1
|
Liu H, Li H, Jiang Z, Jin S, Song R, Yang Y, Li J, Huang J, Zhang X, Dong X, Mori M, Fritzler MJ, He L, Cardoso WV, Lu J. A local translation program regulates centriole amplification in the airway epithelium. Sci Rep 2023; 13:7090. [PMID: 37127654 PMCID: PMC10151349 DOI: 10.1038/s41598-023-34365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Biogenesis of organelles requires targeting of a subset of proteins to specific subcellular domains by signal peptides or mechanisms controlling mRNA localization and local translation. How local distribution and translation of specific mRNAs for organelle biogenesis is achieved remains elusive and likely to be dependent on the cellular context. Here we identify Trinucleotide repeat containing-6a (Tnrc6a), a component of the miRNA pathway, distinctively localized to apical granules of differentiating airway multiciliated cells (MCCs) adjacent to centrioles. In spite of being enriched in TNRC6A and the miRNA-binding protein AGO2, they lack enzymes for mRNA degradation. Instead, we found these apical granules enriched in components of the mRNA translation machinery and newly synthesized proteins suggesting that they are specific hubs for target mRNA localization and local translation in MCCs. Consistent with this, Tnrc6a loss of function prevented formation of these granules and led to a broad reduction, rather than stabilization of miRNA targets. These included downregulation of key genes involved in ciliogenesis and was associated with defective multicilia formation both in vivo and in primary airway epithelial cultures. Similar analysis of Tnrc6a disruption in yolk sac showed stabilization of miRNA targets, highlighting the potential diversity of these mechanisms across organs.
Collapse
Affiliation(s)
- Helu Liu
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Huijun Li
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Zhihua Jiang
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Shibo Jin
- Division of Cellular and Developmental Biology, Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Rui Song
- Division of Cellular and Developmental Biology, Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Ying Yang
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Jun Li
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Jingshu Huang
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Xiaoqing Zhang
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Xuesong Dong
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Munemasa Mori
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Marvin J Fritzler
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Wellington V Cardoso
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA.
| | - Jining Lu
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA.
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, 6705 Rockledge Drive, Room 407-J, MSC 7952, Bethesda, MD, 20892-7952, USA.
| |
Collapse
|
2
|
Wakiyama M, Takimoto K. N-terminal Ago-binding domain of GW182 contains a tryptophan-rich region that confer binding to the CCR4-NOT complex. Genes Cells 2022; 27:579-585. [PMID: 35822830 DOI: 10.1111/gtc.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
GW182 family proteins are a key component of microRNA-protein complex eliciting translational repression and/or degradation of microRNA-targets. MicroRNAs in complex with Argonaute proteins bind to target mRNAs, and GW182 proteins are recruited by association with Argonaute proteins. The GW182 protein acts as a scaffold that links the Argonaute protein to silencing machineries including the CCR4-NOT complex which accelerates deadenylation and inhibits translation. The carboxyl-terminal effector domain of GW182 protein, also called the silencing domain, has been shown to bind to the subunits of the CCR4-NOT complex, the CNOT1 and the CNOT9. Here we show that a small region within the amino-terminal Argonaute-binding domain of human GW182/TNRC6A can associate with the CCR4-NOT complex. This region resides between the two Argonaute-binding sites and contains reiterated GW/WG-motifs. Alanine mutation experiments showed that multiple tryptophan residues are required for the association with the CCR4-NOT complex. Furthermore, co-expression and immunoprecipitation assays suggested that the CNOT9 subunit of the CCR4-NOT complex is a possible binding partner of this region. Our work, taken together with previous studies, indicates that the human GW182 protein contains multiple binding interfaces to the CCR4-NOT complex. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Motoaki Wakiyama
- RIKEN Systems and Structural Biology Center.,RIKEN Center for Life Science Technologies, Post-transcriptional Control Research Unit.,RIKEN Center for Biosystems Dynamics Research, Laboratory for Nonnatural amino acid technology, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
3
|
GW182 Proteins Restrict Extracellular Vesicle-Mediated Export of MicroRNAs in Mammalian Cancer Cells. Mol Cell Biol 2021; 41:MCB.00483-20. [PMID: 33685914 DOI: 10.1128/mcb.00483-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs of relatively long half-life in non-proliferative human cells. However, in cancer cells the half-lives of miRNAs are comparatively short. To understand the mechanism of rapid miRNA turnover in cancer cells, we explored the effect of target mRNAs on the abundance of the miRNAs that repress them. We have noted an accelerated extracellular vesicle (EV)-mediated export of miRNAs in presence of their target mRNAs in mammalian cells, and this target-driven miRNA-export process is retarded by Ago2-interacting protein GW182B. The GW182 group of proteins are localized to GW182 bodies or RNA processing bodies in mammalian cells, and GW182B-dependent retardation of miRNA export depends on GW body integrity and is independent of the HuR protein-mediated auxiliary pathway of miRNA export. Our data thus support the existence of a HuR-independent pathway of miRNA export in human cells that can be targeted in MDA-MB-231 cancer cells, to increase the level of cellular let-7a, a known negative regulator of cancer growth.
Collapse
|
4
|
Medley JC, Panzade G, Zinovyeva AY. microRNA strand selection: Unwinding the rules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1627. [PMID: 32954644 PMCID: PMC8047885 DOI: 10.1002/wrna.1627] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
microRNAs (miRNAs) play a central role in the regulation of gene expression by targeting specific mRNAs for degradation or translational repression. Each miRNA is post‐transcriptionally processed into a duplex comprising two strands. One of the two miRNA strands is selectively loaded into an Argonaute protein to form the miRNA‐Induced Silencing Complex (miRISC) in a process referred to as miRNA strand selection. The other strand is ejected from the complex and is subject to degradation. The target gene specificity of miRISC is determined by sequence complementarity between the Argonaute‐loaded miRNA strand and target mRNA. Each strand of the miRNA duplex has the capacity to be loaded into miRISC and possesses a unique seed sequence. Therefore, miRNA strand selection plays a defining role in dictating the specificity of miRISC toward its targets and provides a mechanism to alter gene expression in a switch‐like fashion. Aberrant strand selection can lead to altered gene regulation by miRISC and is observed in several human diseases including cancer. Previous and emerging data shape the rules governing miRNA strand selection and shed light on how these rules can be circumvented in various physiological and pathological contexts. This article is categorized under:RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs
Collapse
Affiliation(s)
- Jeffrey C Medley
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
5
|
Sharma NR, Majerciak V, Kruhlak MJ, Yu L, Kang JG, Yang A, Gu S, Fritzler MJ, Zheng ZM. KSHV RNA-binding protein ORF57 inhibits P-body formation to promote viral multiplication by interaction with Ago2 and GW182. Nucleic Acids Res 2019; 47:9368-9385. [PMID: 31400113 PMCID: PMC6755100 DOI: 10.1093/nar/gkz683] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023] Open
Abstract
Cellular non-membranous RNA-granules, P-bodies (RNA processing bodies, PB) and stress granules (SG), are important components of the innate immune response to virus invasion. Mechanisms governing how a virus modulates PB formation remain elusive. Here, we report the important roles of GW182 and DDX6, but not Dicer, Ago2 and DCP1A, in PB formation, and that Kaposi's sarcoma-associated herpesvirus (KSHV) lytic infection reduces PB formation through several specific interactions with viral RNA-binding protein ORF57. The wild-type ORF57, but not its N-terminal dysfunctional mutant, inhibits PB formation by interacting with the N-terminal GW-domain of GW182 and the N-terminal domain of Ago2, two major components of PB. KSHV ORF57 also induces nuclear Ago2 speckles. Homologous HSV-1 ICP27, but not EBV EB2, shares this conserved inhibitory function with KSHV ORF57. By using time-lapse confocal microscopy of HeLa cells co-expressing GFP-tagged GW182, we demonstrated that viral ORF57 inhibits primarily the scaffolding of GW182 at the initial stage of PB formation. Consistently, KSHV-infected iSLK/Bac16 cells with reduced GW182 expression produced far fewer PB and SG, but 100-fold higher titer of infectious KSHV virions when compared to cells with normal GW182 expression. Altogether, our data provide the first evidence that a DNA virus evades host innate immunity by encoding an RNA-binding protein that promotes its replication by blocking PB formation.
