1
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
2
|
Aierken D, Joseph JA. Accelerated Simulations Reveal Physicochemical Factors Governing Stability and Composition of RNA Clusters. J Chem Theory Comput 2024; 20:10209-10222. [PMID: 39505326 PMCID: PMC11603615 DOI: 10.1021/acs.jctc.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Under certain conditions, RNA repeat sequences phase separate, yielding protein-free biomolecular condensates. Importantly, RNA repeat sequences have also been implicated in neurological disorders, such as Huntington's disease. Thus, mapping repeat sequences to their phase behavior, functions, and dysfunctions is an active area of research. However, despite several advances, it remains challenging to characterize the RNA phase behavior at a submolecular resolution. Here, we have implemented a residue-resolution coarse-grained model in LAMMPS─that incorporates both the RNA sequence and structure─to study the clustering propensities of protein-free RNA systems. Importantly, we achieve a multifold speedup in the simulation time compared to previous work. Leveraging this efficiency, we study the clustering propensity of all 20 nonredundant trinucleotide repeat sequences. Our results align with findings from experiments, emphasizing that canonical base-pairing and G-U wobble pairs play dominant roles in regulating cluster formation of RNA repeat sequences. Strikingly, we find strong entropic contributions to the stability and composition of RNA clusters, which is demonstrated for single-component RNA systems as well as binary mixtures of trinucleotide repeats. Additionally, we investigate the clustering behaviors of trinucleotide (odd) repeats and their quadranucleotide (even) counterparts. We observe that odd repeats exhibit stronger clustering tendencies, attributed to the presence of consecutive base pairs in their sequences that are disrupted in even repeat sequences. Altogether, our work extends the set of computational tools for probing RNA cluster formation at submolecular resolution and uncovers physicochemical principles that govern the stability and composition of the resulting clusters.
Collapse
Affiliation(s)
- Dilimulati Aierken
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn−Darling
Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Jerelle A. Joseph
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn−Darling
Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Li S, Chen J. An Intermediate Resolution Model of RNA Dynamics and Phase Separation with Explicit Mg 2 + . BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.624048. [PMID: 39605385 PMCID: PMC11601354 DOI: 10.1101/2024.11.17.624048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
RNAs are major drivers of phase separation in the formation of biomolecular condensates. Recent studies suggest that RNAs can also undergo protein-free phase separation in the presence of divalent ions or crowding agents. Much remains to be understood regarding how the complex interplay of base stacking, base pairing, electrostatics, ion interactions, and structural propensities governs the phase behaviour of RNAs. Here we develop an intermediate resolution model for condensates of RNAs (iConRNA) that can capture key local and long-range structure features of dynamic RNAs and simulate their spontaneous phase transitions in the presence ofMg 2 + . Representing each nucleotide using 6 or 7 beads, iConRNA considers specific RNA base stacking and pairing interactions and includes explicitMg 2 + ions to studyMg 2 + -induced phase separation. Parametrized using theoretical and experimental data, the model can correctly reproduce the chain properties of A-form helical poly(rA) and coil poly(rU), and essential structures of several RNA hairpins. With an effectiveMg 2 + ion model, iConRNA simulations successfully recapitulate the experimentally observed lower critical solution temperature (LCST)-type phase separation of poly(rA) and the dissolution of poly(rU). Furthermore, the phase diagrams of CAG/CUG/CUU-repeat RNAs correctly reproduce the experimentally observed sequence- and length-dependence of phase separation propensity. These results suggest that iConRNA can be a viable tool for studying homotypic RNA and potentially heterotypic RNA-protein phase separations.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Bose M, Rankovic B, Mahamid J, Ephrussi A. An architectural role of specific RNA-RNA interactions in oskar granules. Nat Cell Biol 2024; 26:1934-1942. [PMID: 39354131 PMCID: PMC11567897 DOI: 10.1038/s41556-024-01519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
Ribonucleoprotein (RNP) granules are membraneless condensates that organize the intracellular space by compartmentalization of specific RNAs and proteins. Studies have shown that RNA tunes the phase behaviour of RNA-binding proteins, but the role of intermolecular RNA-RNA interactions in RNP granules in vivo remains less explored. Here we determine the role of a sequence-specific RNA-RNA kissing-loop interaction in assembly of mesoscale oskar RNP granules in the female Drosophila germline. We show that a two-nucleotide mutation that disrupts kissing-loop-mediated oskar messenger RNA dimerization impairs condensate formation in vitro and oskar granule assembly in the developing oocyte, leading to defective posterior localization of the RNA and abrogation of oskar-associated processing bodies upon nutritional stress. This specific trans RNA-RNA interaction acts synergistically with the scaffold RNA-binding protein, Bruno, in driving condensate assembly. Our study highlights the architectural contribution of an mRNA and its specific secondary structure and tertiary interactions to the formation of an RNP granule that is essential for embryonic development.
