockout ESCs. Our findings suggest that among other potential functions in ESCs, SAFB promotes the expression of certain genes through its ability to bind nascent RNA.
Collapse
Affiliation(s)
- Rachel E Cherney
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Quinn E Eberhard
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Gilbert Giri
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christine A Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Alessandro Porrello
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhiyue Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - David White
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jackson B Trotman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
9
|
Pimenta FM, Huh J, Guzman B, Amanah D, Marston DJ, Pinkin NK, Danuser G, Hahn KM. Rho MultiBinder, a fluorescent biosensor that reports the activity of multiple GTPases. Biophys J 2023; 122:3646-3655. [PMID: 37085995 PMCID: PMC10541480 DOI: 10.1016/j.bpj.2023.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Imaging two or more fluorescent biosensors in the same living cell can reveal the spatiotemporal coordination of protein activities. However, using multiple Förster resonance energy transfer (FRET) biosensors together is challenging due to toxicity and the need for orthogonal fluorophores. Here we generate a biosensor component that binds selectively to the activated conformation of three different proteins. This enabled multiplexed FRET with fewer fluorophores, and reduced toxicity. We generated this MultiBinder (MB) reagent for the GTPases RhoA, Rac1, and Cdc42 by combining portions of the downstream effector proteins Pak1 and Rhotekin. Using FRET between mCherry on the MB and YPet or mAmetrine on two target proteins, the activities of any pair of GTPases could be distinguished. The MB was used to image Rac1 and RhoA together with a third, dye-based biosensor for Cdc42. Quantifying effects of biosensor combinations on the frequency, duration, and velocity of cell protrusions and retractions demonstrated reduced toxicity. Multiplexed imaging revealed signaling hierarchies between the three proteins at the cell edge where they regulate motility.
Collapse
Affiliation(s)
- Frederico M Pimenta
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jaewon Huh
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bryan Guzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Diepreye Amanah
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Daniel J Marston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas K Pinkin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gaudenz Danuser
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
10
|
Schertzer MD, Stirn A, Isaev K, Pereira L, Das A, Harbison C, Park SH, Wessels HH, Sanjana NE, Knowles DA. Cas13d-mediated isoform-specific RNA knockdown with a unified computational and experimental toolbox. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557474. [PMID: 37745416 PMCID: PMC10515814 DOI: 10.1101/2023.09.12.557474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Alternative splicing is an essential mechanism for diversifying proteins, in which mature RNA isoforms produce proteins with potentially distinct functions. Two major challenges in characterizing the cellular function of isoforms are the lack of experimental methods to specifically and efficiently modulate isoform expression and computational tools for complex experimental design. To address these gaps, we developed and methodically tested a strategy which pairs the RNA-targeting CRISPR/Cas13d system with guide RNAs that span exon-exon junctions in the mature RNA. We performed a high-throughput essentiality screen, quantitative RT-PCR assays, and PacBio long read sequencing to affirm our ability to specifically target and robustly knockdown individual RNA isoforms. In parallel, we provide computational tools for experimental design and screen analysis. Considering all possible splice junctions annotated in GENCODE for multi-isoform genes and our gRNA efficacy predictions, we estimate that our junction-centric strategy can uniquely target up to 89% of human RNA isoforms, including 50,066 protein-coding and 11,415 lncRNA isoforms. Importantly, this specificity spans all splicing and transcriptional events, including exon skipping and inclusion, alternative 5' and 3' splice sites, and alternative starts and ends.