Collapse
Affiliation(s)
- Nishi R Sharma
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Michael J Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda 20892, MD, USA
| | - Lulu Yu
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Jeong Gu Kang
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Acong Yang
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Marvin J Fritzler
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| |
Collapse
|
6
|
Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Discov 2019; 5:45. [PMID: 31636958 PMCID: PMC6796862 DOI: 10.1038/s41421-019-0113-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 11/20/2022] Open
|
7
|
Duchaine TF, Fabian MR. Mechanistic Insights into MicroRNA-Mediated Gene Silencing. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032771. [PMID: 29959194 DOI: 10.1101/cshperspect.a032771] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) posttranscriptionally regulate gene expression by repressing protein synthesis and exert a broad influence over development, physiology, adaptation, and disease. Over the past two decades, great strides have been made toward elucidating how miRNAs go about shutting down messenger RNA (mRNA) translation and promoting mRNA decay.
Collapse
Affiliation(s)
- Thomas F Duchaine
- Department of Biochemistry & Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marc R Fabian
- Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
8
|
Webster MW, Stowell JA, Passmore LA. RNA-binding proteins distinguish between similar sequence motifs to promote targeted deadenylation by Ccr4-Not. eLife 2019; 8:40670. [PMID: 30601114 PMCID: PMC6340701 DOI: 10.7554/elife.40670] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
The Ccr4-Not complex removes mRNA poly(A) tails to regulate eukaryotic mRNA stability and translation. RNA-binding proteins contribute to specificity by interacting with both Ccr4-Not and target mRNAs, but this is not fully understood. Here, we reconstitute accelerated and selective deadenylation of RNAs containing AU-rich elements (AREs) and Pumilio-response elements (PREs). We find that the fission yeast homologues of Tristetraprolin/TTP and Pumilio/Puf (Zfs1 and Puf3) interact with Ccr4-Not via multiple regions within low-complexity sequences, suggestive of a multipartite interface that extends beyond previously defined interactions. Using a two-color assay to simultaneously monitor poly(A) tail removal from different RNAs, we demonstrate that Puf3 can distinguish between RNAs of very similar sequence. Analysis of binding kinetics reveals that this is primarily due to differences in dissociation rate constants. Consequently, motif quality is a major determinant of mRNA stability for Puf3 targets in vivo and can be used for the prediction of mRNA targets. When a cell needs to make a particular protein, it first copies the instructions from the matching gene into a molecule known as a messenger RNA (or an mRNA for short). The more mRNA copies it makes, the more protein it can produce. A simple way to control protein production is to raise or lower the number of these mRNA messages, and living cells have lots of ways to make this happen. One method involves codes built into the mRNAs themselves. The mRNAs can carry short sequences of genetic letters that can trigger their own destruction. Known as “destabilising motifs”, these sequences attract the attention of a group of proteins called Ccr4-Not. Together these proteins shorten the end of the mRNAs, preparing the molecules for degradation. But how does Ccr4-Not choose which mRNAs to target? Different mRNAs carry different destabilising motifs. This means that when groups of mRNAs all carry the same motif, the cell can destroy them all together. This allows the cell to switch networks of related genes off together without affecting the mRNAs it still needs. What is puzzling is that the destabilising motifs that control different groups of mRNAs can be very similar, and scientists do not yet know how Ccr4-Not can tell the difference, or what triggers it to start breaking down groups of mRNAs. To find out, Webster et al. recreated the system in the laboratory using purified molecules. The test-tube system confirmed previous suggestions that a protein called Puf3 forms a bridge between Ccr4-Not and mRNAs. It acts as a tether, recognising a destabilising motif and linking it to Ccr4-Not. Labelling different mRNAs with two colours of fluorescent dye showed how Puf3 helps the cell to choose which to destroy. Puf3 allows Ccr4-Not to select specific mRNAs from a mixture of molecules. Puf3 could distinguish between mRNAs that differed in a single letter of genetic code. When it matched with the wrong mRNA, it disconnected much faster than when it matched with the right one, preventing Ccr4-Not from linking up. The ability to destroy specific mRNA messages is critical for cell survival. It happens when cells divide, during immune responses such as inflammation, and in early development. Understanding the targets of tethers like Puf3 could help scientists to predict which genes will switch off and when. This could reveal genes that work together, helping to unravel their roles inside cells.
Collapse
Affiliation(s)
| | | | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
9
|
MicroRNAs as Regulators of Insulin Signaling: Research Updates and Potential Therapeutic Perspectives in Type 2 Diabetes. Int J Mol Sci 2018; 19:ijms19123705. [PMID: 30469501 PMCID: PMC6321520 DOI: 10.3390/ijms19123705] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022] Open
Abstract
The insulin signaling pathway is composed of a large number of molecules that positively or negatively modulate insulin specific signal transduction following its binding to the cognate receptor. Given the importance of the final effects of insulin signal transduction, it is conceivable that many regulators are needed in order to tightly control the metabolic or proliferative functional outputs. MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively modulate gene expression through their specific binding within the 3′UTR sequence of messenger RNA (mRNA), thus causing mRNA decoy or translational inhibition. In the last decade, miRNAs have been addressed as pivotal cellular rheostats which control many fundamental signaling pathways, including insulin signal transduction. Several studies demonstrated that multiple alterations of miRNAs expression or function are relevant for the development of insulin resistance in type 2 diabetes (T2D); such alterations have been highlighted in multiple insulin target organs including liver, muscles, and adipose tissue. Indirectly, miRNAs have been identified as modulators of inflammation-derived insulin resistance, by controlling/tuning the activity of innate immune cells in insulin target tissues. Here, we review main findings on miRNA functions as modulators of insulin signaling in physiologic- or in T2D insulin resistance- status. Additionally, we report the latest hypotheses of prospective therapies involving miRNAs as potential targets for future drugs in T2D.
Collapse
|
10
|
Role of GW182 protein in the cell. Int J Biochem Cell Biol 2018; 101:29-38. [PMID: 29791863 DOI: 10.1016/j.biocel.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Abstract
GW182 proteins interact directly with the argonaute proteins and constitute key components of miRNA repressor complexes (miRISC) in metazoans. As argonautes are insufficient for silencing they recruit the GW182 s that act as scaffold proteins inducing downstream translational repression, target mRNA deadenylation and exonucleolytic mRNA degradation. Besides their role as part of repressor complexes inside the cell, they function in wide variety of cellular processes as highlighted in this review. The present review summarises and discusses in detail our current knowledge of the GW182 s and their role inside the cell.
Collapse
|
11
|
Wakiyama M, Ogami K, Iwaoka R, Aoki K, Hoshino SI. MicroRNP-mediated translational activation of nonadenylated mRNAs in a mammalian cell-free system. Genes Cells 2018; 23:332-344. [PMID: 29626383 DOI: 10.1111/gtc.12580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/09/2018] [Indexed: 01/08/2023]
Abstract
MicroRNAs are small noncoding RNAs that regulate translation and mRNA stability by binding target mRNAs in complex with Argonaute (AGO) proteins. AGO interacts with a member of the TNRC6 family proteins to form a microRNP complex, which recruits the CCR4-NOT complex to accelerate deadenylation and inhibits translation. MicroRNAs primarily repress translation of target mRNAs but have been shown to enhance translation of a specific type of target reporter mRNAs in various experimental systems: G0 quiescent mammalian cells, Xenopus laevis oocytes, Drosophila embryo extracts, and HeLa cells. In all of the cases mentioned, a common feature of the activated target mRNAs is the lack of a poly(A) tail. Here, we show let-7-microRNP-mediated translational activation of nonadenylated target mRNAs in a mammalian cell-free system, which contains over-expressed AGO2, TNRC6B, and PAPD7 (TUTase5, TRF4-1). Importantly, translation of nonadenylated mRNAs was activated also by tethered TNRC6B silencing domain (SD), in the presence of PAPD7. Deletion of the poly(A)-binding protein (PABP) interacting motif (PAM2) from the TNRC6B-SD abolished the translational activation, suggesting the involvement of PABP in the process. Similar results were also obtained in cultured HEK293T cells. This work may provide novel insights into microRNP-mediated mRNA regulation.
