1
|
Saji T, Endo M, Okada Y, Minami Y, Nishita M. KIF1C facilitates retrograde transport of lysosomes through Hook3 and dynein. Commun Biol 2024; 7:1305. [PMID: 39394274 PMCID: PMC11470034 DOI: 10.1038/s42003-024-07023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Lysosomes, crucial cellular organelles, undergo bidirectional transport along microtubules, mediated by motor proteins such as cytoplasmic dynein-1 (dynein) and various kinesins. While the kinesin-3 family member KIF1C is established in mediating anterograde vesicle transport, its role in lysosomal transport remains unclear. Our study reveals that KIF1C unexpectedly supports the retrograde transport of lysosomes, driven by dynein, and contributes to their perinuclear localization. Notably, while KIF1C facilitates this perinuclear positioning, its motor activity is not required and, instead, exerts an inhibitory effect on this process. Mechanistically, KIF1C facilitates this process by interacting with the dynein-activating adaptor Hook3, which associates with the lysosome-anchored protein RUFY3. This regulatory mechanism is critical for the efficient degradation of cargo in autophagic and endocytic pathways. Our findings identify an unconventional, non-motor role for KIF1C in activating dynein-driven lysosomal transport, expanding our understanding of its functional diversity in cellular trafficking.
Collapse
Affiliation(s)
- Takeshi Saji
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute (UBI) and International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
2
|
Xu J, Hörner M, Nagel M, Perhat P, Korneck M, Noß M, Hauser S, Schöls L, Admard J, Casadei N, Schüle R. Unraveling Axonal Transcriptional Landscapes: Insights from iPSC-Derived Cortical Neurons and Implications for Motor Neuron Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586780. [PMID: 38585749 PMCID: PMC10996649 DOI: 10.1101/2024.03.26.586780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment specific analysis. In this study, we employ a robust RNA-sequencing (RNA-seq) approach, using microfluidic devices, to generate high-quality axonal transcriptomes from iPSC-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, RNAs encoding ribosomal proteins (RPs), mitochondrial-encoded RNAs, and long non-coding RNAs (lncRNAs). Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a set of TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analyzed KIF1C-knockout (KO) CNs, modeling hereditary spastic paraplegia (HSP), a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in KIF1C-KO axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of KIF1C on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment specific disease mechanisms.
Collapse
|
3
|
Bonacquisti EE, Ferguson SW, Wadsworth GM, Jasiewicz NE, Wang J, Chaudhari AP, Kussatz CC, Nogueira AT, Keeley DP, Itano MS, Bolton ML, Hahn KM, Banerjee PR, Nguyen J. Fluorogenic RNA-based biomaterials for imaging and tracking the cargo of extracellular vesicles. J Control Release 2024; 374:349-368. [PMID: 39111600 DOI: 10.1016/j.jconrel.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/25/2024]
Abstract
Extracellular vesicles (EVs), or exosomes, play important roles in physiological and pathological cellular communication and have gained substantial traction as biological drug carriers. EVs contain both short and long non-coding RNAs that regulate gene expression and epigenetic processes. To fully capitalize on the potential of EVs as drug carriers, it is important to study and understand the intricacies of EV function and EV RNA-based communication. Here we developed a genetically encodable RNA-based biomaterial, termed EXO-Probe, for tracking EV RNAs. The EXO-Probe comprises an EV-loading RNA sequence (EXO-Code), fused to a fluorogenic RNA Mango aptamer for RNA imaging. This fusion construct allowed the visualization and tracking of EV RNA and colocalization with markers of multivesicular bodies; imaging RNA within EVs, and non-destructive quantification of EVs. Overall, the new RNA-based biomaterial provides a useful and versatile means to interrogate the role of EVs in cellular communication via RNA trafficking to EVs and to study cellular sorting decisions. The system will also help lay the foundation to further improve the therapeutic efficacy of EVs as drug carriers.
Collapse
Affiliation(s)
- Emily E Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott W Ferguson
- Department of Pharmaceutical Sciences, University at Buffalo, USA
| | - Gable M Wadsworth
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Natalie E Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinli Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Ameya P Chaudhari
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caden C Kussatz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ana T Nogueira
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Daniel P Keeley
- UNC Neuroscience Microscopy Core, Carolina Institute for Developmental Disabilities, UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 25799, USA
| | - Michelle S Itano
- UNC Neuroscience Microscopy Core, Carolina Institute for Developmental Disabilities, UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 25799, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Matthew L Bolton
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, 22903, USA
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Geng Q, Keya JJ, Hotta T, Verhey KJ. The kinesin-3 KIF1C undergoes liquid-liquid phase separation for accumulation of specific transcripts at the cell periphery. EMBO J 2024; 43:3192-3213. [PMID: 38898313 PMCID: PMC11294625 DOI: 10.1038/s44318-024-00147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
In cells, mRNAs are transported to and positioned at subcellular areas to locally regulate protein production. Recent studies have identified the kinesin-3 family member motor protein KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that the KIF1C C-terminal tail domain contains an intrinsically disordered region (IDR) that drives liquid-liquid phase separation (LLPS). KIF1C forms dynamic puncta in cells that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. Endogenous KIF1C forms condensates in cellular protrusions, where mRNAs are enriched in an IDR-dependent manner. Purified KIF1C tail constructs undergo LLPS in vitro at near-endogenous nM concentrations and in the absence of crowding agents and can directly recruit RNA molecules. Overall, our work uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role in mRNA positioning. In addition, the LLPS activity of KIF1C's tail represents a new mode of motor-cargo interaction that extends our current understanding of cytoskeletal motor proteins.
