1
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
2
|
Wedler A, Bley N, Glaß M, Müller S, Rausch A, Lederer M, Urbainski J, Schian L, Obika KB, Simon T, Peters L, Misiak C, Fuchs T, Köhn M, Jacob R, Gutschner T, Ihling C, Sinz A, Hüttelmaier S. RAVER1 hinders lethal EMT and modulates miR/RISC activity by the control of alternative splicing. Nucleic Acids Res 2024; 52:3971-3988. [PMID: 38300787 PMCID: PMC11039986 DOI: 10.1093/nar/gkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The RAVER1 protein serves as a co-factor in guiding the polypyrimidine tract-binding protein (PTBP)-dependent control of alternative splicing (AS). Whether RAVER1 solely acts in concert with PTBPs and how it affects cancer cell fate remained elusive. Here, we provide the first comprehensive investigation of RAVER1-controlled AS in cancer cell models. This reveals a pro-oncogenic role of RAVER1 in modulating tumor growth and epithelial-mesenchymal-transition (EMT). Splicing analyses and protein-association studies indicate that RAVER1 guides AS in association with other splicing regulators, including PTBPs and SRSFs. In cancer cells, one major function of RAVER1 is the stimulation of proliferation and restriction of apoptosis. This involves the modulation of AS events within the miR/RISC pathway. Disturbance of RAVER1 impairs miR/RISC activity resulting in severely deregulated gene expression, which promotes lethal TGFB-driven EMT. Among others, RAVER1-modulated splicing events affect the insertion of protein interaction modules in factors guiding miR/RISC-dependent gene silencing. Most prominently, in all three human TNRC6 proteins, RAVER1 controls AS of GW-enriched motifs, which are essential for AGO2-binding and the formation of active miR/RISC complexes. We propose, that RAVER1 is a key modulator of AS events in the miR/RISC pathway ensuring proper abundance and composition of miR/RISC effectors. This ensures balanced expression of TGFB signaling effectors and limits TGFB induced lethal EMT.
Collapse
Affiliation(s)
- Alice Wedler
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Simon Müller
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Alexander Rausch
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcell Lederer
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Julia Urbainski
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Laura Schian
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kingsley-Benjamin Obika
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Theresa Simon
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Lara Meret Peters
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Claudia Misiak
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tommy Fuchs
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcel Köhn
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Roland Jacob
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tony Gutschner
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Yang Q, Ou S, Zhou X, Yi S, Lin L, Yi S, Zhang S, Qin Z, Luo J. Novel variants in TNRC6B cause global developmental delay with speech and behavioral abnormalities, short stature, low body weight, café-au-lait spots, and metabolic abnormality. Mol Genet Genomic Med 2024; 12:e2408. [PMID: 38404251 PMCID: PMC10895380 DOI: 10.1002/mgg3.2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND TNRC6B deficiency syndrome, also known as global developmental delay with speech and behavioral abnormalities (MIM 619243), is a rare autosomal dominant genetic disease mainly characterized by facial dysmorphism, developmental delay/intellectual disability (DD/ID), speech and language delay, fine and motor delay, attention deficit and hyperactivity disorder (ADHD), and variable behavioral abnormalities. It is caused by heterozygous variant in the TNRC6B gene (NM_001162501.2, MIM 610740), which encodes the trinucleotide repeat-containing adaptor 6B protein. METHODS In this study, two Chinese patients with TNRC6B deficiency syndrome were recruited, and genomic DNA extraction from peripheral blood leukocytes of these parents and their family members was extracted for whole-exome sequencing and Sanger sequencing. RESULTS Here, we report two unrelated Chinese patients diagnosed with TNRC6B deficiency syndrome caused