Collapse
Affiliation(s)
- Motoaki Wakiyama
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Koichi Ogami
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Ryo Iwaoka
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Kazuma Aoki
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Shin-Ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
12
|
Bridge KS, Shah KM, Li Y, Foxler DE, Wong SCK, Miller DC, Davidson KM, Foster JG, Rose R, Hodgkinson MR, Ribeiro PS, Aboobaker AA, Yashiro K, Wang X, Graves PR, Plevin MJ, Lagos D, Sharp TV. Argonaute Utilization for miRNA Silencing Is Determined by Phosphorylation-Dependent Recruitment of LIM-Domain-Containing Proteins. Cell Rep 2018; 20:173-187. [PMID: 28683311 PMCID: PMC5507773 DOI: 10.1016/j.celrep.2017.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/27/2017] [Accepted: 06/09/2017] [Indexed: 10/26/2022] Open
Abstract
As core components of the microRNA-induced silencing complex (miRISC), Argonaute (AGO) proteins interact with TNRC6 proteins, recruiting other effectors of translational repression/mRNA destabilization. Here, we show that LIMD1 coordinates the assembly of an AGO-TNRC6 containing miRISC complex by binding both proteins simultaneously at distinct interfaces. Phosphorylation of AGO2 at Ser 387 by Akt3 induces LIMD1 binding, which in turn enables AGO2 to interact with TNRC6A and downstream effector DDX6. Conservation of this serine in AGO1 and 4 indicates this mechanism may be a fundamental requirement for AGO function and miRISC assembly. Upon CRISPR-Cas9-mediated knockout of LIMD1, AGO2 miRNA-silencing function is lost and miRNA silencing becomes dependent on a complex formed by AGO3 and the LIMD1 family member WTIP. The switch to AGO3 utilization occurs due to the presence of a glutamic acid residue (E390) on the interaction interface, which allows AGO3 to bind to LIMD1, AJUBA, and WTIP irrespective of Akt signaling.
Collapse
Affiliation(s)
- Katherine S Bridge
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kunal M Shah
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Yigen Li
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Daniel E Foxler
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Sybil C K Wong
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Duncan C Miller
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kathryn M Davidson
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John G Foster
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ruth Rose
- School of Biological and Chemical Sciences, Queen Mary University of London, Fogg Building, Mile End Road, London E1 4NS, UK
| | | | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Kenta Yashiro
- Cardiac Regeneration and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Xiaozhong Wang
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | - Paul R Graves
- Department of Radiation Oncology, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA
| | - Michael J Plevin
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Tyson V Sharp
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
13
|
Sheu-Gruttadauria J, MacRae IJ. Phase Transitions in the Assembly and Function of Human miRISC. Cell 2018; 173:946-957.e16. [PMID: 29576456 DOI: 10.1016/j.cell.2018.02.051] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/08/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022]
Abstract
miRISC is a multi-protein assembly that uses microRNAs (miRNAs) to identify mRNAs targeted for repression. Dozens of miRISC-associated proteins have been identified, and interactions between many factors have been examined in detail. However, the physical nature of the complex remains unknown. Here, we show that two core protein components of human miRISC, Argonaute2 (Ago2) and TNRC6B, condense into phase-separated droplets in vitro and in live cells. Phase separation is promoted by multivalent interactions between the glycine/tryptophan (GW)-rich domain of TNRC6B and three evenly spaced tryptophan-binding pockets in the Ago2 PIWI domain. miRISC droplets formed in vitro recruit deadenylation factors and sequester target RNAs from the bulk solution. The condensation of miRISC is accompanied by accelerated deadenylation of target RNAs bound to Ago2. The combined results may explain how miRISC silences mRNAs of varying size and structure and provide experimental evidence that protein-mediated phase separation can facilitate an RNA processing reaction.
Collapse
Affiliation(s)
- Jessica Sheu-Gruttadauria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Cieplak-Rotowska MK, Tarnowski K, Rubin M, Fabian MR, Sonenberg N, Dadlez M, Niedzwiecka A. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:158-173. [PMID: 29080206 PMCID: PMC5785596 DOI: 10.1007/s13361-017-1830-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. Graphical Abstract.
Collapse
Affiliation(s)
- Maja K Cieplak-Rotowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Krzysztof Tarnowski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Marcin Rubin
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Goodman Cancer Center, McGill University, Montréal, Québec, Canada
| | - Michal Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
15
|
Chaston JJ, Stewart AG, Christie M. Structural characterisation of TNRC6A nuclear localisation signal in complex with importin-alpha. PLoS One 2017; 12:e0183587. [PMID: 28837617 PMCID: PMC5570423 DOI: 10.1371/journal.pone.0183587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The GW182/TNRC6 family of proteins are central scaffolds that link microRNA-associated Argonaute proteins to the cytoplasmic decay machinery for targeted mRNA degradation processes. Although nuclear roles for the GW182/TNRC6 proteins are unknown, recent reports have demonstrated nucleocytoplasmic shuttling activity that utilises the importin-α and importin-β transport receptors for nuclear translocation. Here we describe the structure of mouse importin-α in complex with the TNRC6A nuclear localisation signal peptide. We further show that the interactions observed between TNRC6A and importin-α are conserved between mouse and human complexes. Our results highlight the ability of monopartite cNLS sequences to maximise contacts at the importin-α major binding site, as well as regions outside the main binding cavities.
Collapse
Affiliation(s)
- Jessica J. Chaston
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alastair Gordon Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mary Christie
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Elkayam E, Faehnle CR, Morales M, Sun J, Li H, Joshua-Tor L. Multivalent Recruitment of Human Argonaute by GW182. Mol Cell 2017; 67:646-658.e3. [PMID: 28781232 PMCID: PMC5915679 DOI: 10.1016/j.molcel.2017.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
In miRNA-mediated gene silencing, the physical interaction between human Argonaute (hAgo) and GW182 (hGW182) is essential for facilitating the downstream silencing of the targeted mRNA. GW182 can interact with hAgo via three of the GW/WG repeats in its Argonaute-binding domain: motif-1, motif-2, and the hook motif. The structure of hAgo1 in complex with the hook motif of hGW182 reveals a "gate"-like interaction that is critical for GW182 docking into one of hAgo1's tryptophan-binding pockets. We show that hAgo1 and hAgo2 have a single GW182-binding site and that miRNA binding increases hAgo's affinity to GW182. With target binding occurring rapidly, this ensures that only mature RISC would be recruited for silencing. Finally, we show that hGW182 can recruit up to three copies of hAgo via its three GW motifs. This may explain the observed cooperativity in miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Elad Elkayam
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Christopher R Faehnle
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Marjorie Morales
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Undergraduate Research Program, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jingchuan Sun
- Department of Biochemistry and Cell Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Huilin Li
- Department of Biochemistry and Cell Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Leemor Joshua-Tor
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
17
|
Guo H, Kazadaeva Y, Ortega FE, Manjunath N, Desai TJ. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol 2017; 430:214-223. [PMID: 28811219 PMCID: PMC5634525 DOI: 10.1016/j.ydbio.2017.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023]
Abstract
GW182 (also known asTNRC6) family members are critically involved in the final effector phase of miRNA-mediated mRNA repression. The three mammalian paralogs, TNRC6a, b and c, are thought to be redundant based on Argonaute (Ago) binding, tethering assays, and RNAi silencing of individual members in cell lines. To test this idea, we generated TNRC6a, b and c knockout mice. TNRC6a mutants die at mid-gestation, while b- and c- deleted mice are born at a Mendelian ratio. However, the majority of TNRC6b and all TNRC6c mutants die within 24h after birth, the latter with respiratory failure. Necropsy of TNRC6c mutants revealed normal-appearing airways that give rise to abnormally thick-walled distal gas exchange sacs. Immunohistological analysis of mutant lungs demonstrated a normal distribution of bronchiolar and alveolar cells, indicating that loss of TNRC6c did not abrogate epithelial cell differentiation. The cellular kinetics and relative proportions of endothelial, epithelial, and mesenchymal cells were also not altered. However, the underlying capillary network was simplified and endothelial cells had failed to become tightly apposed to the surface epithelium in TNRC6c mutants, presumably causing the observed respiratory failure. TGFβ family mutant mice exhibit a similar lung phenotype of thick-walled air sacs and neonatal lethality, and qRT-PCR confirmed dynamic downregulation of TGFβ1 and TGFβR2 in TNRC6c mutant lungs during sacculation. VEGFR, but not VEGF-A ligand, was also lower, likely reflecting the overall reduced capillary density in TNRC6c mutants. Together, these results demonstrate that GW182 paralogs are not functionally redundant in vivo. Surprisingly, despite regulating a general cellular process, TNRC6c is selectively required only in the distal lung and not until late in gestation for proper expression of the TGFβ family genes that drive sacculation. These results imply a complex and indirect mode of regulation of sacculation by TNRC6c, mediated in part by dynamic transcriptional repression of an inhibitor of TGFβ family gene expression.