Collapse
Affiliation(s)
- Mainak Bose
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Branislava Rankovic
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
5
|
Fabrini G, Farag N, Nuccio SP, Li S, Stewart JM, Tang AA, McCoy R, Owens RM, Rothemund PWK, Franco E, Di Antonio M, Di Michele L. Co-transcriptional production of programmable RNA condensates and synthetic organelles. NATURE NANOTECHNOLOGY 2024; 19:1665-1673. [PMID: 39080489 PMCID: PMC11567899 DOI: 10.1038/s41565-024-01726-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/20/2024] [Indexed: 11/17/2024]
Abstract
Condensation of RNA and proteins is central to cellular functions, and the ability to program it would be valuable in synthetic biology and synthetic cell science. Here we introduce a modular platform for engineering synthetic RNA condensates from tailor-made, branched RNA nanostructures that fold and assemble co-transcriptionally. Up to three orthogonal condensates can form simultaneously and selectively accumulate fluorophores through embedded fluorescent light-up aptamers. The RNA condensates can be expressed within synthetic cells to produce membrane-less organelles with a controlled number and relative size, and showing the ability to capture proteins using selective protein-binding aptamers. The affinity between otherwise orthogonal nanostructures can be modulated by introducing dedicated linker constructs, enabling the production of bi-phasic RNA condensates with a prescribed degree of interphase mixing and diverse morphologies. The in situ expression of programmable RNA condensates could underpin the spatial organization of functionalities in both biological and synthetic cells.
Collapse
Affiliation(s)
- Giacomo Fabrini
- Department of Chemistry, Imperial College London, London, UK
- fabriCELL, Imperial College London, London, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - Nada Farag
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Shiyi Li
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jaimie Marie Stewart
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Anli A Tang
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Reece McCoy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Paul W K Rothemund
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Elisa Franco
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA
| | | | - Lorenzo Di Michele
- Department of Chemistry, Imperial College London, London, UK.
- fabriCELL, Imperial College London, London, UK.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Drachuk I, Ramani N, Harbaugh S, Mirkin CA, Chávez JL. Implantable Fluorogenic DNA Biosensor for Stress Detection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39417681 DOI: 10.1021/acsami.4c08940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Implantable sensors that can monitor analytes related to cognitive and physiological status have gained significant focus in recent years. We have developed an implantable biosensor to detect dehydroepiandrosterone sulfate (DHEA-S), a biomarker related to stress. The biosensor strategy was based on the principle of forced intercalation (FIT) aptamers designed to detect subtle intramolecular changes during aptamer-target binding events. By incorporating a steroid-specific fluorogenic aptamer into a hydrogel, the sensitivity and biostability of the FIT biosensor fiber were improved, which were essential for designing implantable sensors to monitor biomarker levels in the living body. The polyethylenimine-based hydrogel chosen for this study produced an optically transparent cross-linked network with optimal microstructure, physicochemical, and mechanical properties, making it suitable for optical biosensors. The in vitro studies showed that the biosensor fiber was successfully activated in human serum and skin analogue, providing a linear response to physiological concentrations of the steroid. We believe that this type of implantable platform can be effective in monitoring more complex biomarkers associated with physiological or psychological health.
Collapse
Affiliation(s)
- Irina Drachuk
- 711th Human Performance Wing, Human Effectiveness Directorate, AFRL, 2510 Fifth Street, Wright-Patterson AFB, Ohio 45433, United States
- UES, a BlueHalo Company, 4401 Dayton-Xenia Rd., Dayton, Ohio 45432, United States
| | - Namrata Ramani
- Department of Materials Science and Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Svetlana Harbaugh
- 711th Human Performance Wing, Human Effectiveness Directorate, AFRL, 2510 Fifth Street, Wright-Patterson AFB, Ohio 45433, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jorge L Chávez
- 711th Human Performance Wing, Human Effectiveness Directorate, AFRL, 2510 Fifth Street, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
7
|
Cao X, Zhang Y, Ding Y, Wan Y. Identification of RNA structures and their roles in RNA functions. Nat Rev Mol Cell Biol 2024; 25:784-801. [PMID: 38926530 DOI: 10.1038/s41580-024-00748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research.