by novel de novo likely pathogenic or pathogenic TNRC6B variants c.335C>T (p.Pro112Leu) and c.1632delC (p.Leu546fs*63), which expands the genetic spectrum of TNRC6B deficiency syndrome. The clinical features of the patients were DD/ID, delayed speech, ADHD, behavioral abnormalities, short stature, low body weight, café-au-lait spots, metabolic abnormalities, and facial dysmorphism including coarse facial features, sparse hair, frontal bossing, hypertelorism, amblyopia, strabismus, and downslanted palpebral fissures, which expands the phenotype spectrum associated with TNRC6B deficiency syndrome. CONCLUSION This study expands the genotypic and phenotypic spectrum of TNRC6B deficiency syndrome. Our findings indicate that patients with TNRC6B deficiency syndrome should be monitored for growth and metabolic problems and therapeutic strategies should be developed to address these problems. Our report also suggests the clinical diversity of TNRC6B deficiency syndrome.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Shan Ou
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Xunzhao Zhou
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Sheng Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Li Lin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Shujie Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Guangxi Clinical Research Center for Pediatric DiseasesMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
4
|
Toivakka M, Gordon K, Kumar S, Bermudez-Barrientos JR, Abreu-Goodger C, Zamoyska R, Buck AH. miR-7 is recruited to the high molecular weight RNA-induced silencing complex in CD8 + T cells upon activation and suppresses IL-2 signaling. RNA (NEW YORK, N.Y.) 2023; 30:26-36. [PMID: 37879863 PMCID: PMC10726160 DOI: 10.1261/rna.079030.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Increasing evidence suggests mammalian Argonaute (Ago) proteins partition into distinct complexes within cells, but there is still little biochemical or functional understanding of the miRNAs differentially associated with these complexes. In naïve T cells, Ago2 is found almost exclusively in low molecular weight (LMW) complexes which are associated with miRNAs but not their target mRNAs. Upon T-cell activation, a proportion of these Ago2 complexes move into a newly formed high molecular weight (HMW) RNA-induced silencing complex (RISC), which is characterized by the presence of the GW182 protein that mediates translational repression. Here, we demonstrate distinct partitioning of miRNAs and isomiRs in LMW versus HMW RISCs upon antigen-mediated activation of CD8+ T cells. We identify miR-7 as highly enriched in HMW RISC and demonstrate that miR-7 inhibition leads to increased production of IL-2 and up-regulation of the IL-2 receptor, the transferrin receptor, CD71 and the amino acid transporter, CD98. Our data support a model where recruitment of miR-7 to HMW RISC restrains IL-2 signaling and the metabolic processes regulated by IL-2.
Collapse
Affiliation(s)
- Matilda Toivakka
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sujai Kumar
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - José Roberto Bermudez-Barrientos
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Cei Abreu-Goodger
- Institute of Ecology & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
5
|
Abstract
Heat shock protein 90 (HSP90) family is a class of proteins known as molecular chaperones that promote client protein folding and translocation in unstressed cells and regulate cellular homeostasis in the stress response. Noncoding RNAs (ncRNAs) are defined as RNAs that do not encode proteins. Previous studies have shown that ncRNAs are key regulators of multiple fundamental cellular processes, such as development, differentiation, proliferation, transcription, post-transcriptional modifications, apoptosis, and cell metabolism. It is known that ncRNAs do not act alone but function via the interactions with other molecules, including co-chaperones, RNAs, DNAs, and so on. As a kind of molecular chaperone, HSP90 is also involved in many biological procedures of ncRNAs. In this review, we systematically analyze the impact of HSP90 on various kinds of ncRNAs, including their synthesis and function, and how ncRNAs influence HSP90 directly and indirectly.