Collapse
Affiliation(s)
- Hua Guo
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States
| | - Yana Kazadaeva
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Fabian E Ortega
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Narasimaswamy Manjunath
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States
| | - Tushar J Desai
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
18
|
Structural Foundations of RNA Silencing by Argonaute. J Mol Biol 2017; 429:2619-2639. [PMID: 28757069 DOI: 10.1016/j.jmb.2017.07.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Nearly every cell in the human body contains a set of programmable gene-silencing proteins named Argonaute. Argonaute proteins mediate gene regulation by small RNAs and thereby contribute to cellular homeostasis during diverse physiological process, such as stem cell maintenance, fertilization, and heart development. Over the last decade, remarkable progress has been made toward understanding Argonaute proteins, small RNAs, and their roles in eukaryotic biology. Here, we review current understanding of Argonaute proteins from a structural prospective and discuss unanswered questions surrounding this fascinating class of enzymes.
Collapse
|
19
|
Sun T, Dong YH, Du W, Shi CY, Wang K, Tariq MA, Wang JX, Li PF. The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. Int J Mol Sci 2017; 18:ijms18040745. [PMID: 28362341 PMCID: PMC5412330 DOI: 10.3390/ijms18040745] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small single-stranded and highly conserved non-coding RNAs, which are closely linked to cardiac disorders such as myocardial infarction (MI), cardiomyocyte hypertrophy, and heart failure. A growing number of studies have demonstrated that miRNAs determine the fate of the heart by regulating cardiac cell death and regeneration after MI. A deep understanding of the pathophysiology of miRNA dependent regulatory pathways in these processes is required. The role of miRNAs as diagnostic, prognostic, and therapeutic targets also needs to be explored in order to utilize them in clinical settings. This review summarizes the role of miRNAs in myocardial infarction and focuses mainly on their influence on cardiomyocyte regeneration and cell death including apoptosis, necrosis, and autophagy. In addition, the targets of pro- and anti-MI miRNAs are comparatively described. In particular, the possibilities of miRNA-based diagnostic and therapeutic strategies for myocardial infarction are discussed in this review.
Collapse
Affiliation(s)
- Teng Sun
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Yan-Han Dong
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Wei Du
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Chun-Ying Shi
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Kun Wang
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Muhammad-Akram Tariq
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Jian-Xun Wang
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Pei-Feng Li
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
20
|
Mauri M, Kirchner M, Aharoni R, Ciolli Mattioli C, van den Bruck D, Gutkovitch N, Modepalli V, Selbach M, Moran Y, Chekulaeva M. Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution. Nucleic Acids Res 2016; 45:938-950. [PMID: 27604873 PMCID: PMC5314787 DOI: 10.1093/nar/gkw792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/22/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022] Open
Abstract
Our current knowledge about the mechanisms of miRNA silencing is restricted to few lineages such as vertebrates, arthropods, nematodes and land plants. miRNA-mediated silencing in bilaterian animals is dependent on the proteins of the GW182 family. Here, we dissect the function of GW182 protein in the cnidarian Nematostella, separated by 600 million years from other Metazoa. Using cultured human cells, we show that Nematostella GW182 recruits the CCR4-NOT deadenylation complexes via its tryptophan-containing motifs, thereby inhibiting translation and promoting mRNA decay. Further, similarly to bilaterians, GW182 in Nematostella is recruited to the miRNA repression complex via interaction with Argonaute proteins, and functions downstream to repress mRNA. Thus, our work suggests that this mechanism of miRNA-mediated silencing was already active in the last common ancestor of Cnidaria and Bilateria.
Collapse
Affiliation(s)
- Marta Mauri
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Marieluise Kirchner
- Proteome dynamics, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Camilla Ciolli Mattioli
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - David van den Bruck
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Nadya Gutkovitch
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Matthias Selbach
- Proteome dynamics, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Marina Chekulaeva
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| |
Collapse
|
21
|
Nishi K, Takahashi T, Suzawa M, Miyakawa T, Nagasawa T, Ming Y, Tanokura M, Ui-Tei K. Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein. Nucleic Acids Res 2015; 43:9856-73. [PMID: 26446993 PMCID: PMC4787778 DOI: 10.1093/nar/gkv1026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022] Open
Abstract
GW182 family proteins play important roles in microRNA (miRNA)-mediated RNA silencing. They directly interact with Argonaute (Ago) proteins in processing bodies (P bodies), cytoplasmic foci involved in mRNA degradation and storage. Recently, we revealed that a human GW182 family protein, TNRC6A, is a nuclear-cytoplasmic shuttling protein, and its subcellular localization is regulated by its own nuclear localization signal and nuclear export signal. Regarding the further controlling mechanism of TNRC6A subcellular localization, we found that TNRC6A protein is tethered in P bodies by direct interaction with Ago2 under Ago2 overexpression condition in HeLa cells. Furthermore, it was revealed that such Ago proteins might be strongly tethered in the P bodies through Ago-bound small RNAs. Thus, our results indicate that TNRC6A subcellular localization is substantially controlled by the interaction with Ago proteins. Furthermore, it was also revealed that the TNRC6A subcellular localization affects the RNA silencing activity.
Collapse
Affiliation(s)
- Kenji Nishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoko Takahashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Masataka Suzawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Tatsuya Nagasawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Yvelt Ming
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba-ken 277-8651, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba-ken 277-8651, Japan
| |
Collapse
|
22
|
Iwakawa HO, Tomari Y. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol 2015; 25:651-665. [PMID: 26437588 DOI: 10.1016/j.tcb.2015.07.011] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs, which regulate complementary mRNAs by inducing translational repression and mRNA decay. Although this dual repression system seems to operate in both animals and plants, genetic and biochemical studies suggest that the mechanism underlying the miRNA-mediated silencing is different in the two kingdoms. Here, we review the recent progress in our understanding of how miRNAs mediate translational repression and mRNA decay, and discuss the contributions of the two silencing modes to the overall silencing effect in both kingdoms.
Collapse
Affiliation(s)
- Hiro-Oki Iwakawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
23
|
Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 2015; 16:421-33. [PMID: 26077373 DOI: 10.1038/nrg3965] [Citation(s) in RCA: 1365] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a conserved class of small non-coding RNAs that assemble with Argonaute proteins into miRNA-induced silencing complexes (miRISCs) to direct post-transcriptional silencing of complementary mRNA targets. Silencing is accomplished through a combination of translational repression and mRNA destabilization, with the latter contributing to most of the steady-state repression in animal cell cultures. Degradation of the mRNA target is initiated by deadenylation, which is followed by decapping and 5'-to-3' exonucleolytic decay. Recent work has enhanced our understanding of the mechanisms of silencing, making it possible to describe in molecular terms a continuum of direct interactions from miRNA target recognition to mRNA deadenylation, decapping and 5'-to-3' degradation. Furthermore, an intricate interplay between translational repression and mRNA degradation is emerging.