Collapse
Affiliation(s)
- Xinang Cao
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Yueying Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Han TW, Portz B, Young RA, Boija A, Klein IA. RNA and condensates: Disease implications and therapeutic opportunities. Cell Chem Biol 2024; 31:1593-1609. [PMID: 39303698 DOI: 10.1016/j.chembiol.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Biomolecular condensates are dynamic membraneless organelles that compartmentalize proteins and RNA molecules to regulate key cellular processes. Diverse RNA species exert their effects on the cell by their roles in condensate formation and function. RNA abnormalities such as overexpression, modification, and mislocalization can lead to pathological condensate behaviors that drive various diseases, including cancer, neurological disorders, and infections. Here, we review RNA's role in condensate biology, describe the mechanisms of RNA-induced condensate dysregulation, note the implications for disease pathogenesis, and discuss novel therapeutic strategies. Emerging approaches to targeting RNA within condensates, including small molecules and RNA-based therapies that leverage the unique properties of condensates, may revolutionize treatment for complex diseases.
Collapse
Affiliation(s)
| | | | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann Boija
- Dewpoint Therapeutics, Boston, MA, USA.
| | | |
Collapse
|
9
|
Coupe S, Fakhri N. Nonequilibrium phases of a biomolecular condensate facilitated by enzyme activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.607499. [PMID: 39149291 PMCID: PMC11326260 DOI: 10.1101/2024.08.11.607499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Biomolecular condensates represent a frontier in cellular organization, existing as dynamic materials driven out of equilibrium by active cellular processes. Here we explore active mechanisms of condensate regulation by examining the interplay between DEAD-box helicase activity and RNA base-pairing interactions within ribonucleoprotein condensates. We demonstrate how the ATP-dependent activity of DEAD-box helicases-a key class of enzymes in condensate regulation-acts as a nonequilibrium driver of condensate properties through the continuous remodeling of RNA interactions. By combining the LAF-1 DEAD-box helicase with a designer RNA hairpin concatemer, we unveil a complex landscape of dynamic behaviors, including time-dependent alterations in RNA partitioning, evolving condensate morphologies, and shifting condensate dynamics. Importantly, we reveal an antagonistic relationship between RNA secondary structure and helicase activity which promotes condensate homogeneity via a nonequilibrium steady state. By elucidating these nonequilibrium mechanisms, we gain a deeper understanding of cellular organization and expand the potential for active synthetic condensate systems.
Collapse
Affiliation(s)
- Sebastian Coupe
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA
| | - Nikta Fakhri
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
10
|
Kehrli J, Husser C, Ryckelynck M. Fluorogenic RNA-Based Biosensors of Small Molecules: Current Developments, Uses, and Perspectives. BIOSENSORS 2024; 14:376. [PMID: 39194605 DOI: 10.3390/bios14080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Small molecules are highly relevant targets for detection and quantification. They are also used to diagnose and monitor the progression of disease and infectious processes and track the presence of contaminants. Fluorogenic RNA-based biosensors (FRBs) represent an appealing solution to the problem of detecting these targets. They combine the portability of molecular systems with the sensitivity and multiplexing capacity of fluorescence, as well as the exquisite ligand selectivity of RNA aptamers. In this review, we first present the different sensing and reporting aptamer modules currently available to design an FRB, together with the main methodologies used to discover modules with new specificities. We next introduce and discuss how both modules can be functionally connected prior to exploring the main applications for which FRB have been used. Finally, we conclude by discussing how using alternative nucleotide chemistries may improve FRB properties and further widen their application scope.