Collapse
Affiliation(s)
- Qi Geng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Chekulaeva M. Mechanistic insights into the basis of widespread RNA localization. Nat Cell Biol 2024; 26:1037-1046. [PMID: 38956277 DOI: 10.1038/s41556-024-01444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The importance of subcellular mRNA localization is well established, but the underlying mechanisms mostly remain an enigma. Early studies suggested that specific mRNA sequences recruit RNA-binding proteins (RBPs) to regulate mRNA localization. However, despite the observation of thousands of localized mRNAs, only a handful of these sequences and RBPs have been identified. This suggests the existence of alternative, and possibly predominant, mechanisms for mRNA localization. Here I re-examine currently described mRNA localization mechanisms and explore alternative models that could account for its widespread occurrence.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
6
|
Moissoglu K, Wang T, Gasparski AN, Stueland M, Paine EL, Jenkins L, Mili S. A KIF1C-CNBP motor-adaptor complex for trafficking mRNAs to cell protrusions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600878. [PMID: 38979199 PMCID: PMC11230373 DOI: 10.1101/2024.06.26.600878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
mRNA localization to subcellular compartments is a widely used mechanism that functionally contributes to numerous processes. mRNA targeting can be achieved upon recognition of RNA cargo by molecular motors. However, our molecular understanding of how this is accomplished is limited, especially in higher organisms. We focus on a pathway that targets mRNAs to peripheral protrusions of mammalian cells and is important for cell migration. Trafficking occurs through active transport on microtubules, mediated by the KIF1C kinesin. Here, we identify the RNA-binding protein CNBP, as a factor required for mRNA localization to protrusions. CNBP binds directly to GA-rich sequences in the 3'UTR of protrusion targeted mRNAs. CNBP also interacts with KIF1C and is required for KIF1C recruitment to mRNAs and for their trafficking on microtubules to the periphery. This work provides a molecular mechanism for KIF1C recruitment to mRNA cargo and reveals a motor-adaptor complex for mRNA transport to cell protrusions.
Collapse
|
7
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Kristofich J, Nicchitta CV. High-throughput quantitation of protein-RNA UV-crosslinking efficiencies as a predictive tool for high-confidence identification of RNA-binding proteins. RNA (NEW YORK, N.Y.) 2024; 30:644-661. [PMID: 38423626 PMCID: PMC11098464 DOI: 10.1261/rna.079848.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
UV-crosslinking has proven to be an invaluable tool for the identification of RNA-protein interactomes. The paucity of methods for distinguishing background from bona fide RNA-protein interactions, however, makes attribution of RNA-binding function on UV-crosslinking alone challenging. To address this need, we previously reported an RNA-binding protein (RBP) confidence scoring metric (RCS), incorporating both signal-to-noise (S:N) and protein abundance determinations to distinguish high- and low-confidence candidate RBPs. Although RCS has utility, we sought a direct metric for quantification and comparative evaluation of protein-RNA interactions. Here we propose the use of protein-specific UV-crosslinking efficiency (%CL), representing the molar fraction of a protein that is crosslinked to RNA, for functional evaluation of candidate RBPs. Application to the HeLa RNA interactome yielded %CL values for 1097 proteins. Remarkably, %CL values span over five orders of magnitude. For the HeLa RNA interactome, %CL values comprise a range from high efficiency, high specificity interactions, e.g., the Elav protein HuR and the Pumilio homolog Pum2, with %CL values of 45.9 and 24.2, respectively, to very low efficiency and specificity interactions, for example, the metabolic enzymes glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, and alpha-enolase, with %CL values of 0.0016, 0.006, and 0.008, respectively. We further extend the utility of %CL through prediction of protein domains and classes with known RNA-binding functions, thus establishing it as a useful metric for RNA interactome analysis. We anticipate that this approach will benefit efforts to establish functional RNA interactomes and support the development of more predictive computational approaches for RBP identification.