Collapse
Affiliation(s)
- Stefanie Jonas
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| |
Collapse
|
24
|
Pohlmann T, Baumann S, Haag C, Albrecht M, Feldbrügge M. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking. eLife 2015; 4. [PMID: 25985087 PMCID: PMC4466420 DOI: 10.7554/elife.06041] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/15/2015] [Indexed: 12/20/2022] Open
Abstract
An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI:http://dx.doi.org/10.7554/eLife.06041.001 DNA contains the instructions to build proteins. These instructions are first copied to make a molecule of messenger RNA (or mRNA for short). A large machine called the ribosome then reads the mRNA molecule and translates it to build a protein. Many proteins must get to particular locations in a cell to carry out their roles. For some proteins, this is achieved by transporting the mRNAs to the right location before they get translated, via a process called ‘mRNA trafficking’. However, mRNAs do not move by themselves; instead they bind to a host of mRNA-binding proteins, and the ribosomes that are required for translation to take place. Cells also move proteins between different locations using small bubble-like structures called vesicles. These vesicles are surrounded by a membrane, and so this process is known as ‘membrane trafficking’. Previous work has shown that these two processes are often linked, as vesicles can also carry mRNA molecules. But it is not fully understood how mRNA molecules are connected to vesicles. Now, Pohlmann et al. have used a fungus called Ustilago maydis as a model system to investigate how mRNAs and vesicles can move together in cells that grow to form filament-like structures called hyphae. This fungus uses these filaments to penetrate into plant tissues and causes a disease called corn smut. The experiments revealed a vesicle protein called Upa1 that contains a new type of binding site that allows Upa1 to bring an important RNA-binding protein to the surface of vesicles. Since the RNA-binding protein binds mRNA and the translating ribosomes, this can explain how mRNAs can associate with membranes to move together along hyphae. When Pohlmann et al. engineered fungi that lacked the gene for Upa1, these mutants had problems transporting their mRNAs and associated ribosomes. These findings reveal a direct connection between mRNA trafficking and membrane trafficking. Future studies could now investigate whether similar processes take place in other cells that grow as long filaments, such as plant pollen tubes or nerve cells. These studies might provide new insights into plant reproduction or brain activity. DOI:http://dx.doi.org/10.7554/eLife.06041.002
Collapse
Affiliation(s)
- Thomas Pohlmann
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Baumann
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Carl Haag
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mario Albrecht
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
25
|
General and MicroRNA-Mediated mRNA Degradation Occurs on Ribosome Complexes in Drosophila Cells. Mol Cell Biol 2015; 35:2309-20. [PMID: 25918245 DOI: 10.1128/mcb.01346-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/19/2015] [Indexed: 01/08/2023] Open
Abstract
The translation and degradation of mRNAs are two key steps in gene expression that are highly regulated and targeted by many factors, including microRNAs (miRNAs). While it is well established that translation and mRNA degradation are tightly coupled, it is still not entirely clear where in the cell mRNA degradation takes place. In this study, we investigated the possibility of mRNA degradation on the ribosome in Drosophila cells. Using polysome profiles and ribosome affinity purification, we could demonstrate the copurification of various deadenylation and decapping factors with ribosome complexes. Also, AGO1 and GW182, two key factors in the miRNA-mediated mRNA degradation pathway, were associated with ribosome complexes. Their copurification was dependent on intact mRNAs, suggesting the association of these factors with the mRNA rather than the ribosome itself. Furthermore, we isolated decapped mRNA degradation intermediates from ribosome complexes and performed high-throughput sequencing analysis. Interestingly, 93% of the decapped mRNA fragments (approximately 12,000) could be detected at the same relative abundance on ribosome complexes and in cell lysates. In summary, our findings strongly indicate the association of the majority of bulk mRNAs as well as mRNAs targeted by miRNAs with the ribosome during their degradation.
Collapse
|
26
|
Small-RNA loading licenses Argonaute for assembly into a transcriptional silencing complex. Nat Struct Mol Biol 2015; 22:328-35. [PMID: 25730778 DOI: 10.1038/nsmb.2979] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 01/31/2015] [Indexed: 12/29/2022]
Abstract
Argonautes and their small-RNA cofactors form the core effectors of ancient and diverse gene-silencing mechanisms whose roles include regulation of gene expression and defense against foreign genetic elements. Although Argonautes generally act within multisubunit complexes, what governs their assembly into these machineries is not well defined. Here, we show that loading of small RNAs onto Argonaute is a checkpoint for Argonaute's association with conserved GW-protein components of silencing complexes. We demonstrate that the Argonaute small interfering RNA chaperone (ARC) complex mediates loading of small RNAs onto Ago1 in Schizosaccharomyces pombe and that deletion of its subunits, or mutations in Ago1 that prevent small-RNA loading, abolish the assembly of the GW protein-containing RNA-induced transcriptional silencing (RITS) complex. Our studies uncover a mechanism that ensures that Argonaute loading precedes RITS assembly and thereby averts the formation of inert and potentially deleterious complexes.
Collapse
|
27
|
Makino S, Mishima Y, Inoue K, Inada T. Roles of mRNA fate modulators Dhh1 and Pat1 in TNRC6-dependent gene silencing recapitulated in yeast. J Biol Chem 2015; 290:8331-47. [PMID: 25657010 DOI: 10.1074/jbc.m114.615088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The CCR4-NOT complex, the major deadenylase in eukaryotes, plays crucial roles in gene expression at the levels of transcription, mRNA decay, and protein degradation. GW182/TNRC6 proteins, which are core components of the microRNA-induced silencing complex in animals, stimulate deadenylation and repress translation via recruitment of the CCR4-NOT complex. Here we report a heterologous experimental system that recapitulates the recruitment of CCR4-NOT complex by TNRC6 in S. cerevisiae. Using this system, we characterize conserved functions of the CCR4-NOT complex. The complex stimulates degradation of mRNA from the 5' end by Xrn1, in a manner independent of both translation and deadenylation. This degradation pathway is probably conserved in miRNA-mediated gene silencing in zebrafish. Furthermore, the mRNA fate modulators Dhh1 and Pat1 redundantly stimulate mRNA decay, but both factors are required for poly(A) tail-independent translation repression by tethered TNRC6A. Our tethering-based reconstitution system reveals that the conserved architecture of Not1/CNOT1 provides a binding surface for TNRC6, thereby connecting microRNA-induced silencing complex to the decapping machinery as well as the translation apparatus.