Collapse
Affiliation(s)
- Qing Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Haoduo Qiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Yunfei Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Yao Zhao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Nina He
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Jie Zhao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Ying Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| |
Collapse
|
6
|
Welte T, Goulois A, Stadler MB, Hess D, Soneson C, Neagu A, Azzi C, Wisser MJ, Seebacher J, Schmidt I, Estoppey D, Nigsch F, Reece-Hoyes J, Hoepfner D, Großhans H. Convergence of multiple RNA-silencing pathways on GW182/TNRC6. Mol Cell 2023:S1097-2765(23)00423-9. [PMID: 37369201 DOI: 10.1016/j.molcel.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The RNA-binding protein TRIM71/LIN-41 is a phylogenetically conserved developmental regulator that functions in mammalian stem cell reprogramming, brain development, and cancer. TRIM71 recognizes target mRNAs through hairpin motifs and silences them through molecular mechanisms that await identification. Here, we uncover that TRIM71 represses its targets through RNA-supported interaction with TNRC6/GW182, a core component of the miRNA-induced silencing complex (miRISC). We demonstrate that AGO2, TRIM71, and UPF1 each recruit TNRC6 to specific sets of transcripts to silence them. As cellular TNRC6 levels are limiting, competition occurs among the silencing pathways, such that the loss of AGO proteins or of AGO binding to TNRC6 enhances the activities of the other pathways. We conclude that a miRNA-like silencing activity is shared among different mRNA silencing pathways and that the use of TNRC6 as a central hub provides a means to integrate their activities.
Collapse
Affiliation(s)
- Thomas Welte
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Alison Goulois
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Chiara Azzi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marlena J Wisser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Isabel Schmidt
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - David Estoppey
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - John Reece-Hoyes
- Department of Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Dominic Hoepfner
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Takemon Y, LeBlanc VG, Song J, Chan SY, Lee SD, Trinh DL, Ahmad ST, Brothers WR, Corbett RD, Gagliardi A, Moradian A, Cairncross JG, Yip S, Aparicio SAJR, Chan JA, Hughes CS, Morin GB, Gorski SM, Chittaranjan S, Marra MA. Multi-Omic Analysis of CIC's Functional Networks Reveals Novel Interaction Partners and a Potential Role in Mitotic Fidelity. Cancers (Basel) 2023; 15:2805. [PMID: 37345142 PMCID: PMC10216487 DOI: 10.3390/cancers15102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
CIC encodes a transcriptional repressor and MAPK signalling effector that is inactivated by loss-of-function mutations in several cancer types, consistent with a role as a tumour suppressor. Here, we used bioinformatic, genomic, and proteomic approaches to investigate CIC's interaction networks. We observed both previously identified and novel candidate interactions between CIC and SWI/SNF complex members, as well as novel interactions between CIC and cell cycle regulators and RNA processing factors. We found that CIC loss is associated with an increased frequency of mitotic defects in human cell lines and an in vivo mouse model and with dysregulated expression of mitotic regulators. We also observed aberrant splicing in CIC-deficient cell lines, predominantly at 3' and 5' untranslated regions of genes, including genes involved in MAPK signalling, DNA repair, and cell cycle regulation. Our study thus characterises the complexity of CIC's functional network and describes the effect of its loss on cell cycle regulation, mitotic integrity, and transcriptional splicing, thereby expanding our understanding of CIC's potential roles in cancer. In addition, our work exemplifies how multi-omic, network-based analyses can be used to uncover novel insights into the interconnected functions of pleiotropic genes/proteins across cellular contexts.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada;
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Véronique G. LeBlanc
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Jungeun Song
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Susanna Y. Chan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Stephen Dongsoo Lee
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Diane L. Trinh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Shiekh Tanveer Ahmad
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - William R. Brothers
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Richard D. Corbett
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Alessia Gagliardi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Annie Moradian
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - J. Gregory Cairncross
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stephen Yip