Collapse
Affiliation(s)
- JohnCarlo Kristofich
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Christopher V Nicchitta
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
9
|
Laragione T, Harris C, Gulko PS. KIF1C and new Huntingtin-interacting protein 1 binding proteins regulate rheumatoid arthritis fibroblast-like synoviocytes' phenotypes. Front Immunol 2024; 15:1323410. [PMID: 38726004 PMCID: PMC11079228 DOI: 10.3389/fimmu.2024.1323410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
Background Huntingtin-interacting protein-1 (HIP1) is a new arthritis severity gene implicated in the regulation of the invasive properties of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). These invasive properties of FLS strongly correlate with radiographic and histology damage in patients with RA and rodent models of arthritis. While HIP1 has several intracellular functions, little is known about its binding proteins, and identifying them has the potential to expand our understanding of its role in cell invasion and other disease-contributing phenotypes, and potentially identify new targets for therapy. Methods FLS cell lines from arthritic DA (highly invasive) and from arthritis-protected congenic rats R6 (minimally invasive), which differ in an amino-acid changing HIP1 SNP, were cultured and lysed, and proteins were immunoprecipitated with an anti-HIP1 antibody. Immunoprecipitates were analyzed by mass spectrometry. Differentially detected (bound) proteins were selected for functional experiments using siRNA knockdown in human RA FLS to examine their effect in cell invasiveness, adhesion, cell migration and proliferation, and immunofluorescence microscopy. Results Proteins detected included a few known HIP1-binding proteins and several new ones. Forty-five proteins differed in levels detected in the DA versus R6 congenic mass spectrometry analyses. Thirty-two of these proteins were knocked down and studied in vitro, with 10 inducing significant changes in RA FLS phenotypes. Specifically, knockdown of five HIP1-binding protein genes (CHMP4BL1, COPE, KIF1C, YWHAG, and YWHAH) significantly decreased FLS invasiveness. Knockdown of KIF1C also reduced RA FLS migration. The binding of four selected proteins to human HIP1 was confirmed. KIF1C colocalized with lamellipodia, and its knockdown prevented RA FLS from developing an elongated morphology with thick linearized actin fibers or forming polarized lamellipodia, all required for cell mobility and invasion. Unlike HIP1, KIF1C knockdown did not affect Rac1 signaling. Conclusion We have identified new HIP1-binding proteins and demonstrate that 10 of them regulate key FLS phenotypes. These HIP1-binding proteins have the potential to become new therapeutic targets and help better understand the RA FLS pathogenic behavior. KIF1C knockdown recapitulated the morphologic changes previously seen in the absence of HIP1, but did not affect the same cell signaling pathway, suggesting involvement in the regulation of different processes.
Collapse
Affiliation(s)
| | | | - Percio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Farhadi A, Xue L, Zhao Q, Han F, Xu C, Chen H, Li E. Identification of key genes and molecular pathways associated with claw regeneration in mud crab (Scylla paramamosain). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101184. [PMID: 38154166 DOI: 10.1016/j.cbd.2023.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
The mud crab (Scylla paramamosain) possesses extensive regenerative abilities, enabling it to replace missing body parts, including claws, legs, and even eyes. Studying the genetic and molecular mechanisms underlying regenerative ability in diverse animal phyla has the potential to provide new insights into regenerative medicine in humans. In the present study, we performed mRNA sequencing to reveal the genetic mechanisms underlying the claw regeneration in mud crab. Several differentially expressed genes (DEGs) were expressed in biological pathways associated with cuticle synthase, collagen synthase, tissue regeneration, blastema formation, wound healing, cell cycle, cell division, and cell migration. The top GO enrichment terms were microtubule-based process, collagen trimer, cell cycle process, and extracellular matrix structural constituent. The most enriched KEGG pathways were ECM-receptor interaction and focal adhesion. The genes encoding key functional proteins, such as collagen alpha, cuticle protein, early cuticle protein, arthrodial cuticle protein, dentin sialophosphoprotein (DSPP), epidermal growth factor receptor (EGFR), kinesin family member C1 (KIFC1), and DNA replication licensing factor mcm2-like (MCM2) were the most significant and important DEGs suspected to participate in claw regeneration. The findings of this research offer a comprehensive and insightful understanding of the genetic and molecular mechanisms underlying claw regeneration in S. paramamosain. By elucidating the specific genes and molecular pathways implicated in this process, our study contributes significantly to the broader field of regenerative biology and offers potential avenues for further exploration in crustacean limb regeneration.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Laizhong Xue
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
11
|
Bridges MC, Nair-Menon J, Risner A, Jimenez DW, Daulagala AC, Kingsley C, Davis ME, Kourtidis A. Actin-dependent recruitment of AGO2 to the zonula adherens. Mol Biol Cell 2023; 34:ar129. [PMID: 37819702 PMCID: PMC10848941 DOI: 10.1091/mbc.e22-03-0099-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Adherens junctions are cadherin-based structures critical for cellular architecture. E-cadherin junctions in mature epithelial cell monolayers tether to an apical actomyosin ring to form the zonula adherens (ZA). We have previously shown that the adherens junction protein PLEKHA7 associates with and regulates the function of the core RNA interference (RNAi) component AGO2 specifically at the ZA. However, the mechanism mediating AGO2 recruitment to the ZA remained unexplored. Here, we reveal that this ZA-specific recruitment of AGO2 depends on both the structural and tensile integrity of the actomyosin cytoskeleton. We found that depletion of not only PLEKHA7, but also either of the three PLEKHA7-interacting, LIM-domain family proteins, namely LMO7, LIMCH1, and PDLIM1, results in disruption of actomyosin organization and tension, as well as disruption of AGO2 junctional localization and of its miRNA-binding ability. We also show that AGO2 binds Myosin IIB and that PLEKHA7, LMO7, LIMCH1, and PDLIM1 all disrupt interaction of AGO2 with Myosin IIB at the ZA. These results demonstrate that recruitment of AGO2 to the ZA is sensitive to actomyosin perturbations, introducing the concept of mechanosensitive RNAi machinery, with potential implications in tissue remodeling and in disease.