Collapse
Affiliation(s)
- Shiho Makino
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yuichiro Mishima
- the Institute of Molecular and Cellular Biosciences and the Department of Medical Genome Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan, and
| | - Kunio Inoue
- the Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Toshifumi Inada
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan,
| |
Collapse
|
28
|
Zielezinski A, Karlowski WM. Integrative data analysis indicates an intrinsic disordered domain character of Argonaute-binding motifs. ACTA ACUST UNITED AC 2014; 31:332-9. [PMID: 25304778 DOI: 10.1093/bioinformatics/btu666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MOTIVATION Argonaute-interacting WG/GW proteins are characterized by the presence of repeated sequence motifs containing glycine (G) and tryptophan (W). The motifs seem to be remarkably adaptive to amino acid substitutions and their sequences show non-contiguity. Our previous approach to the detection of GW domains, based on scoring their gross amino acid composition, allowed annotation of several novel proteins involved in gene silencing. The accumulation of new experimental data and more advanced applications revealed some deficiency of the algorithm in prediction selectivity. Additionally, W-motifs, though critical in gene regulation, have not yet been annotated in any available online resources. RESULTS We present an improved set of computational tools allowing efficient management and annotation of W-based motifs involved in gene silencing. The new prediction algorithms provide novel functionalities by annotation of the W-containing domains at the local sequence motif level rather than by overall compositional properties. This approach represents a significant improvement over the previous method in terms of prediction sensitivity and selectivity. Application of the algorithm allowed annotation of a comprehensive list of putative Argonaute-interacting proteins across eukaryotes. An in-depth characterization of the domains' properties indicates its intrinsic disordered character. In addition, we created a knowledge-based portal (whub) that provides access to tools and information on RNAi-related tryptophan-containing motifs. AVAILABILITY AND IMPLEMENTATION The web portal and tools are freely available at http://www.comgen.pl/whub. CONTACT wmk@amu.edu.pl SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- Laboratory of Computational Genomics-Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Wojciech M Karlowski
- Laboratory of Computational Genomics-Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
29
|
Rouya C, Siddiqui N, Morita M, Duchaine TF, Fabian MR, Sonenberg N. Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. RNA (NEW YORK, N.Y.) 2014; 20:1398-409. [PMID: 25035296 PMCID: PMC4138323 DOI: 10.1261/rna.045302.114] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/20/2014] [Indexed: 05/25/2023]
Abstract
MicroRNAs (miRNAs) play critical roles in a variety of biological processes through widespread effects on protein synthesis. Upon association with the miRNA-induced silencing complex (miRISC), miRNAs repress target mRNA translation and accelerate mRNA decay. Degradation of the mRNA is initiated by shortening of the poly(A) tail by the CCR4-NOT deadenylase complex followed by the removal of the 5' cap structure and exonucleolytic decay of the mRNA. Here, we report a direct interaction between the large scaffolding subunit of CCR4-NOT, CNOT1, with the translational repressor and decapping activator protein, DDX6. DDX6 binds to a conserved CNOT1 subdomain in a manner resembling the interaction of the translation initiation factor eIF4A with eIF4G. Importantly, mutations that disrupt the DDX6-CNOT1 interaction impair miRISC-mediated gene silencing in human cells. Thus, CNOT1 facilitates recruitment of DDX6 to miRNA-targeted mRNAs, placing DDX6 as a downstream effector in the miRNA silencing pathway.
Collapse
Affiliation(s)
- Christopher Rouya
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Nadeem Siddiqui
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Masahiro Morita
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Thomas F Duchaine
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| |
Collapse
|
30
|
Stroynowska-Czerwinska A, Fiszer A, Krzyzosiak WJ. The panorama of miRNA-mediated mechanisms in mammalian cells. Cell Mol Life Sci 2014; 71:2253-70. [PMID: 24468964 PMCID: PMC4031385 DOI: 10.1007/s00018-013-1551-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/02/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022]
Abstract
MicroRNAs comprise a large family of short, non-coding RNAs that are present in most eukaryotic organisms and are typically involved in downregulating the expression of protein-coding genes. The detailed mechanisms of miRNA functioning in animals and plants have been under investigation for more than decade. In mammalian cells, miRNA guides the effector complex miRISC to bind with partially complementary sequences, usually within the 3′UTR of mRNAs, and inhibit protein synthesis with or without transcript degradation. In addition to these main mechanisms, several other modes of miRNA-mediated gene expression regulation have been described, but their scale and importance remain a matter of debate. In this review, we briefly summarize the pathway of miRNA precursor processing during miRNA biogenesis and continue with the description of the miRISC assembly process. Then, we present the miRNA-mediated mechanisms of gene expression regulation in detail, and we gather information concerning the proteins involved in these processes. In addition, we briefly refer to the current applications of miRNA mechanisms in therapeutic strategies. Finally, we highlight some of the remaining controversies surrounding the regulation of mammalian gene expression by miRNAs.
Collapse
Affiliation(s)
- Anna Stroynowska-Czerwinska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | | | | |
Collapse
|
31
|
Abstract
Argonaute proteins interact with small RNAs and facilitate small RNA-guided gene-silencing processes. Small RNAs guide Argonaute proteins to distinct target sites on mRNAs where Argonaute proteins interact with members of the GW182 protein family (also known as GW proteins). In subsequent steps, GW182 proteins mediate the downstream steps of gene silencing. The present mini-review summarizes and discusses our current knowledge of the molecular basis of Argonaute-GW182 protein interactions.
Collapse
|
32
|
Abstract
MicroRNAs (miRNAs) guide Argonaute (Ago) proteins to target mRNAs, leading to gene silencing. However, Ago proteins are not the actual mediators of gene silencing but interact with a member of the GW182 protein family (also known as GW proteins), which coordinates all downstream steps in gene silencing. GW proteins contain an N-terminal Ago-binding domain that is characterized by multiple GW repeats and a C-terminal silencing domain with several globular domains. Within the Ago-binding domain, Trp residues mediate the direct interaction with the Ago protein. Here, we have characterized the interaction of Ago proteins with GW proteins in molecular detail. Using biochemical and NMR experiments, we show that only a subset of Trp residues engage in Ago interactions. The Trp residues are located in intrinsically disordered regions, where flanking residues mediate additional weak interactions, that might explain the importance of specific tryptophans. Using cross-linking followed by mass spectrometry, we map the GW protein interactions with Ago2, which allows for structural modeling of Ago-GW182 interaction. Our data further indicate that the Ago-GW protein interaction might be a two-step process involving the sequential binding of two tryptophans separated by a spacer with a minimal length of 10 aa.
Collapse
|
33
|
MicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications. IRANIAN JOURNAL OF BIOTECHNOLOGY 2013. [DOI: 10.5812/ijb.11081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Nishihara T, Zekri L, Braun JE, Izaurralde E. miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res 2013; 41:8692-705. [PMID: 23863838 PMCID: PMC3794582 DOI: 10.1093/nar/gkt619] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MicroRNA (miRNA)-induced silencing complexes (miRISCs) repress translation and promote degradation of miRNA targets. Target degradation occurs through the 5′-to-3′ messenger RNA (mRNA) decay pathway, wherein, after shortening of the mRNA poly(A) tail, the removal of the 5′ cap structure by decapping triggers irreversible decay of the mRNA body. Here, we demonstrate that miRISC enhances the association of the decapping activators DCP1, Me31B and HPat with deadenylated miRNA targets that accumulate when decapping is blocked. DCP1 and Me31B recruitment by miRISC occurs before the completion of deadenylation. Remarkably, miRISC recruits DCP1, Me31B and HPat to engineered miRNA targets transcribed by RNA polymerase III, which lack a cap structure, a protein-coding region and a poly(A) tail. Furthermore, miRISC can trigger decapping and the subsequent degradation of mRNA targets independently of ongoing deadenylation. Thus, miRISC increases the local concentration of the decapping machinery on miRNA targets to facilitate decapping and irreversibly shut down their translation.
Collapse
Affiliation(s)
- Tadashi Nishihara
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
35
|
Zhang Y, Emery P. GW182 controls Drosophila circadian behavior and PDF-receptor signaling. Neuron 2013; 78:152-65. [PMID: 23583112 DOI: 10.1016/j.neuron.2013.01.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 12/19/2022]
Abstract
The neuropeptide PDF is crucial for Drosophila circadian behavior: it keeps circadian neurons synchronized. Here, we identify GW182 as a key regulator of PDF signaling. Indeed, GW182 downregulation results in phenotypes similar to those of Pdf and Pdf-receptor (Pdfr) mutants. gw182 genetically interacts with Pdfr and cAMP signaling, which is essential for PDFR function. GW182 mediates miRNA-dependent gene silencing through its interaction with AGO1. Consistently, GW182's AGO1 interaction domain is required for GW182's circadian function. Moreover, our results indicate that GW182 modulates PDFR signaling by silencing the expression of the cAMP phosphodiesterase DUNCE. Importantly, this repression is under photic control, and GW182 activity level--which is limiting in circadian neurons--influences the responses of the circadian neural network to light. We propose that GW182's gene silencing activity functions as a rheostat for PDFR signaling and thus profoundly impacts the circadian neural network and its response to environmental inputs.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
36
|
Kuhn CD, Joshua-Tor L. Eukaryotic Argonautes come into focus. Trends Biochem Sci 2013; 38:263-71. [PMID: 23541793 DOI: 10.1016/j.tibs.2013.02.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 01/20/2023]
Abstract
Despite the fact that different classes of small RNAs are generated by largely different biogenesis pathways, all mature small RNAs associate with an Argonaute family member to form the RNA-induced silencing complex (RISC). Gene silencing by RISC could not be studied in molecular detail because structural information on eukaryotic Argonautes was lacking. Recently, however, the structure of human Argonaute-2 (hAgo2), a model for RISC function, was determined in complexes with heterogeneous guide RNA and in complexes with a specific miRNA. We review the exciting advances that these two structures, together with the structure of a budding yeast Argonaute, brought to the field of eukaryotic RNA interference (RNAi), and how they will enable a more detailed mechanistic understanding of eukaryotic RISC.