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Samuel A. J. R. Aparicio
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Jennifer A. Chan
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher S. Hughes
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Suganthi Chittaranjan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
8
|
Dou J, Thangaraj SV, Puttabyatappa M, Elangovan VR, Bakulski K, Padmanabhan V. Developmental programming: Adipose depot-specific regulation of non-coding RNAs and their relation to coding RNA expression in prenatal testosterone and prenatal bisphenol-A -treated female sheep. Mol Cell Endocrinol 2023; 564:111868. [PMID: 36708980 PMCID: PMC10069610 DOI: 10.1016/j.mce.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Inappropriate developmental exposure to steroids is linked to metabolic disorders. Prenatal testosterone excess or bisphenol A (BPA, an environmental estrogen mimic) leads to insulin resistance and adipocyte disruptions in female lambs. Adipocytes are key regulators of insulin sensitivity. Metabolic tissue-specific differences in insulin sensitivity coupled with adipose depot-specific changes in key mRNAs, were previously observed with prenatal steroid exposure. We hypothesized that depot-specific changes in the non-coding RNA (ncRNA) - regulators of gene expression would account for the direction of changes seen in mRNAs. Non-coding RNA (lncRNA, miRNA, snoRNA, snRNA) from various adipose depots of prenatal testosterone and BPA-treated animals were sequenced. Adipose depot-specific changes in the ncRNA that are consistent with the depot-specific mRNA expression in terms of directionality of changes and functional implications in insulin resistance, adipocyte differentiation and cardiac hypertrophy were found. Importantly, the adipose depot-specific ncRNA changes were model-specific and mutually exclusive, suggestive of different regulatory entry points in this regulation.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
9
|
Quévillon Huberdeau M, Shah VN, Nahar S, Neumeier J, Houle F, Bruckmann A, Gypas F, Nakanishi K, Großhans H, Meister G, Simard MJ. A specific type of Argonaute phosphorylation regulates binding to microRNAs during C. elegans development. Cell Rep 2022; 41:111822. [PMID: 36516777 PMCID: PMC10436268 DOI: 10.1016/j.celrep.2022.111822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Argonaute proteins are at the core of the microRNA-mediated gene silencing pathway essential for animals. In C. elegans, the microRNA-specific Argonautes ALG-1 and ALG-2 regulate multiple processes required for proper animal developmental timing and viability. Here we identified a phosphorylation site on ALG-1 that modulates microRNA association. Mutating ALG-1 serine 642 into a phospho-mimicking residue impairs microRNA binding and causes embryonic lethality and post-embryonic phenotypes that are consistent with alteration of microRNA functions. Monitoring microRNA levels in alg-1 phosphorylation mutant animals shows that microRNA passenger strands increase in abundance but are not preferentially loaded into ALG-1, indicating that the miRNA binding defects could lead to microRNA duplex accumulation. Our genetic and biochemical experiments support protein kinase A (PKA) KIN-1 as the putative kinase that phosphorylates ALG-1 serine 642. Our data indicate that PKA triggers ALG-1 phosphorylation to regulate its microRNA association during C. elegans development.
Collapse
Affiliation(s)
- Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Vivek Nilesh Shah
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Smita Nahar
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Julia Neumeier
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - François Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Foivos Gypas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, Columbus, OH 43210, USA
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada.
| |
Collapse
|
10
|
Wakiyama M, Takimoto K. N-terminal Ago-binding domain of GW182 contains a tryptophan-rich region that confer binding to the CCR4-NOT complex. Genes Cells 2022; 27:579-585. [PMID: 35822830 DOI: 10.1111/gtc.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
GW182 family proteins are a key component of microRNA-protein complex eliciting translational repression and/or degradation of microRNA-targets. MicroRNAs in complex with Argonaute proteins bind to target mRNAs, and GW182 proteins are recruited by association with Argonaute proteins. The GW182 protein acts as a scaffold that links the Argonaute protein to silencing machineries including the CCR4-NOT complex which accelerates deadenylation and inhibits translation. The carboxyl-terminal effector domain of GW182 protein, also called the silencing domain, has been shown to bind to the subunits of the CCR4-NOT complex, the CNOT1 and the CNOT9. Here we show that a small region within the amino-terminal Argonaute-binding domain of human GW182/TNRC6A can associate with the CCR4-NOT complex. This region resides between the two Argonaute-binding sites and contains reiterated GW/WG-motifs. Alanine mutation experiments showed that multiple tryptophan residues are required for the association with the CCR4-NOT complex. Furthermore, co-expression and immunoprecipitation assays suggested that the CNOT9 subunit of the CCR4-NOT complex is a possible binding partner of this region. Our work, taken together with previous studies, indicates that the human GW182 protein contains multiple binding interfaces to the CCR4-NOT complex. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Motoaki Wakiyama