Collapse
Affiliation(s)
- Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Joyce Nair-Menon
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Alyssa Risner
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Douglas W. Jimenez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Amanda C. Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Madison E. Davis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| |
Collapse
|
12
|
Geng Q, Keya JJ, Hotta T, Verhey KJ. KIF1C, an RNA transporting kinesin-3, undergoes liquid-liquid phase separation through its C-terminal disordered domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563538. [PMID: 37961614 PMCID: PMC10634753 DOI: 10.1101/2023.10.23.563538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The spatial distribution of mRNA is critical for local control of protein production. Recent studies have identified the kinesin-3 family member KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that KIF1C's C-terminal tail domain is an intrinsically disordered region (IDR) containing a prion-like domain (PLD) that is unique compared to the C-terminal tails of other kinesin family members. In cells, KIF1C constructs undergo reversible formation of dynamic puncta that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. The IDR is necessary and sufficient for driving liquid-liquid phase separation (LLPS) but the condensate properties can be modulated by adjacent coiled-coil segments. The purified KIF1C IDR domain undergoes LLPS in vitro at near-endogenous nM concentrations in a salt-dependent manner. Deletion of the IDR abolished the ability of KIF1C to undergo LLPS and disrupted the distribution of mRNA cargoes to the cell periphery. Our work thus uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role as an RNA transporter. In addition, as the first kinesin motor reported to undergo LLPS, our work reveals a previously uncharacterized mode of motor-cargo interaction that extends our understanding of the behavior of cytoskeletal motor proteins.
Collapse
Affiliation(s)
- Qi Geng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Gasparski AN, Moissoglu K, Pallikkuth S, Meydan S, Guydosh NR, Mili S. mRNA location and translation rate determine protein targeting to dual destinations. Mol Cell 2023; 83:2726-2738.e9. [PMID: 37506697 PMCID: PMC10530421 DOI: 10.1016/j.molcel.2023.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/25/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Numerous proteins are targeted to two or multiple subcellular destinations where they exert distinct functional consequences. The balance between such differential targeting is thought to be determined post-translationally, relying on protein sorting mechanisms. Here, we show that mRNA location and translation rate can also determine protein targeting by modulating protein binding to specific interacting partners. Peripheral localization of the NET1 mRNA and fast translation lead to higher cytosolic retention of the NET1 protein by promoting its binding to the membrane-associated scaffold protein CASK. By contrast, perinuclear mRNA location and/or slower translation rate favor nuclear targeting by promoting binding to importins. This mRNA location-dependent mechanism is modulated by physiological stimuli and profoundly impacts NET1 function in cell motility. These results reveal that the location of protein synthesis and the rate of translation elongation act in coordination as a "partner-selection" mechanism that robustly influences protein distribution and function.
Collapse
Affiliation(s)
- Alexander N Gasparski
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sandeep Pallikkuth
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sezen Meydan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; National Institute of General Medical Sciences, NIH, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Hildebrandt RP, Moss KR, Janusz-Kaminska A, Knudson LA, Denes LT, Saxena T, Boggupalli DP, Li Z, Lin K, Bassell GJ, Wang ET. Muscleblind-like proteins use modular domains to localize RNAs by riding kinesins and docking to membranes. Nat Commun 2023; 14:3427. [PMID: 37296096 PMCID: PMC10256740 DOI: 10.1038/s41467-023-38923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
RNA binding proteins (RBPs) act as critical facilitators of spatially regulated gene expression. Muscleblind-like (MBNL) proteins, implicated in myotonic dystrophy and cancer, localize RNAs to myoblast membranes and neurites through unknown mechanisms. We find that MBNL forms motile and anchored granules in neurons and myoblasts, and selectively associates with kinesins Kif1bα and Kif1c through its zinc finger (ZnF) domains. Other RBPs with similar ZnFs associate with these kinesins, implicating a motor-RBP specificity code. MBNL and kinesin perturbation leads to widespread mRNA mis-localization, including depletion of Nucleolin transcripts from neurites. Live cell imaging and fractionation reveal that the unstructured carboxy-terminal tail of MBNL1 allows for anchoring at membranes. An approach, termed RBP Module Recruitment and Imaging (RBP-MRI), reconstitutes kinesin- and membrane-recruitment functions using MBNL-MS2 coat protein fusions. Our findings decouple kinesin association, RNA binding, and membrane anchoring functions of MBNL while establishing general strategies for studying multi-functional, modular domains of RBPs.