Collapse
Affiliation(s)
- Megan D Schertzer
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | - Andrew Stirn
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | - Keren Isaev
- New York Genome Center, New York, NY
- Department of Systems Biology, Columbia University, New York, NY
| | | | - Anjali Das
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | | | - Stella H Park
- New York Genome Center, New York, NY
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY
- Department of Biology, New York University, New York, NY
| | - Neville E Sanjana
- New York Genome Center, New York, NY
- Department of Biology, New York University, New York, NY
| | - David A Knowles
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
- Department of Systems Biology, Columbia University, New York, NY
- Data Science Institute, Columbia University, New York, NY
| |
Collapse
|
11
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
12
|
Braceros AK, Schertzer MD, Omer A, Trotman JB, Davis ES, Dowen JM, Phanstiel DH, Aiden EL, Calabrese JM. Proximity-dependent recruitment of Polycomb repressive complexes by the lncRNA Airn. Cell Rep 2023; 42:112803. [PMID: 37436897 PMCID: PMC10441531 DOI: 10.1016/j.celrep.2023.112803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023] Open
Abstract
During mouse embryogenesis, expression of the long non-coding RNA (lncRNA) Airn leads to gene repression and recruitment of Polycomb repressive complexes (PRCs) to varying extents over a 15-Mb domain. The mechanisms remain unclear. Using high-resolution approaches, we show in mouse trophoblast stem cells that Airn expression induces long-range changes to chromatin architecture that coincide with PRC-directed modifications and center around CpG island promoters that contact the Airn locus even in the absence of Airn expression. Intensity of contact between the Airn lncRNA and chromatin correlated with underlying intensity of PRC recruitment and PRC-directed modifications. Deletion of CpG islands that contact the Airn locus altered long-distance repression and PRC activity in a manner that correlated with changes in chromatin architecture. Our data imply that the extent to which Airn expression recruits PRCs to chromatin is controlled by DNA regulatory elements that modulate proximity of the Airn lncRNA product to its target DNA.
Collapse
Affiliation(s)
- Aki K Braceros
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Megan D Schertzer
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Arina Omer
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jackson B Trotman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jill M Dowen
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Douglas H Phanstiel
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Pal D, Patel M, Boulet F, Sundarraj J, Grant OA, Branco MR, Basu S, Santos SDM, Zabet NR, Scaffidi P, Pradeepa MM. H4K16ac activates the transcription of transposable elements and contributes to their cis-regulatory function. Nat Struct Mol Biol 2023; 30:935-947. [PMID: 37308596 PMCID: PMC10352135 DOI: 10.1038/s41594-023-01016-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/05/2023] [Indexed: 06/14/2023]
Abstract
Mammalian genomes harbor abundant transposable elements (TEs) and their remnants, with numerous epigenetic repression mechanisms enacted to silence TE transcription. However, TEs are upregulated during early development, neuronal lineage, and cancers, although the epigenetic factors contributing to the transcription of TEs have yet to be fully elucidated. Here, we demonstrate that the male-specific lethal (MSL)-complex-mediated histone H4 acetylation at lysine 16 (H4K16ac) is enriched at TEs in human embryonic stem cells (hESCs) and cancer cells. This in turn activates transcription of subsets of full-length long interspersed nuclear elements (LINE1s, L1s) and endogenous retrovirus (ERV) long terminal repeats (LTRs). Furthermore, we show that the H4K16ac-marked L1 and LTR subfamilies display enhancer-like functions and are enriched in genomic locations with chromatin features associated with active enhancers. Importantly, such regions often reside at boundaries of topologically associated domains and loop with genes. CRISPR-based epigenetic perturbation and genetic deletion of L1s reveal that H4K16ac-marked L1s and LTRs regulate the expression of genes in cis. Overall, TEs enriched with H4K16ac contribute to the cis-regulatory landscape at specific genomic locations by maintaining an active chromatin landscape at TEs.
Collapse
Affiliation(s)
- Debosree Pal
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Manthan Patel
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fanny Boulet
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jayakumar Sundarraj
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Bhabha Atomic Research Centre, Mumbai, India
| | - Olivia A Grant
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Miguel R Branco
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Srinjan Basu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Nicolae Radu Zabet
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paola Scaffidi
- Francis Crick Institute, London, UK
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Madapura M Pradeepa
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
14
|
Cherney RE, Mills CA, Herring LE, Braceros AK, Calabrese JM. A monoclonal antibody raised against human EZH2 cross-reacts with the RNA-binding protein SAFB. Biol Open 2023; 12:bio059955. [PMID: 37283223 PMCID: PMC10259849 DOI: 10.1242/bio.059955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.