- RIKEN Systems and Structural Biology Center.,RIKEN Center for Life Science Technologies, Post-transcriptional Control Research Unit.,RIKEN Center for Biosystems Dynamics Research, Laboratory for Nonnatural amino acid technology, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
11
|
Rhine CL, Neil C, Wang J, Maguire S, Buerer L, Salomon M, Meremikwu IC, Kim J, Strande NT, Fairbrother WG. Massively parallel reporter assays discover de novo exonic splicing mutants in paralogs of Autism genes. PLoS Genet 2022; 18:e1009884. [PMID: 35051175 PMCID: PMC8775188 DOI: 10.1371/journal.pgen.1009884] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/17/2021] [Indexed: 01/04/2023] Open
Abstract
To determine the contribution of defective splicing in Autism Spectrum Disorders (ASD), the most common neurodevelopmental disorder, a high throughput Massively Parallel Splicing Assay (MaPSY) was employed and identified 42 exonic splicing mutants out of 725 coding de novo variants discovered in the sequencing of ASD families. A redesign of the minigene constructs in MaPSY revealed that upstream exons with strong 5' splice sites increase the magnitude of skipping phenotypes observed in downstream exons. Select hits were validated by RT-PCR and amplicon sequencing in patient cell lines. Exonic splicing mutants were enriched in probands relative to unaffected siblings -especially synonymous variants (7.5% vs 3.5%, respectively). Of the 26 genes disrupted by exonic splicing mutations, 6 were in known ASD genes and 3 were in paralogs of known ASD genes. Of particular interest was a synonymous variant in TNRC6C - an ASD gene paralog with interactions with other ASD genes. Clinical records of 3 ASD patients with TNRC6C variant revealed respiratory issues consistent with phenotypes observed in TNRC6 depleted mice. Overall, this study highlights the need for splicing analysis in determining variant pathogenicity, especially as it relates to ASD.
Collapse
Affiliation(s)
- Christy L. Rhine
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Autism & Developmental Medicine Institute, and Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, United States of America
| | - Christopher Neil
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Autism & Developmental Medicine Institute, and Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, United States of America
- C enter for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Jing Wang
- Autism & Developmental Medicine Institute, and Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, United States of America
- C enter for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Samantha Maguire
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Luke Buerer
- C enter for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Mitchell Salomon
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Ijeoma C. Meremikwu
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Juliana Kim
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Natasha T. Strande
- Autism & Developmental Medicine Institute, and Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, United States of America
| | - William G. Fairbrother
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- C enter for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Hassenfeld Child Health Innovation Institute of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
12
|
Weber R, Chung MY, Keskeny C, Zinnall U, Landthaler M, Valkov E, Izaurralde E, Igreja C. 4EHP and GIGYF1/2 Mediate Translation-Coupled Messenger RNA Decay. Cell Rep 2021; 33:108262. [PMID: 33053355 DOI: 10.1016/j.celrep.2020.108262] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Current models of mRNA turnover indicate that cytoplasmic degradation is coupled with translation. However, our understanding of the molecular events that coordinate ribosome transit with the mRNA decay machinery is still limited. Here, we show that 4EHP-GIGYF1/2 complexes trigger co-translational mRNA decay. Human cells lacking these proteins accumulate mRNAs with prominent ribosome pausing. They include, among others, transcripts encoding secretory and membrane-bound proteins or tubulin subunits. In addition, 4EHP-GIGYF1/2 complexes fail to reduce mRNA levels in the absence of ribosome stalling or upon disruption of their interaction with the cap structure, DDX6, and ZNF598. We further find that co-translational binding of GIGYF1/2 to the mRNA marks transcripts with perturbed elongation to decay. Our studies reveal how a repressor complex linked to neurological disorders minimizes the protein output of a subset of mRNAs.