Collapse
Affiliation(s)
- Janine Kehrli
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Claire Husser
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| |
Collapse
|
11
|
Stewart JM, Li S, Tang AA, Klocke MA, Gobry MV, Fabrini G, Di Michele L, Rothemund PWK, Franco E. Modular RNA motifs for orthogonal phase separated compartments. Nat Commun 2024; 15:6244. [PMID: 39080253 PMCID: PMC11289419 DOI: 10.1038/s41467-024-50003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Recent discoveries in biology have highlighted the importance of protein and RNA-based condensates as an alternative to classical membrane-bound organelles. Here, we demonstrate the design of pure RNA condensates from nanostructured, star-shaped RNA motifs. We generate condensates using two different RNA nanostar architectures: multi-stranded nanostars whose binding interactions are programmed via linear overhangs, and single-stranded nanostars whose interactions are programmed via kissing loops. Through systematic sequence design, we demonstrate that both architectures can produce orthogonal (distinct and immiscible) condensates, which can be individually tracked via fluorogenic aptamers. We also show that aptamers make it possible to recruit peptides and proteins to the condensates with high specificity. Successful co-transcriptional formation of condensates from single-stranded nanostars suggests that they may be genetically encoded and produced in living cells. We provide a library of orthogonal RNA condensates that can be modularly customized and offer a route toward creating systems of functional artificial organelles for the task of compartmentalizing molecules and biochemical reactions.
Collapse
Affiliation(s)
- Jaimie Marie Stewart
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Shiyi Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Anli A Tang
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Melissa Ann Klocke
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Martin Vincent Gobry
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Giacomo Fabrini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Paul W K Rothemund
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Department of Bioengineering, California Institute of Technology, Pasadena, USA.
- Department of Computation & Neural Systems, California Institute of Technology, Pasadena, USA.
| | - Elisa Franco
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
13
|
Furugori K, Suzuki H, Abe R, Horiuchi K, Akiyama T, Hirose T, Toyoda A, Takahashi H. Chimera RNA transcribed from integrated HPV18 genome with adjacent host genomic region promotes oncogenic gene expression through condensate formation. Genes Cells 2024; 29:532-548. [PMID: 38715205 DOI: 10.1111/gtc.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 07/06/2024]
Abstract
Most cervical cancers are caused by human papillomavirus (HPV) infection. In HeLa cells, the HPV18 viral genome is integrated at chromosome 8q24.21 and activates transcription of the proto-oncogene c-Myc. However, the mechanism of how the integrated HPV genome and its transcribed RNAs exhibit transcription activation function has not been fully elucidated. In this study, we found that HPV18 transcripts contain an enhancer RNA-like function to activate proximal genes including CCAT1-5L and c-Myc. We showed that the human genome-integrated HPV18 genes are activated by transcription coregulators including BRD4 and Mediator. The transcribed HPV18 RNAs form a liquid-like condensate at chromosome 8q24.21 locus, which in turn accumulates RNA polymerase II. Moreover, we focused on a relatively uncharacterized transcript from the upstream region of CCAT1, named URC. The URC RNA is transcribed as a chimera RNA with HPV18 and is composed of the 3'-untranslated region of the HPV18 transcript. We experimentally showed that the URC contributes to stabilization of HPV18 RNAs by supplying a polyadenylation site for the HPV18 transcript. Our findings suggest that integrated HPV18 at 8q24.21 locus produces HPV18-URC chimera RNA and promotes tumorigenesis through RNA-based condensate formation.
Collapse
Affiliation(s)
- Kazuki Furugori
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Keiko Horiuchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Tomohiko Akiyama
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Abraham GR, Chaderjian AS, N Nguyen AB, Wilken S, Saleh OA. Nucleic acid liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066601. [PMID: 38697088 DOI: 10.1088/1361-6633/ad4662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
The confluence of recent discoveries of the roles of biomolecular liquids in living systems and modern abilities to precisely synthesize and modify nucleic acids (NAs) has led to a surge of interest in liquid phases of NAs. These phases can be formed primarily from NAs, as driven by base-pairing interactions, or from the electrostatic combination (coacervation) of negatively charged NAs and positively charged molecules. Generally, the use of sequence-engineered NAs provides the means to tune microsopic particle properties, and thus imbue specific, customizable behaviors into the resulting liquids. In this way, researchers have used NA liquids to tackle fundamental problems in the physics of finite valence soft materials, and to create liquids with novel structured and/or multi-functional properties. Here, we review this growing field, discussing the theoretical background of NA liquid phase separation, quantitative understanding of liquid material properties, and the broad and growing array of functional demonstrations in these materials. We close with a few comments discussing remaining open questions and challenges in the field.