Collapse
Affiliation(s)
- Rachel E. Cherney
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Christine A. Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Proteomics Core Facility, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Proteomics Core Facility, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Aki K. Braceros
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - J. Mauro Calabrese
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Trotman JB, Braceros AK, Bischoff SR, Murvin MM, Boyson SP, Cherney RE, Eberhard QE, Abrash EW, Cowley DO, Calabrese JM. Ectopically expressed Airn lncRNA deposits Polycomb with a potency that rivals Xist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539960. [PMID: 37214824 PMCID: PMC10197632 DOI: 10.1101/2023.05.09.539960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report that when expressed at similar levels from an isogenic locus, the Airn lncRNA induces Polycomb deposition with a potency that rivals Xist . However, when subject to the same degree of promoter activation, Xist is more abundant and more potent than Airn . Our data definitively demonstrate that the Airn lncRNA is functional and suggest that Xist achieved extreme potency in part by evolving mechanisms to promote its own abundance.
Collapse
|
16
|
Cherney RE, Mills CA, Herring LE, Braceros AK, Calabrese JM. A monoclonal antibody raised against human EZH2 cross-reacts with the RNA-binding protein SAFB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535391. [PMID: 37066147 PMCID: PMC10103960 DOI: 10.1101/2023.04.03.535391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.
Collapse
|
17
|
Paniagua I, Tayeh Z, Falcone M, Hernández Pérez S, Cerutti A, Jacobs JJL. MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner. Nat Commun 2022; 13:5167. [PMID: 36075897 PMCID: PMC9458726 DOI: 10.1038/s41467-022-32861-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
Protection of stalled replication forks is essential to prevent genome instability, a major driving force of tumorigenesis. Several key regulators of DNA double-stranded break (DSB) repair, including 53BP1 and RIF1, have been implicated in fork protection. MAD2L2, also known as REV7, plays an important role downstream of 53BP1/RIF1 by counteracting resection at DSBs in the recently discovered shieldin complex. The ability to bind and counteract resection at exposed DNA ends at DSBs makes MAD2L2/shieldin a prime candidate for also suppressing nucleolytic processing at stalled replication forks. However, the function of MAD2L2/shieldin outside of DNA repair is unknown. Here we address this by using genetic and single-molecule analyses and find that MAD2L2 is required for protecting and restarting stalled replication forks. MAD2L2 loss leads to uncontrolled MRE11-dependent resection of stalled forks and single-stranded DNA accumulation, which causes irreparable genomic damage. Unexpectedly, MAD2L2 limits resection at stalled forks independently of shieldin, since fork protection remained unaffected by shieldin loss. Instead, MAD2L2 cooperates with the DNA polymerases REV3L and REV1 to promote fork stability. Thus, MAD2L2 suppresses aberrant nucleolytic processing both at DSBs and stalled replication forks by differentially engaging shieldin and REV1/REV3L, respectively. MAD2L2 – as a member of the shieldin complex - counteracts resection during DNA repair. Here the authors demonstrate that MAD2L2 protects stalled replication forks from excessive resection, in a shieldin-independent and REV3L-dependent manner.