Collapse
Affiliation(s)
- Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Min-Yi Chung
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Csilla Keskeny
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Ulrike Zinnall
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany; IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany; IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany.
| |
Collapse
|
13
|
Johnson ST, Chu Y, Liu J, Corey DR. Impact of scaffolding protein TNRC6 paralogs on gene expression and splicing. RNA (NEW YORK, N.Y.) 2021; 27:1004-1016. [PMID: 34108231 PMCID: PMC8370741 DOI: 10.1261/rna.078709.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/04/2021] [Indexed: 05/11/2023]
Abstract
TNRC6 is a scaffolding protein that bridges interactions between small RNAs, argonaute (AGO) protein, and effector proteins to control gene expression. There are three paralogs in mammalian cells, TNRC6A, TNRC6B, and TNRC6C These paralogs have ∼40% amino acid sequence identity and the extent of their unique or redundant functions is unclear. Here, we use knockout cell lines, enhanced crosslinking immunoprecipitation (eCLIP), and high-throughput RNA sequencing (RNA-seq) to explore the roles of TNRC6 paralogs in RNA-mediated control of gene expression. We find that the paralogs are largely functionally redundant and changes in levels of gene expression are well-correlated with those observed in AGO knockout cell lines. Splicing changes observed in AGO knockout cell lines are also observed in TNRC6 knockout cells. These data further define the roles of the TNRC6 isoforms as part of the RNA interference (RNAi) machinery.
Collapse
Affiliation(s)
- Samantha T Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - Yongjun Chu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - Jing Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| |
Collapse
|
14
|
La Rocca G, King B, Shui B, Li X, Zhang M, Akat KM, Ogrodowski P, Mastroleo C, Chen K, Cavalieri V, Ma Y, Anelli V, Betel D, Vidigal J, Tuschl T, Meister G, Thompson CB, Lindsten T, Haigis K, Ventura A. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. eLife 2021; 10:e70948. [PMID: 34463618 PMCID: PMC8476124 DOI: 10.7554/elife.70948] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Although virtually all gene networks are predicted to be controlled by miRNAs, the contribution of this important layer of gene regulation to tissue homeostasis in adult animals remains unclear. Gain and loss-of-function experiments have provided key insights into the specific function of individual miRNAs, but effective genetic tools to study the functional consequences of global inhibition of miRNA activity in vivo are lacking. Here we report the generation and characterization of a genetically engineered mouse strain in which miRNA-mediated gene repression can be reversibly inhibited without affecting miRNA biogenesis or abundance. We demonstrate the usefulness of this strategy by investigating the consequences of acute inhibition of miRNA function in adult animals. We find that different tissues and organs respond differently to global loss of miRNA function. While miRNA-mediated gene repression is essential for the homeostasis of the heart and the skeletal muscle, it is largely dispensable in the majority of other organs. Even in tissues where it is not required for homeostasis, such as the intestine and hematopoietic system, miRNA activity can become essential during regeneration following acute injury. These data support a model where many metazoan tissues primarily rely on miRNA function to respond to potentially pathogenic events.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bryan King
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bing Shui
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
| | - Xiaoyi Li
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Minsi Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kemal M Akat
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, United States
| | - Paul Ogrodowski
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Chiara Mastroleo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kevin Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Yilun Ma
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, United States
| | - Viviana Anelli
- Center of Integrative Biology, University of Trento, Trento, Italy
| | - Doron Betel
- Hem/Oncology, Medicine and Institution for Computational Biomedicine, Weill Cornell Medical College, New York, United States
| | - Joana Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, United States
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, United States
| | - Gunter Meister
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Tullia Lindsten
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kevin Haigis
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
15
|