Collapse
Affiliation(s)
- Ryan P Hildebrandt
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kathryn R Moss
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Luke A Knudson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lance T Denes
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Tanvi Saxena
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Devi Prasad Boggupalli
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Zhuangyue Li
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kun Lin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Gasparski AN, Moissoglu K, Pallikkuth S, Meydan S, Guydosh NR, Mili S. mRNA Location and Translation Rate Determine Protein Targeting to Dual Destinations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538105. [PMID: 37163129 PMCID: PMC10168211 DOI: 10.1101/2023.04.24.538105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Numerous proteins are targeted to two or multiple subcellular destinations where they exert distinct functional consequences. The balance between such differential targeting is thought to be determined post-translationally, relying on protein sorting mechanisms. Here, we show that protein targeting can additionally be determined by mRNA location and translation rate, through modulating protein binding to specific interacting partners. Peripheral localization of the NET1 mRNA and fast translation lead to higher cytosolic retention of the NET1 protein, through promoting its binding to the membrane-associated scaffold protein CASK. By contrast, perinuclear mRNA location and/or slower translation rate favor nuclear targeting, through promoting binding to importins. This mRNA location-dependent mechanism is modulated by physiological stimuli and profoundly impacts NET1 function in cell motility. These results reveal that the location of protein synthesis and the rate of translation elongation act in coordination as a 'partner-selection' mechanism that robustly influences protein distribution and function.
Collapse
Affiliation(s)
- Alexander N Gasparski
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Sandeep Pallikkuth
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Sezen Meydan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, 20892, MD, USA
- National Institute of General Medical Sciences, NIH, Bethesda, 20892, MD, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, 20892, MD, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| |
Collapse
|
16
|
Goering R, Arora A, Pockalny MC, Taliaferro JM. RNA localization mechanisms transcend cell morphology. eLife 2023; 12:e80040. [PMID: 36867563 PMCID: PMC9984196 DOI: 10.7554/elife.80040] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/24/2023] [Indexed: 03/04/2023] Open
Abstract
RNA molecules are localized to specific subcellular regions through interactions between RNA regulatory elements and RNA binding proteins (RBPs). Generally, our knowledge of the mechanistic details behind the localization of a given RNA is restricted to a particular cell type. Here, we show that RNA/RBP interactions that regulate RNA localization in one cell type predictably regulate localization in other cell types with vastly different morphologies. To determine transcriptome-wide RNA spatial distributions across the apicobasal axis of human intestinal epithelial cells, we used our recently developed RNA proximity labeling technique, Halo-seq. We found that mRNAs encoding ribosomal proteins (RP mRNAs) were strongly localized to the basal pole of these cells. Using reporter transcripts and single-molecule RNA FISH, we found that pyrimidine-rich motifs in the 5' UTRs of RP mRNAs were sufficient to drive basal RNA localization. Interestingly, the same motifs were also sufficient to drive RNA localization to the neurites of mouse neuronal cells. In both cell types, the regulatory activity of this motif was dependent on it being in the 5' UTR of the transcript, was abolished upon perturbation of the RNA-binding protein LARP1, and was reduced upon inhibition of kinesin-1. To extend these findings, we compared subcellular RNAseq data from neuronal and epithelial cells. We found that the basal compartment of epithelial cells and the projections of neuronal cells were enriched for highly similar sets of RNAs, indicating that broadly similar mechanisms may be transporting RNAs to these morphologically distinct locations. These findings identify the first RNA element known to regulate RNA localization across the apicobasal axis of epithelial cells, establish LARP1 as an RNA localization regulator, and demonstrate that RNA localization mechanisms cut across cell morphologies.
Collapse
Affiliation(s)
- Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Megan C Pockalny
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
17
|
Sarfraz N, Braselmann E. It's complicated: the interplay of Kif1c mRNA localization in cell protrusions, assembly of protein binding partners on the KIF1C protein, and cell migration. Genes Dev 2023; 37:137-139. [PMID: 36889919 PMCID: PMC10111868 DOI: 10.1101/gad.350538.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Distinct subcellular localizations of mRNAs have been described across a wide variety of cell types. While common themes emerge for neuronal cells, functional roles of mRNA localization in space and time are much less understood in nonneuronal cells. Emerging areas of interest are cell models with protrusions, often linked with cell mobility in cancer systems. In this issue of Genes & Development, Norris and Mendell (pp. 191-203) systematically investigate a link between mRNA localization to cell protrusions in a mouse melanoma cell system and a mechanistic link to downstream consequences for cell mobility. The study first identifies a model mRNA of interest in an unbiased way that exhibits a set of phenotypes associated with cell mobility. The candidate mRNA that fulfills all requirements is Kif1c mRNA. Further systematic investigation links Kif1c mRNA localization to assembly of a protein-protein network on the KIF1C protein itself. What's clear is that this work will inspire a further mechanistic dissection of the Kif1c mRNA/KIF1C protein interplay in this important nonneuronal model cell system. More broadly, this work suggests that a broad set of model mRNAs should be investigated to understand mRNA dynamics and downstream functional consequences across a variety of cell models.