Collapse
Affiliation(s)
- Inés Paniagua
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Zainab Tayeh
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Mattia Falcone
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Santiago Hernández Pérez
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Aurora Cerutti
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Di D, Huang Q, Ly H, Liang Y. Evaluating the Biological Role of Lassa Viral Z Protein-Mediated RIG-I Inhibition Using a Replication-Competent Trisegmented Pichinde Virus System in an Inducible RIG-IN Expression Cell Line. J Virol 2022; 96:e0075422. [PMID: 35913216 PMCID: PMC9400496 DOI: 10.1128/jvi.00754-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 02/03/2023] Open
Abstract
Lassa virus (LASV) is a mammarenavirus that can cause lethal Lassa fever disease with no FDA-approved vaccine and limited treatment options. Fatal LASV infections are associated with innate immune suppression. We have previously shown that the small matrix Z protein of LASV, but not of a nonpathogenic arenavirus Pichinde virus (PICV), can inhibit the cellular RIG-I-like receptors (RLRs), but its biological significance has not been evaluated in an infectious virus due to the multiple essential functions of the Z protein required for the viral life cycle. In this study, we developed a stable HeLa cell line (HeLa-iRIGN) that could be rapidly and robustly induced by doxycycline (Dox) treatment to express RIG-I N-terminal effector, with concomitant production of type I interferons (IFN-Is). We also generated recombinant tri-segmented PICVs, rP18tri-LZ, and rP18tri-PZ, which encode LASV Z and PICV Z, respectively, as an extra mScarlet fusion protein that is nonessential for the viral life cycle. Upon infection, rP18tri-LZ consistently expressed viral genes at a higher level than rP18tri-PZ. rP18tri-LZ also showed a higher level of a viral infection than rP18tri-PZ did in HeLa-iRIGN cells, especially upon Dox induction. The heterologous Z gene did not alter viral growth in Vero and A549 cells by growth curve analysis, while LASV Z strongly increased and prolonged viral gene expression, especially in IFN-competent A549 cells. Our study provides important insights into the biological role of LASV Z-mediated RIG-I inhibition and implicates LASV Z as a potential virulence factor. IMPORTANCE Lassa virus (LASV) can cause lethal hemorrhagic fever disease in humans but other arenaviruses, such as Pichinde virus (PICV), do not cause obvious disease. We have previously shown that the Z protein of LASV but not of PICV can inhibit RIG-I, a cytosolic innate immune receptor. In this study, we developed a stable HeLa cell line that can be induced to express the RIG-I N-terminal effector domain, which allows for timely control of RIG-I activation. We also generated recombinant PICVs encoding LASV Z or PICV Z as an extra gene that is nonessential for the viral life cycle. Compared to PICV Z, LASV Z could increase viral gene expression and viral infection in an infectious arenavirus system, especially when RIG-I signaling is activated. Our study presented a convenient cell system to characterize RIG-I signaling and its antagonists and revealed LASV Z as a possible virulence factor and a potential antiviral target.
Collapse
Affiliation(s)
- Da Di
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
19
|
Jiang Y, Hoenisch RC, Chang Y, Bao X, Cameron CE, Lian XL. Robust genome and RNA editing via CRISPR nucleases in PiggyBac systems. Bioact Mater 2022; 14:313-320. [PMID: 35386818 PMCID: PMC8964983 DOI: 10.1016/j.bioactmat.2022.01.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas-mediated genome editing in human pluripotent stem cells (hPSCs) offers unprecedented opportunities for developing in vitro disease modeling, drug screening and cell-based therapies. To efficiently deliver the CRISPR components, here we developed two all-in-one vectors containing Cas9/gRNA and inducible Cas13d/gRNA cassettes for robust genome editing and RNA interference respectively. These vectors utilized the PiggyBac transposon system, which allows stable expression of CRISPR components in hPSCs. The Cas9 vector PB-CRISPR exhibited high efficiency (up to 99%) of inducing gene knockout in both protein-coding genes and long non-coding RNAs. The other inducible Cas13d vector achieved extremely high efficiency in RNA knockdown (98% knockdown for CD90) with optimized gRNA designs. Taken together, our PiggyBac CRISPR vectors can serve as powerful toolkits for studying gene functions in hPSCs.
Collapse
Affiliation(s)
- Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rachel Catherine Hoenisch
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
20
|
Madireddy I, Pierson Smela M. Stably Integrating an Inducible CRISPR-Cas9 to Protect Against Viral Infections in Vitro. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000590. [PMID: 35789697 PMCID: PMC9250034 DOI: 10.17912/micropub.biology.000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/06/2022]
Abstract
CRISPR-Cas systems protect bacteria from viral nucleic acids. The Cas9 enzyme cleaves bacteriophage DNA preventing viral genes from being expressed in the bacterial host. In this work, the Cas9 protein is repurposed to function as an intracellular mammalian defense mechanism that protects human cells from cytomegaloviral DNA. The A549 lung adenocarcinoma cell line was genetically modified to express a doxycycline-inducible Cas9, and a guide RNA targeting a luciferase reporter plasmid. This investigation revealed a robust inducible Cas9 system that successfully reduced the expression of the luciferase viral reporter by up to 98% and by 75% on average.