Schwenk P, Sheerin DJ, Ponnu J, Staudt AM, Lesch KL, Lichtenberg E, Medzihradszky KF, Hoecker U, Klement E, Viczián A, Hiltbrunner A. Uncovering a novel function of the CCR4-NOT complex in phytochrome A-mediated light signalling in plants. eLife 2021; 10:63697. [PMID: 33783355 PMCID: PMC8009681 DOI: 10.7554/elife.63697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Phytochromes are photoreceptors regulating growth and development in plants. Using the model plant Arabidopsis, we identified a novel signalling pathway downstream of the far-red light-sensing phytochrome, phyA, that depends on the highly conserved CCR4-NOT complex. CCR4-NOT is integral to RNA metabolism in yeast and animals, but its function in plants is largely unknown. NOT9B, an Arabidopsis homologue of human CNOT9, is a component of the CCR4-NOT complex, and acts as negative regulator of phyA-specific light signalling when bound to NOT1, the scaffold protein of the complex. Light-activated phyA interacts with and displaces NOT9B from NOT1, suggesting a potential mechanism for light signalling through CCR4-NOT. ARGONAUTE 1 and proteins involved in splicing associate with NOT9B and we show that NOT9B is required for specific phyA-dependent alternative splicing events. Furthermore, association with nuclear localised ARGONAUTE 1 raises the possibility that NOT9B and CCR4-NOT are involved in phyA-modulated gene expression. Place a seedling on a windowsill, and soon you will notice the fragile stem bending towards the glass to soak in the sun and optimize its growth. Plants can ‘sense’ light thanks to specialized photoreceptor molecules: for instance, the phytochrome A is responsible for detecting weak and ‘far-red’ light from the very edge of the visible spectrum. Once the phytochrome has been activated, this message is relayed to the rest of the plant through an intricate process that requires other molecules. The CCR4-NOT protein complex is vital for all plants, animals and fungi, suggesting that it was already present in early life forms. Here, Schwenk et al. examine whether CCR4-NOT could have acquired a new role in plants to help them respond to far-red light. Scanning the genetic information of the plant model Arabidopsis thaliana revealed that the gene encoding the NOT9 subunit of CCR4-NOT had been duplicated in plants during evolution. NOT9B, the protein that the new copy codes for, has a docking site that can attach to both phytochrome A and CCR4-NOT. When NOT9B binds phytochrome A, it is released from the CCR4-NOT complex: this could trigger a cascade of reactions that ultimately changes how A. thaliana responds to far-red light. Plants that had not enough or too much NOT9B were respectively more or less responsive to that type of light, showing that the duplication of the gene coding for this subunit had helped plants respond to certain types of light. The findings by Schwenk et al. illustrate how existing structures can be repurposed during evolution to carry new roles. They also provide a deeper understanding of how plants optimize their growth, a useful piece of information in a world where most people rely on crops as their main source of nutrients.
Collapse
Affiliation(s)
- Philipp Schwenk
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - David J Sheerin
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jathish Ponnu
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Anne-Marie Staudt
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Klara L Lesch
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Internal Medicine IV, Department of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Elisabeth Lichtenberg
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Eva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Szeged, Hungary
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Oyama K, Baba T, Kashiwabara SI. Functional characterization of testis-brain RNA-binding protein, TB-RBP/Translin, in translational regulation. J Reprod Dev 2021; 67:35-42. [PMID: 33268667 PMCID: PMC7902210 DOI: 10.1262/jrd.2020-120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Testis-brain RNA-binding protein (TB-RBP/Translin) is known to contribute to the translational repression of a subset of haploid cell-specific mRNAs, including protamine 2 (Prm2) mRNA. Mutant mice lacking TB-RBP display abnormal spermatogenesis, despite normal male fertility. In this study, we carried out functional analysis of TB-RBP in mammalian cultured cells to understand the mechanism of translational repression by this RNA-binding protein. Although the amino acid sequence contained a eukaryotic translation initiation factor 4E (EIF4E)-recognition motif, TB-RBP failed to interact with EIF4E. In cultured cells, TB-RBP was unable to reduce the activity of luciferase encoded by a reporter mRNA carrying the 3'-untranslated region of Prm2. However, λΝ-BoxB tethering assay revealed that the complex of TB-RBP with its binding partner, Translin-associated factor X (TRAX), exhibits the ability to reduce the luciferase reporter activity by degrading the mRNA. These results suggest that TB-RBP may play a regulatory role in determining the sequence specificity of TRAX-catalyzed mRNA degradation.