Collapse
Affiliation(s)
- Claus-D Kuhn
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
37
|
Hur JK, Zinchenko MK, Djuranovic S, Green R. Regulation of Argonaute slicer activity by guide RNA 3' end interactions with the N-terminal lobe. J Biol Chem 2013; 288:7829-7840. [PMID: 23329841 PMCID: PMC3597821 DOI: 10.1074/jbc.m112.441030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/16/2013] [Indexed: 12/18/2022] Open
Abstract
Structural studies indicate that binding of both the guide RNA (siRNA and miRNA) and the target mRNA trigger substantial conformational changes in the Argonaute proteins. Here we explore the role of the N-terminal lobe (and its PAZ domain) in these conformational changes using biochemical and cell culture-based approaches. In vitro, whereas deletion (or mutation) of the N-terminal lobe of DmAgo1 and DmAgo2 had no effect on binding affinity to guide RNAs, we observed a loss of protection of the 3' end of the guide RNA and decreased target RNA binding; consistent with this, in cells, loss of function DmAgo1 PAZ variant proteins (PAZ6 and ΔN-PAZ) still bind RNA, although the RNAs are shorter than normal. We also find that deletion of the N-terminal lobe results in constitutive activation of endogenous PIWI domain-based cleavage activity in vitro, providing insights into how cleavage activity may be regulated in vivo in response to different types of pairing interactions with the target mRNAs.
Collapse
Affiliation(s)
- Junho K Hur
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Michelle K Zinchenko
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Sergej Djuranovic
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
38
|
Zekri L, Kuzuoğlu-Öztürk D, Izaurralde E. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation. EMBO J 2013; 32:1052-65. [PMID: 23463101 PMCID: PMC3616289 DOI: 10.1038/emboj.2013.44] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/07/2013] [Indexed: 12/13/2022] Open
Abstract
GW182 family proteins interact with Argonaute proteins and are required for the translational repression, deadenylation and decay of miRNA targets. To elicit these effects, GW182 proteins interact with poly(A)-binding protein (PABP) and the CCR4–NOT deadenylase complex. Although the mechanism of miRNA target deadenylation is relatively well understood, how GW182 proteins repress translation is not known. Here, we demonstrate that GW182 proteins decrease the association of eIF4E, eIF4G and PABP with miRNA targets. eIF4E association is restored in cells in which miRNA targets are deadenylated, but decapping is inhibited. In these cells, eIF4G binding is not restored, indicating that eIF4G dissociates as a consequence of deadenylation. In contrast, PABP dissociates from silenced targets in the absence of deadenylation. PABP dissociation requires the interaction of GW182 proteins with the CCR4–NOT complex. Accordingly, NOT1 and POP2 cause dissociation of PABP from bound mRNAs in the absence of deadenylation. Our findings indicate that the recruitment of the CCR4–NOT complex by GW182 proteins releases PABP from the mRNA poly(A) tail, thereby disrupting mRNA circularization and facilitating translational repression and deadenylation. GW182 proteins elicit miRNA-mediated translational repression through recruitment of the CCR4–NOT deadenylase complex, thereby displacing PABP from miRNA targets, leading to subsequent deadenylation and loss of translation initiation factors.
Collapse
Affiliation(s)
- Latifa Zekri
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | |
Collapse
|
39
|
Li J, Hobman TC, Simmonds AJ. Gawky (GW) is the Drosophila melanogaster GW182 homologue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:127-45. [PMID: 23224968 DOI: 10.1007/978-1-4614-5107-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jing Li
- Department of Cell Biology, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
40
|
Nishi K, Nishi A, Nagasawa T, Ui-Tei K. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA (NEW YORK, N.Y.) 2013; 19:17-35. [PMID: 23150874 PMCID: PMC3527724 DOI: 10.1261/rna.034769.112] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/18/2012] [Indexed: 05/19/2023]
Abstract
GW182 family proteins play important roles in microRNA (miRNA)-mediated gene silencing. They interact with Argonaute (Ago) proteins and localize in processing bodies, which are cytoplasmic foci involved in mRNA degradation and storage. Here, we demonstrated that human GW182 paralog, TNRC6A, is a nuclear-cytoplasmic shuttling protein, and its subcellular localization is conducted by a nuclear export signal (NES) and a nuclear localization signal (NLS) identified in this study. TNRC6A with mutations in its NES region was predominantly localized in the nucleus in an Ago-independent manner. However, it was found that TNRC6A could bring Ago protein into the nucleus via its Ago-interacting motif(s). Furthermore, miRNAs were also colocalized with nuclear TNRC6A-Ago and exhibited gene silencing activity. These results proposed the possibility that TNRC6A plays an important role in navigating Ago protein into the nucleus to lead miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Kenji Nishi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Corresponding authorsE-mail E-mail
| | - Ai Nishi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuya Nagasawa
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Kumiko Ui-Tei
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Corresponding authorsE-mail E-mail
| |
Collapse
|
41
|
Reflections on ten years of history of, and future prospects for, GW182 and GW/P body research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:261-70. [PMID: 23224975 DOI: 10.1007/978-1-4614-5107-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Moser JJ, Fritzler MJ. Relationship of other cytoplasmic ribonucleoprotein bodies (cRNPB) to GW/P bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:213-42. [PMID: 23224973 DOI: 10.1007/978-1-4614-5107-5_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GW/P body components are involved in the post-transcriptional -processing of messenger RNA (mRNA) through the RNA interference and 5' → 3' mRNA degradation pathways, as well as functioning in mRNA transport and stabilization. It is currently thought that the relevant mRNA silencing and degrading factors are partitioned to these cytoplasmic microdomains thus effecting post-transcriptional regulation and the prevention of accidental degradation of functional mRNA. Although much attention has focused on GW/P bodies, a variety of other cytoplasmic RNP bodies (cRNPB) also have highly specialized functions and have been shown to interact or co-localize with components of GW/P bodies. These cRNPB include neuronal transport RNP granules, stress granules, RNP-rich cytoplasmic germline granules or chromatoid bodies, sponge bodies, cytoplasmic prion protein-induced RNP granules, U bodies and TAM bodies. Of clinical relevance, autoantibodies directed against protein and miRNA components of GW/P bodies have been associated with autoimmune diseases, neurological diseases and cancer. Understanding the molecular function of GW/P bodies and their interactions with other cRNPB may provide clues to the etiology or pathogenesis of diseases associated with autoantibodies directed to these structures. This chapter will focus on the similarities and differences of the various cRNPB as an approach to understanding their functional relationships to GW/P bodies.
Collapse
Affiliation(s)
- Joanna J Moser
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | | |
Collapse
|
43
|
Braun JE, Huntzinger E, Izaurralde E. The role of GW182 proteins in miRNA-mediated gene silencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:147-63. [PMID: 23224969 DOI: 10.1007/978-1-4614-5107-5_9] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GW182 family proteins are essential for microRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets through direct interactions with Argonaute proteins and promote target silencing. They do so by repressing translation and enhancing mRNA turnover. Although the precise mechanism of action of GW182 proteins is not fully understood, these proteins have been shown to interact with the cytoplasmic poly(A)-binding protein (PABP) and with the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These findings suggest that GW182 proteins function as scaffold proteins for the assembly of the multiprotein complex that silences miRNA targets.