Collapse
Affiliation(s)
- Indeever Madireddy
- BioCurious, Santa Clara, CA
,
BASIS Independent Silicon Valley, San Jose, CA
,
Correspondence to: Indeever Madireddy (
)
| | | |
Collapse
|
21
|
Yang J, Hu M, Wang Y. Protocol for inducible piggyBac transposon system for efficient gene overexpression in human pluripotent stem cells. STAR Protoc 2022; 3:101296. [PMID: 35496784 PMCID: PMC9038768 DOI: 10.1016/j.xpro.2022.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In human pluripotent stem cells (hPSCs), traditional approaches for gene overexpression have low efficiency and are often laborious. Here, we provide a relatively simple protocol for gene overexpression with the Dox-inducible PiggyBac transposon system. We detail the steps for overexpression of FLI1 and/or YAP in H1 embryonic stem cells (H1 ESCs) as an example. Our protocol can be applied to any gene of interest in a variety of hPSCs. For complete details on the use and execution of this protocol, please refer to Quan et al. (2021). Gibson Assembly allows for quick construction of inducible piggyBac transposon plasmids Doxycycline-inducible gene overexpression in stable H1 ESCs Details for FLI1 overexpression or FLI1/YAP5SA double overexpression
Collapse
|
22
|
Liu Z, Chen S, Xie W, Song Y, Li J, Lai L, Li Z. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9. Mol Ther 2022; 30:256-267. [PMID: 34174445 PMCID: PMC8753289 DOI: 10.1016/j.ymthe.2021.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Compact CRISPR-Cas9 systems that can be packaged into an adeno-associated virus (AAV) show promise for gene therapy. However, the requirement of protospacer adjacent motifs (PAMs) restricts the target scope. To expand this repertoire, we revisited and optimized a small Cas9 ortholog derived from Streptococcus pasteurianus (SpaCas9) for efficient genome editing in vivo. We found that SpaCas9 enables potent targeting of 5'-NNGYRA-3' PAMs, which are distinct from those recognized by currently used small Cas9s; the Spa-cytosine base editor (CBE) and Spa-adenine base editor (ABE) systems efficiently generated robust C-to-T and A-to-G conversions both in vitro and in vivo. In addition, by exploiting natural variation in the PAM-interacting domain, we engineered three SpaCas9 variants to further expand the targeting scope of compact Cas9 systems. Moreover, mutant mice with efficient disruption of the Tyr gene were successfully generated by microinjection of SpaCas9 mRNA and the corresponding single guide RNA (sgRNA) into zygotes. Notably, all-in-one AAV delivery of SpaCas9 targeting the Pcsk9 gene in adult mouse liver produced efficient genome-editing events and reduced its serum cholesterol. Thus, with distinct PAMs and a small size, SpaCas9 will broaden the CRISPR-Cas9 toolsets for efficient gene modifications and therapeutic applications.
Collapse
Affiliation(s)
- Zhiquan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Siyu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Wanhua Xie
- The Precise Medicine Center, Shenyang Medical College, Shenyang 110000, China
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Jinze Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guang Dong Laboratory (GRMH-GDL), Guangzhou 510005, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
23
|
Interrogating genome function using CRISPR tools: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Wang J, Huang J, Shi G. Retrotransposons in pluripotent stem cells. CELL REGENERATION 2020; 9:4. [PMID: 32588192 PMCID: PMC7306833 DOI: 10.1186/s13619-020-00046-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Transposable elements constitute about half of the mammalian genome, and can be divided into two classes: the class I (retrotransposons) and the class II (DNA transposons). A few hundred types of retrotransposons, which are dynamic and stage specific, have been annotated. The copy numbers and genomic locations are significantly varied in species. Retrotransposons are active in germ cells, early embryos and pluripotent stem cells (PSCs) correlated with low levels of DNA methylation in epigenetic regulation. Some key pluripotency transcriptional factors (such as OCT4, SOX2, and NANOG) bind retrotransposons and regulate their activities in PSCs, suggesting a vital role of retrotransposons in pluripotency maintenance and self-renewal. In response to retrotransposons transposition, cells employ a number of silencing mechanisms, such as DNA methylation and histone modification. This review summarizes expression patterns, functions, and regulation of retrotransposons in PSCs and early embryonic development.