Collapse
Affiliation(s)
- Gabrielle R Abraham
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Aria S Chaderjian
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Anna B N Nguyen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
| | - Sam Wilken
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| | - Omar A Saleh
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| |
Collapse
|
15
|
Zheng H, Zhang H. More than a bystander: RNAs specify multifaceted behaviors of liquid-liquid phase-separated biomolecular condensates. Bioessays 2024; 46:e2300203. [PMID: 38175843 DOI: 10.1002/bies.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid-liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid-like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of RNP condensates, such as dynamic assembly and/or disassembly and biophysical properties. RNA properties - including concentration, sequence, length and structure - also determine the phase behaviors of RNP condensates. RNA is also involved in specifying autophagic degradation of RNP condensates. Unraveling the role of RNA in RNPs provides novel insights into pathological accumulation of RNPs in various diseases. This new understanding can potentially be harnessed to develop therapeutic strategies.
Collapse
Affiliation(s)
- Hui Zheng
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
16
|
Ji R, Wang L, Shang Y, Du S, Xiao Y, Dong W, Cui L, Gao R, Ren K. RNA Condensate as a Versatile Platform for Improving Fluorogenic RNA Aptamer Properties and Cell Imaging. J Am Chem Soc 2024; 146:4402-4411. [PMID: 38329936 DOI: 10.1021/jacs.3c09162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Fluorogenic RNA aptamers are valuable tools for cell imaging, but they still suffer from shortcomings such as easy degradation, limited photostability, and low fluorescence enhancement. Molecular crowding conditions enable the stabilization of the structure, promotion of folding, and improvement of activity of functional RNA. Based on artificial RNA condensates, here we present a versatile platform to improve fluorogenic RNA aptamer properties and develop sensors for target analyte imaging in living cells. Using the CUG repeat as a general tag to drive phase separation, various fluorogenic aptamer-based RNA condensates (FLARE) were prepared. We show that the molecular crowding of FLARE can improve the enzymatic resistance, thermostability, photostability, and binding affinity of fluorogenic RNA aptamers. Moreover, the FLARE systems can be modularly engineered into sensors (FLARES), which demonstrate enhanced brightness and sensitivity compared to free sensors dispersed in homogeneous solution. This scalable design principle provides new insights into RNA aptamer property regulation and cellular imaging.
Collapse
Affiliation(s)
- Ruoyang Ji
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Long Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yuzhe Shang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Songyuan Du
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yang Xiao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P.R. China
| | - Ruru Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| |
Collapse
|
17
|
Wadsworth GM, Zahurancik WJ, Zeng X, Pullara P, Lai LB, Sidharthan V, Pappu RV, Gopalan V, Banerjee PR. RNAs undergo phase transitions with lower critical solution temperatures. Nat Chem 2023; 15:1693-1704. [PMID: 37932412 PMCID: PMC10872781 DOI: 10.1038/s41557-023-01353-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Co-phase separation of RNAs and RNA-binding proteins drives the biogenesis of ribonucleoprotein granules. RNAs can also undergo phase transitions in the absence of proteins. However, the physicochemical driving forces of protein-free, RNA-driven phase transitions remain unclear. Here we report that various types of RNA undergo phase separation with system-specific lower critical solution temperatures. This entropically driven phase separation is an intrinsic feature of the phosphate backbone that requires Mg2+ ions and is modulated by RNA bases. RNA-only condensates can additionally undergo enthalpically favourable percolation transitions within dense phases. This is enabled by a combination of Mg2+-dependent bridging interactions between phosphate groups and RNA-specific base stacking and base pairing. Phase separation coupled to percolation can cause dynamic arrest of RNAs within condensates and suppress the catalytic activity of an RNase P ribozyme. Our work highlights the need to incorporate RNA-driven phase transitions into models for ribonucleoprotein granule biogenesis.
Collapse
Affiliation(s)
- Gable M Wadsworth
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Walter J Zahurancik
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Xiangze Zeng
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Paul Pullara
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Lien B Lai
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Vaishnavi Sidharthan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA.