Collapse
Affiliation(s)
- Nadia Sarfraz
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, USA
| | - Esther Braselmann
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, USA
| |
Collapse
|
18
|
Stark M, Levin M, Ulitsky I, Assaraf YG. Folylpolyglutamate synthetase mRNA G-quadruplexes regulate its cell protrusion localization and enhance a cancer cell invasive phenotype upon folate repletion. BMC Biol 2023; 21:13. [PMID: 36721160 PMCID: PMC9889130 DOI: 10.1186/s12915-023-01525-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Folates are crucial for the biosynthesis of nucleotides and amino acids, essential for cell proliferation and development. Folate deficiency induces DNA damage, developmental defects, and tumorigenicity. The obligatory enzyme folylpolyglutamate synthetase (FPGS) mediates intracellular folate retention via cytosolic and mitochondrial folate polyglutamylation. Our previous paper demonstrated the association of the cytosolic FPGS (cFPGS) with the cytoskeleton and various cell protrusion proteins. Based on these recent findings, the aim of the current study was to investigate the potential role of cFPGS at cell protrusions. RESULTS Here we uncovered a central role for two G-quadruplex (GQ) motifs in the 3'UTR of FPGS mediating the localization of cFPGS mRNA and protein at cell protrusions. Using the MBSV6-loop reporter system and fluorescence microscopy, we demonstrate that following folate deprivation, cFPGS mRNA is retained in the endoplasmic reticulum, whereas upon 15 min of folate repletion, this mRNA is rapidly translocated to cell protrusions in a 3'UTR- and actin-dependent manner. The actin dependency of this folate-induced mRNA translocation is shown by treatment with Latrunculin B and inhibitors of the Ras homolog family member A (RhoA) pathway. Upon folate repletion, the FPGS 3'UTR GQs induce an amoeboid/mesenchymal hybrid cell phenotype during migration and invasion through a collagen gel matrix. Targeted disruption of the 3'UTR GQ motifs by introducing point mutations or masking them by antisense oligonucleotides abrogated cell protrusion targeting of cFPGS mRNA. CONCLUSIONS Collectively, the GQ motifs within the 3'UTR of FPGS regulate its transcript and protein localization at cell protrusions in response to a folate cue, inducing cancer cell invasive phenotype. These novel findings suggest that the 3'UTR GQ motifs of FPGS constitute an attractive druggable target aimed at inhibition of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Michal Stark
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - May Levin
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel ,grid.507132.2Present address: May Levin, MeMed Diagnostics Ltd, Tirat Carmel, Israel
| | - Igor Ulitsky
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yehuda G. Assaraf
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
19
|
HT-smFISH: a cost-effective and flexible workflow for high-throughput single-molecule RNA imaging. Nat Protoc 2023; 18:157-187. [PMID: 36280749 DOI: 10.1038/s41596-022-00750-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/04/2022] [Indexed: 01/14/2023]
Abstract
The ability to visualize RNA in its native subcellular environment by using single-molecule fluorescence in situ hybridization (smFISH) has reshaped our understanding of gene expression and cellular functions. A major hindrance of smFISH is the difficulty to perform systematic experiments in medium- or high-throughput formats, principally because of the high cost of generating the individual fluorescent probe sets. Here, we present high-throughput smFISH (HT-smFISH), a simple and cost-efficient method for imaging hundreds to thousands of single endogenous RNA molecules in 96-well plates. HT-smFISH uses RNA probes transcribed in vitro from a large pool of unlabeled oligonucleotides. This allows the generation of individual probes for many RNA species, replacing commercial DNA probe sets. HT-smFISH thus reduces costs per targeted RNA compared with many smFISH methods and is easily scalable and flexible in design. We provide a protocol that combines oligo pool design, probe set generation, optimized hybridization conditions and guidelines for image acquisition and analysis. The pipeline requires knowledge of standard molecular biology tools, cell culture and fluorescence microscopy. It is achievable in ~20 d. In brief, HT-smFISH is tailored for medium- to high-throughput screens that image RNAs at single-molecule sensitivity.
Collapse
|
20
|
Zhang L, Si Q, Yang K, Zhang W, Okita TW, Tian L. mRNA Localization to the Endoplasmic Reticulum in Plant Endosperm Cells. Int J Mol Sci 2022; 23:13511. [PMID: 36362297 PMCID: PMC9656906 DOI: 10.3390/ijms232113511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Subcellular mRNA localization is an evolutionarily conserved mechanism to spatially and temporally drive local translation and, in turn, protein targeting. Hence, this mechanism achieves precise control of gene expression and establishes functional and structural networks during cell growth and development as well as during stimuli response. Since its discovery in ascidian eggs, mRNA localization has been extensively studied in animal and yeast cells. Although our knowledge of subcellular mRNA localization in plant cells lags considerably behind other biological systems, mRNA localization to the endoplasmic reticulum (ER) has also been well established since its discovery in cereal endosperm cells in the early 1990s. Storage protein mRNA targeting to distinct subdomains of the ER determines efficient accumulation of the corresponding proteins in different endosomal storage sites and, in turn, underlies storage organelle biogenesis in cereal grains. The targeting process requires the presence of RNA localization elements, also called zipcodes, and specific RNA-binding proteins that recognize and bind these zipcodes and recruit other factors to mediate active transport. Here, we review the current knowledge of the mechanisms and functions of mRNA localization to the ER in plant cells and address directions for future research.