Collapse
Affiliation(s)
- Joerg E Braun
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | | | | |
Collapse
|
44
|
Poulsen C, Vaucheret H, Brodersen P. Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. THE PLANT CELL 2013; 25:22-37. [PMID: 23303917 PMCID: PMC3584537 DOI: 10.1105/tpc.112.105643] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/31/2012] [Accepted: 11/26/2012] [Indexed: 05/18/2023]
Abstract
RNA silencing refers to a collection of gene regulatory mechanisms that use small RNAs for sequence specific repression. These mechanisms rely on ARGONAUTE (AGO) proteins that directly bind small RNAs and thereby constitute the central component of the RNA-induced silencing complex (RISC). AGO protein function has been probed extensively by mutational analyses, particularly in plants where large allelic series of several AGO proteins have been isolated. Structures of entire human and yeast AGO proteins have only very recently been obtained, and they allow more precise analyses of functional consequences of mutations obtained by forward genetics. To a large extent, these analyses support current models of regions of particular functional importance of AGO proteins. Interestingly, they also identify previously unrecognized parts of AGO proteins with profound structural and functional importance and provide the first hints at structural elements that have important functions specific to individual AGO family members. A particularly important outcome of the analysis concerns the evidence for existence of Gly-Trp (GW) repeat interactors of AGO proteins acting in the plant microRNA pathway. The parallel analysis of AGO structures and plant AGO mutations also suggests that such interactions with GW proteins may be a determinant of whether an endonucleolytically competent RISC is formed.
Collapse
Affiliation(s)
- Christian Poulsen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, F-78000 Versailles, France
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Address correspondence to
| |
Collapse
|
45
|
Yao B, Li S, Chan EKL. Function of GW182 and GW bodies in siRNA and miRNA pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:71-96. [PMID: 23224966 DOI: 10.1007/978-1-4614-5107-5_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
GW182 is an 182 kDa protein with multiple glycine/tryptophan repeats (GW or WG) playing a central role in siRNA- and miRNA-mediated gene silencing. GW182 interacts with its functional partner Argonaute proteins (AGO) via multiple domains to exert its silencing activity in both pathways. In siRNA-mediated silencing, knockdown either GW182 or Ago2 causes loss of silencing activity correlating with the disassembly of GWBs. In contrast, GW182 and its longer isoform TNGW1 appear to be downstream repressors that function independent of Ago2, whereas the Ago2-GW182 interaction is critical for the localization of Ago2 in the cytoplasmic foci and its repression function. GW182 contains two non-overlapping repression domains that can trigger translational repression with mild effect on mRNA decay. Collectively, GW182 plays a critical role in miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
46
|
Braun JE, Huntzinger E, Izaurralde E. A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Cold Spring Harb Perspect Biol 2012; 4:4/12/a012328. [PMID: 23209154 DOI: 10.1101/cshperspect.a012328] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are a large family of endogenous noncoding RNAs that, together with the Argonaute family of proteins (AGOs), silence the expression of complementary mRNA targets posttranscriptionally. Perfectly complementary targets are cleaved within the base-paired region by catalytically active AGOs. In the case of partially complementary targets, however, AGOs are insufficient for silencing and need to recruit a protein of the GW182 family. GW182 proteins induce translational repression, mRNA deadenylation and exonucleolytic target degradation. Recent work has revealed a direct molecular link between GW182 proteins and cellular deadenylase complexes. These findings shed light on how miRNAs bring about target mRNA degradation and promise to further our understanding of the mechanism of miRNA-mediated repression.
Collapse
Affiliation(s)
- Joerg E Braun
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | |
Collapse
|
47
|
Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach. Proc Natl Acad Sci U S A 2012. [PMID: 23184980 DOI: 10.1073/pnas.1218887109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Identifying targets is critical for understanding the biological effects of microRNA (miRNA) expression. The challenge lies in characterizing the cohort of targets for a specific miRNA, especially when targets are being actively down-regulated in miRNA- RNA-induced silencing complex (RISC)-messengerRNA (mRNA) complexes. We have developed a robust and versatile strategy called RISCtrap to stabilize and purify targets from this transient interaction. Its utility was demonstrated by determining specific high-confidence target datasets for miR-124, miR-132, and miR-181 that contained known and previously unknown transcripts. Two previously unknown miR-132 targets identified with RISCtrap, adaptor protein CT10 regulator of kinase 1 (CRK1) and tight junction-associated protein 1 (TJAP1), were shown to be endogenously regulated by miR-132 in adult mouse forebrain. The datasets, moreover, differed in the number of targets and in the types and frequency of microRNA recognition element (MRE) motifs, thus revealing a previously underappreciated level of specificity in the target sets regulated by individual miRNAs.
Collapse
|
48
|
Huntzinger E, Kuzuoglu-Öztürk D, Braun JE, Eulalio A, Wohlbold L, Izaurralde E. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res 2012; 41:978-94. [PMID: 23172285 PMCID: PMC3553986 DOI: 10.1093/nar/gks1078] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Animal miRNAs silence the expression of mRNA targets through translational repression, deadenylation and subsequent mRNA degradation. Silencing requires association of miRNAs with an Argonaute protein and a GW182 family protein. In turn, GW182 proteins interact with poly(A)-binding protein (PABP) and the PAN2–PAN3 and CCR4–NOT deadenylase complexes. These interactions are required for the deadenylation and decay of miRNA targets. Recent studies have indicated that miRNAs repress translation before inducing target deadenylation and decay; however, whether translational repression and deadenylation are coupled or represent independent repressive mechanisms is unclear. Another remaining question is whether translational repression also requires GW182 proteins to interact with both PABP and deadenylases. To address these questions, we characterized the interaction of Drosophila melanogaster GW182 with deadenylases and defined the minimal requirements for a functional GW182 protein. Functional assays in D. melanogaster and human cells indicate that miRNA-mediated translational repression and degradation are mechanistically linked and are triggered through the interactions of GW182 proteins with PABP and deadenylases.
Collapse
Affiliation(s)
- Eric Huntzinger
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Crist CG, Montarras D, Buckingham M. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 2012; 11:118-26. [PMID: 22770245 DOI: 10.1016/j.stem.2012.03.011] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/30/2011] [Accepted: 03/19/2012] [Indexed: 12/12/2022]
Abstract
Regeneration of adult tissues depends on stem cells that are primed to enter a differentiation program, while remaining quiescent. How these two characteristics can be reconciled is exemplified by skeletal muscle in which the majority of quiescent satellite cells transcribe the myogenic determination gene Myf5, without activating the myogenic program. We show that Myf5 mRNA, together with microRNA-31, which regulates its translation, is sequestered in mRNP granules present in the quiescent satellite cell. In activated satellite cells, mRNP granules are dissociated, relative levels of miR-31 are reduced, and Myf5 protein accumulates, which initially requires translation, but not transcription. Conditions that promote the continued presence of mRNP granules delay the onset of myogenesis. Manipulation of miR-31 levels affects satellite cell differentiation ex vivo and muscle regeneration in vivo. We therefore propose a model in which posttranscriptional mechanisms hold quiescent stem cells poised to enter a tissue-specific differentiation program.
Collapse
Affiliation(s)
- Colin G Crist
- CNRS URA 2578, Department of Developmental Biology, Institut Pasteur, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
50
|
Yao B, La LB, Chen YC, Chang LJ, Chan EKL. Defining a new role of GW182 in maintaining miRNA stability. EMBO Rep 2012; 13:1102-8. [PMID: 23090477 DOI: 10.1038/embor.2012.160] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 01/23/2023] Open
Abstract
GW182 binds to Argonaute (AGO) proteins and has a central role in miRNA-mediated gene silencing. Using lentiviral shRNA-induced GW182 knockdown in HEK293 cells, this study identifies a new role of GW182 in regulating miRNA stability. Stably knocking down GW182 or its paralogue TNRC6B reduces transfected miRNA-mimic half-lives. Replenishment of GW182 family proteins, as well as one of its domain Δ12, significantly restores the stability of transfected miRNA-mimic. GW182 knockdown reduces miRNA secretion via secretory exosomes. Targeted siRNA screening identifies a 3'-5' exoribonuclease complex responsible for the miRNA degradation only when GW182 is knocked down. Immunoprecipitation further confirms that the presence of GW182 in the RISC complex is critical in protecting Argonaute-bound miRNA.
Collapse
Affiliation(s)
- Bing Yao
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610-0424, USA
| | | | | | | | | |
Collapse
|