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Priya R Banerjee
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
18
|
Sołtys K, Tarczewska A, Bystranowska D. Modulation of biomolecular phase behavior by metal ions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119567. [PMID: 37582439 DOI: 10.1016/j.bbamcr.2023.119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) appears to be a newly appreciated aspect of the cellular organization of biomolecules that leads to the formation of membraneless organelles (MLOs). MLOs generate distinct microenvironments where particular biomolecules are highly concentrated compared to those in the surrounding environment. Their thermodynamically driven formation is reversible, and their liquid nature allows them to fuse with each other. Dysfunctional biomolecular condensation is associated with human diseases. Pathological states of MLOs may originate from the mutation of proteins or may be induced by other factors. In most aberrant MLOs, transient interactions are replaced by stronger and more rigid interactions, preventing their dissolution, and causing their uncontrolled growth and dysfunction. For these reasons, there is great interest in identifying factors that modulate LLPS. In this review, we discuss an enigmatic and mostly unexplored aspect of this process, namely, the regulatory effects of metal ions on the phase behavior of biomolecules.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
19
|
Ripin N, Parker R. Formation, function, and pathology of RNP granules. Cell 2023; 186:4737-4756. [PMID: 37890457 PMCID: PMC10617657 DOI: 10.1016/j.cell.2023.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
20
|
Mountourakis F, Hatzianestis IH, Stavridou S, Bozhkov PV, Moschou PN. Concentrating and sequestering biomolecules in condensates: impact on plant biology. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1303-1308. [PMID: 36516452 PMCID: PMC10010603 DOI: 10.1093/jxb/erac497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Fanourios Mountourakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | - Ioannis H Hatzianestis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | | | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | | |
Collapse
|
21
|
Sagan SM, Weber SC. Let's phase it: viruses are master architects of biomolecular condensates. Trends Biochem Sci 2023; 48:229-243. [PMID: 36272892 DOI: 10.1016/j.tibs.2022.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Viruses compartmentalize their replication and assembly machinery to both evade detection and concentrate the viral proteins and nucleic acids necessary for genome replication and virion production. Accumulating evidence suggests that diverse RNA and DNA viruses form replication organelles and nucleocapsid assembly sites using phase separation. In general, the biogenesis of these compartments is regulated by two types of viral protein, collectively known as antiterminators and nucleocapsid proteins, respectively. Herein, we discuss how RNA viruses establish replication organelles and nucleocapsid assembly sites, and the evidence that these compartments form through phase separation. While this review focuses on RNA viruses, accumulating evidence suggests that all viruses rely on phase separation and form biomolecular condensates important for completing the infectious cycle.
Collapse
Affiliation(s)
- Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| | - Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC, Canada; Department of Physics, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Goldberger O, Szoke T, Nussbaum-Shochat A, Amster-Choder O. Heterotypic phase separation of Hfq is linked to its roles as an RNA chaperone. Cell Rep 2022; 41:111881. [PMID: 36577380 DOI: 10.1016/j.celrep.2022.111881] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/29/2022] Open
Abstract
Hfq, an Sm-like protein and the major RNA chaperone in E. coli, has been shown to distribute non-uniformly along a helical path under normal growth conditions and to relocate to the cell poles under certain stress conditions. We have previously shown that Hfq relocation to the poles is accompanied by polar accumulation of most small RNAs (sRNAs). Here, we show that Hfq undergoes RNA-dependent phase separation to form cytoplasmic or polar condensates of different density under normal and stress conditions, respectively. Purified Hfq forms droplets in the presence of crowding agents or RNA, indicating that its condensation is via heterotypic interactions. Stress-induced relocation of Hfq condensates and sRNAs to the poles depends on the pole-localizer TmaR. Phase separation of Hfq correlates with its ability to perform its posttranscriptional roles as sRNA-stabilizer and sRNA-mRNA matchmaker. Our study offers a spatiotemporal mechanism for sRNA-mediated regulation in response to environmental changes.