Collapse
Affiliation(s)
- Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Qidong Si
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Kejie Yang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Wenwei Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| |
Collapse
|
21
|
Nagel M, Noss M, Xu J, Horn N, Ueffing M, Boldt K, Schuele R. The kinesin motor KIF1C is a putative transporter of the exon junction complex in neuronal cells. RNA (NEW YORK, N.Y.) 2022; 29:rna.079426.122. [PMID: 36316088 PMCID: PMC9808568 DOI: 10.1261/rna.079426.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Neurons critically depend on regulated RNA localization and tight control of spatio-temporal gene expression to maintain their morphological and functional integrity. Mutations in the kinesin motor protein gene KIF1C cause Hereditary Spastic Paraplegia, an autosomal recessive disease leading to predominant degeneration of the long axons of central motoneurons. In this study we aimed to gain insight into the molecular function of KIF1C and understand how KIF1C dysfunction contributes to motoneuron degeneration. We used affinity proteomics in neuronally differentiated neuroblastoma cells (SH-SY5Y) to identify the protein complex associated with KIF1C in neuronal cells; candidate interactions were then validated by immunoprecipitation and mislocalization of putative KIF1C cargoes was studied by immunostainings. We found KIF1C to interact with all core components of the exon junction complex (EJC); expression of mutant KIF1C in neuronal cells leads to loss of the typical localization distally in neurites. Instead, EJC core components accumulate in the pericentrosomal region, here co-localizing with mutant KIF1C. These findings suggest KIF1C as a neuronal transporter of the EJC. Interestingly, the binding of KIF1C to the EJC is RNA-mediated, as treatment with RNAse prior to immunoprecipitation almost completely abolishes the interaction. Silica-based solid-phase extraction of UV-crosslinked RNA-protein complexes furthermore supports direct interaction of KIF1C with RNA, as recently also demonstrated for kinesin heavy chain. Taken together, our findings are consistent with a model where KIF1C transports mRNA in an EJC-bound and therefore transcriptionally silenced state along neurites, thus providing the missing link between the EJC and mRNA localization in neurons.
Collapse
Affiliation(s)
- Maike Nagel
- German Center for Neurodegenerative Diseases, Tuebingen; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen; Graduate School of Cellular and Molecular Neuroscience
| | - Marvin Noss
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen
| | - Jishu Xu
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen; Institute of Medical Genetics and Applied Genomics, University of Tuebingen; Graduate School
| | - Nicola Horn
- Institute for Ophthalmic Research, University of Tuebingen
| | - Marius Ueffing
- Institute of Ophthalmic Research, University of Tuebingen
| | - Karsten Boldt
- Institute of Ophthalmic Research, University of Tuebingen
| | - Rebecca Schuele
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen; German Center for Neurodegenerative Diseases, Tuebingen
| |
Collapse
|
22
|
Imbert A, Ouyang W, Safieddine A, Coleno E, Zimmer C, Bertrand E, Walter T, Mueller F. FISH-quant v2: a scalable and modular tool for smFISH image analysis. RNA (NEW YORK, N.Y.) 2022; 28:786-795. [PMID: 35347070 PMCID: PMC9074904 DOI: 10.1261/rna.079073.121] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/19/2022] [Indexed: 05/15/2023]
Abstract
Regulation of RNA abundance and localization is a key step in gene expression control. Single-molecule RNA fluorescence in situ hybridization (smFISH) is a widely used single-cell-single-molecule imaging technique enabling quantitative studies of gene expression and its regulatory mechanisms. Today, these methods are applicable at a large scale, which in turn come with a need for adequate tools for data analysis and exploration. Here, we present FISH-quant v2, a highly modular tool accessible for both experts and non-experts. Our user-friendly package allows the user to segment nuclei and cells, detect isolated RNAs, decompose dense RNA clusters, quantify RNA localization patterns and visualize these results both at the single-cell level and variations within the cell population. This tool was validated and applied on large-scale smFISH image data sets, revealing diverse subcellular RNA localization patterns and a surprisingly high degree of cell-to-cell heterogeneity.