Collapse
Affiliation(s)
- Jingwen Wang
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China
| | - Junjiu Huang
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Guang Shi
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
25
|
Schertzer MD, Braceros KCA, Starmer J, Cherney RE, Lee DM, Salazar G, Justice M, Bischoff SR, Cowley DO, Ariel P, Zylka MJ, Dowen JM, Magnuson T, Calabrese JM. lncRNA-Induced Spread of Polycomb Controlled by Genome Architecture, RNA Abundance, and CpG Island DNA. Mol Cell 2019; 75:523-537.e10. [PMID: 31256989 PMCID: PMC6688959 DOI: 10.1016/j.molcel.2019.05.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/10/2019] [Accepted: 05/17/2019] [Indexed: 01/28/2023]
Abstract
Long noncoding RNAs (lncRNAs) cause Polycomb repressive complexes (PRCs) to spread over broad regions of the mammalian genome. We report that in mouse trophoblast stem cells, the Airn and Kcnq1ot1 lncRNAs induce PRC-dependent chromatin modifications over multi-megabase domains. Throughout the Airn-targeted domain, the extent of PRC-dependent modification correlated with intra-nuclear distance to the Airn locus, preexisting genome architecture, and the abundance of Airn itself. Specific CpG islands (CGIs) displayed characteristics indicating that they nucleate the spread of PRCs upon exposure to Airn. Chromatin environments surrounding Xist, Airn, and Kcnq1ot1 suggest common mechanisms of PRC engagement and spreading. Our data indicate that lncRNA potency can be tightly linked to lncRNA abundance and that within lncRNA-targeted domains, PRCs are recruited to CGIs via lncRNA-independent mechanisms. We propose that CGIs that autonomously recruit PRCs interact with lncRNAs and their associated proteins through three-dimensional space to nucleate the spread of PRCs in lncRNA-targeted domains.
Collapse
Affiliation(s)
- Megan D Schertzer
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Keean C A Braceros
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua Starmer
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel E Cherney
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David M Lee
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gabriela Salazar
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Megan Justice
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven R Bischoff
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale O Cowley
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo Ariel
- Microscopy Services Laboratory and Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jill M Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
Goudy J, Henley T, Méndez HG, Bressan M. Simplified platform for mosaic in vivo analysis of cellular maturation in the developing heart. Sci Rep 2019; 9:10716. [PMID: 31341189 PMCID: PMC6656758 DOI: 10.1038/s41598-019-47009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardiac cells develop within an elaborate electro-mechanical syncytium that continuously generates and reacts to biophysical force. The complexity of the cellular interactions, hemodynamic stresses, and electrical circuitry within the forming heart present significant challenges for mechanistic research into the cellular dynamics of cardiomyocyte maturation. Simply stated, it is prohibitively difficult to replicate the native electro-mechanical cardiac microenvironment in tissue culture systems favorable to high-resolution cellular/subcellular analysis, and current transgenic models of higher vertebrate heart development are limited in their ability to manipulate and assay the behavior of individual cells. As such, cardiac research currently lacks a simple experimental platform for real-time evaluation of cellular function under conditions that replicate native development. Here we report the design and validation of a rapid, low-cost system for stable in vivo somatic transgenesis that allows for individual cells to be genetically manipulated, tracked, and examined at subcellular resolution within the forming four-chambered heart. This experimental platform has several advantages over current technologies, chief among these being that mosaic cellular perturbations can be conducted without globally altering cardiac function. Consequently, direct analysis of cellular behavior can be interrogated in the absence of the organ level adaptions that often confound data interpretation in germline transgenic model organisms.
Collapse
Affiliation(s)
- Julie Goudy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Hernán G Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA. .,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|