Collapse
Affiliation(s)
- Omer Goldberger
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Tamar Szoke
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
23
|
Sieg JP, McKinley LN, Huot MJ, Yennawar NH, Bevilacqua PC. The Metabolome Weakens RNA Thermodynamic Stability and Strengthens RNA Chemical Stability. Biochemistry 2022; 61:2579-2591. [PMID: 36306436 PMCID: PMC9669196 DOI: 10.1021/acs.biochem.2c00488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined the complex network of interactions among RNA, the metabolome, and divalent Mg2+ under conditions that mimic the Escherichia coli cytoplasm. We determined Mg2+ binding constants for the top 15 E. coli metabolites, comprising 80% of the metabolome by concentration at physiological pH and monovalent ion concentrations. These data were used to inform the development of an artificial cytoplasm that mimics in vivo E. coli conditions, which we term "Eco80". We empirically determined that the mixture of E. coli metabolites in Eco80 approximated single-site binding behavior toward Mg2+ in the biologically relevant free Mg2+ range of ∼0.5 to 3 mM Mg2+, using a Mg2+-sensitive fluorescent dye. Effects of Eco80 conditions on the thermodynamic stability, chemical stability, structure, and catalysis of RNA were examined. We found that Eco80 conditions lead to opposing effects on the thermodynamic and chemical stabilities of RNA. In particular, the thermodynamic stability of RNA helices was weakened by 0.69 ± 0.12 kcal/mol, while the chemical stability was enhanced ∼2-fold, which can be understood using the speciation of Mg2+ between weak and strong Mg2+-metabolite complexes in Eco80. Overall, the use of Eco80 reflects RNA function in vivo and enhances the biological relevance of mechanistic studies of RNA.
Collapse
Affiliation(s)
- Jacob P. Sieg
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Lauren N. McKinley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Melanie J. Huot
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
24
|
Conti BA, Oppikofer M. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends Pharmacol Sci 2022; 43:820-837. [PMID: 36028355 DOI: 10.1016/j.tips.2022.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Biomolecular condensates organize cellular functions in the absence of membranes. These membraneless organelles can form through liquid-liquid phase separation coalescing RNA and proteins into well-defined, yet dynamic, structures distinct from the surrounding cellular milieu. Numerous physiological and disease-causing processes link to biomolecular condensates, which could impact drug discovery in several ways. First, disruption of pathological condensates seeded by mutated proteins or RNAs may provide new opportunities to treat disease. Second, condensates may be leveraged to tackle difficult-to-drug targets lacking binding pockets whose function depends on phase separation. Third, condensate-resident small molecules and RNA therapeutics may display unexpected pharmacology. We discuss the potential impact of phase separation on drug discovery and RNA therapeutics, leveraging concrete examples, towards novel clinical opportunities.
Collapse
Affiliation(s)
- Brooke A Conti
- Pfizer Centers for Therapeutic Innovation, Pfizer Inc., New York, NY, USA
| | - Mariano Oppikofer
- Pfizer Centers for Therapeutic Innovation, Pfizer Inc., New York, NY, USA.
| |
Collapse
|
25
|
Bevilacqua PC, Williams AM, Chou HL, Assmann SM. RNA multimerization as an organizing force for liquid-liquid phase separation. RNA (NEW YORK, N.Y.) 2022; 28:16-26. [PMID: 34706977 PMCID: PMC8675289 DOI: 10.1261/rna.078999.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
RNA interactions are exceptionally strong and highly redundant. As such, nearly any two RNAs have the potential to interact with one another over relatively short stretches, especially at high RNA concentrations. This is especially true for pairs of RNAs that do not form strong self-structure. Such phenomena can drive liquid-liquid phase separation, either solely from RNA-RNA interactions in the presence of divalent or organic cations, or in concert with proteins. RNA interactions can drive multimerization of RNA strands via both base-pairing and tertiary interactions. In this article, we explore the tendency of RNA to form stable monomers, dimers, and higher order structures as a function of RNA length and sequence through a focus on the intrinsic thermodynamic, kinetic, and structural properties of RNA. The principles we discuss are independent of any specific type of biomolecular condensate, and thus widely applicable. We also speculate how external conditions experienced by living organisms can influence the formation of nonmembranous compartments, again focusing on the physical and structural properties of RNA. Plants, in particular, are subject to diverse abiotic stresses including extreme temperatures, drought, and salinity. These stresses and the cellular responses to them, including changes in the concentrations of small molecules such as polyamines, salts, and compatible solutes, have the potential to regulate condensate formation by melting or strengthening base-pairing. Reversible condensate formation, perhaps including regulation by circadian rhythms, could impact biological processes in plants, and other organisms.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Allison M Williams
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|