Collapse
Affiliation(s)
- Arthur Imbert
- Centre for Computational Biology (CBIO), MINES ParisTech, PSL University, 75272 Paris Cedex 06, France
- Institut Curie, 75248 Paris Cedex, France
- INSERM, U900, 75248 Paris Cedex, France
| | - Wei Ouyang
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, 17165 Solna, Sweden
| | - Adham Safieddine
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France
| | - Emeline Coleno
- IGH, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Christophe Zimmer
- Imaging and Modeling Unit, Institut Pasteur, UMR 3691 CNRS, C3BI USR 3756 IP CNRS, 75015 Paris, France
| | | | - Thomas Walter
- Centre for Computational Biology (CBIO), MINES ParisTech, PSL University, 75272 Paris Cedex 06, France
- Institut Curie, 75248 Paris Cedex, France
- INSERM, U900, 75248 Paris Cedex, France
| | - Florian Mueller
- Imaging and Modeling Unit, Institut Pasteur, UMR 3691 CNRS, C3BI USR 3756 IP CNRS, 75015 Paris, France
| |
Collapse
|
23
|
Bohaud C, Cruz JDL, Terraza C, Barthelaix A, Laplace-Builhé B, Jorgensen C, Arribat Y, Djouad F. Lactate metabolism coordinates macrophage response and regeneration in zebrafish. Theranostics 2022; 12:3995-4009. [PMID: 35664055 PMCID: PMC9131269 DOI: 10.7150/thno.65235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Macrophages are multifunctional cells with a pivotal role on tissue development, homeostasis and regeneration. Indeed, in response to tissue injury and the ensuing regeneration process, macrophages are challenged and undergo massive metabolic adaptations and changes. However, the control of this metabolic reprogramming by macrophage microenvironment has never been deciphered in vivo. Methods: In this study, we used zebrafish model and caudal fin resection as a robust regeneration system. We explored specific changes in gene expression after tissue amputation via single-cell RNA sequencing analysis and whole-tissue transcriptomic analysis. Based on the identification of key modifications, we confirmed the role of the lactate pathway in macrophage response and fin regeneration, through the combination of chemical and genetic inhibitors of this pathway. Results: Single cell RNA sequencing revealed the upregulation of different genes associated with glycolysis and lactate metabolism in macrophages, upon fin regeneration. Hence, using chemical inhibitors of the LDH enzyme, we confirmed the role of lactate in macrophage recruitment and polarization, to promote a pro-inflammatory phenotype and enhance fin regeneration. The genetic modulation of monocarboxylate transporters illustrated a complex regulation of lactate levels, based on both intracellular and extracellular supplies. Commonly, the different sources of lactate resulted in macrophage activation with an increased expression level of inflammatory cytokines such as TNFa during the first 24 hours of regeneration. Transcriptomic analyses confirmed that lactate induced a global modification of gene expression in macrophages. Conclusion: Altogether, our findings highlight the crucial role of lactate at the onset of macrophage differentiation toward a pro-inflammatory phenotype. The deep modifications of macrophage phenotype mediated by lactate and downstream effectors play a key role to coordinate inflammatory response and tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, Montpellier, F-34295 France
| | - Yoan Arribat
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | |
Collapse
|
24
|
Fang X, Svitkina TM. Adenomatous polyposis coli (APC) in cell migration. Eur J Cell Biol 2022; 101:151228. [DOI: 10.1016/j.ejcb.2022.151228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
|
25
|
Gasparski AN, Mason DE, Moissoglu K, Mili S. Regulation and outcomes of localized RNA translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1721. [PMID: 35166036 PMCID: PMC9787767 DOI: 10.1002/wrna.1721] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/31/2022]
Abstract
Spatial segregation of mRNAs in the cytoplasm of cells is a well-known biological phenomenon that is widely observed in diverse species spanning different kingdoms of life. In mammalian cells, localization of mRNAs has been documented and studied quite extensively in highly polarized cells, most notably in neurons, where localized mRNAs function to direct protein production at sites that are quite distant from the soma. Recent studies have strikingly revealed that a large proportion of the cellular transcriptome exhibits polarized distributions even in cells that lack an obvious need for long-range transport, such as fibroblasts or epithelial cells. This review focuses on emerging concepts regarding the functional outcomes of mRNA targeting in the cytoplasm of such cells. We also discuss regulatory mechanisms controlling these events, with an emphasis on the role of cell mechanics and the organization of the cytoskeleton. This article is categorized under: Translation > Regulation RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Alexander N. Gasparski
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Devon E. Mason
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
26
|
Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat Commun 2021; 12:6079. [PMID: 34707124 PMCID: PMC8551216 DOI: 10.1038/s41467-021-26383-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
While the importance of RNA localization in highly differentiated cells is well appreciated, basic principles of RNA localization in skeletal muscle remain poorly characterized. Here, we develop a method to detect and quantify single molecule RNA localization patterns in skeletal myofibers, and uncover a critical role for directed transport of RNPs in muscle. We find that RNAs localize and are translated along sarcomere Z-disks, dispersing tens of microns from progenitor nuclei, regardless of encoded protein function. We find that directed transport along the lattice-like microtubule network of myofibers becomes essential to achieve this localization pattern as muscle development progresses; disruption of this network leads to extreme accumulation of RNPs and nascent protein around myonuclei. Our observations suggest that global active RNP transport may be required to distribute RNAs in highly differentiated cells and reveal fundamental mechanisms of gene regulation, with consequences for myopathies caused by perturbations to RNPs or microtubules.
Collapse
|