Collapse
Affiliation(s)
- Kanako Oyama
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8577, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Tadashi Baba
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8577, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| | - Shin-Ichi Kashiwabara
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8577, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
17
|
Munakata F, Suzawa M, Ui-Tei K. Identification of Phosphorylated Amino Acids in Human TNRC6A C-Terminal Region and Their Effects on the Interaction with the CCR4-NOT Complex. Genes (Basel) 2021; 12:genes12020271. [PMID: 33668648 PMCID: PMC7917804 DOI: 10.3390/genes12020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Human GW182 family proteins have Argonaute (AGO)-binding domains in their N-terminal regions and silencing domains, which interact with RNA silencing-related proteins, in their C-terminal regions. Thus, they function as scaffold proteins between the AGO protein and RNA silencing-related proteins, such as carbon catabolite repressor4-negative on TATA (CCR4-NOT) or poly(A)-binding protein (PABP). Our mass spectrometry analysis and the phosphorylation data registered in PhosphoSitePlus, a post-translational modification database, suggested that the C-terminal region of a human GW182 family protein, TNRC6A, has at least four possible phosphorylation sites, which are located near the region interacting with the CCR4-NOT complex. Among them, two serine residues at amino acid positions 1332 and 1346 (S1332 and S1346) were certainly phosphorylated in human HeLa cells, but other two serine residues (S1616 and S1691) were not phosphorylated. Furthermore, it was revealed that the phosphorylation patterns of TNRC6A affect the interaction with the CCR4-NOT complex. When S1332 and S1346 were dephosphorylated, the interactions of TNRC6A with the CCR4-NOT complex were enhanced, and when S1616 and S1691 were phosphorylated, such interaction was suppressed. Thus, phosphorylation of TNRC6A was considered to regulate the interaction with RNA silencing-related factors that may affect RNA silencing activity.
Collapse
Affiliation(s)
- Fusako Munakata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; (F.M.); (M.S.)
| | - Masataka Suzawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; (F.M.); (M.S.)
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; (F.M.); (M.S.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
- Correspondence: ; Tel.: +81-3-5841-3044
| |
Collapse
|
18
|
Medley JC, Panzade G, Zinovyeva AY. microRNA strand selection: Unwinding the rules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1627. [PMID: 32954644 PMCID: PMC8047885 DOI: 10.1002/wrna.1627] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
microRNAs (miRNAs) play a central role in the regulation of gene expression by targeting specific mRNAs for degradation or translational repression. Each miRNA is post‐transcriptionally processed into a duplex comprising two strands. One of the two miRNA strands is selectively loaded into an Argonaute protein to form the miRNA‐Induced Silencing Complex (miRISC) in a process referred to as miRNA strand selection. The other strand is ejected from the complex and is subject to degradation. The target gene specificity of miRISC is determined by sequence complementarity between the Argonaute‐loaded miRNA strand and target mRNA. Each strand of the miRNA duplex has the capacity to be loaded into miRISC and possesses a unique seed sequence. Therefore, miRNA strand selection plays a defining role in dictating the specificity of miRISC toward its targets and provides a mechanism to alter gene expression in a switch‐like fashion. Aberrant strand selection can lead to altered gene regulation by miRISC and is observed in several human diseases including cancer. Previous and emerging data shape the rules governing miRNA strand selection and shed light on how these rules can be circumvented in various physiological and pathological contexts. This article is categorized under:RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs
Collapse
Affiliation(s)
- Jeffrey C Medley
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
19
|
Sabath K, Stäubli ML, Marti S, Leitner A, Moes M, Jonas S. INTS10-INTS13-INTS14 form a functional module of Integrator that binds nucleic acids and the cleavage module. Nat Commun 2020; 11:3422. [PMID: 32647223 PMCID: PMC7347597 DOI: 10.1038/s41467-020-17232-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
The Integrator complex processes 3′-ends of spliceosomal small nuclear RNAs (snRNAs). Furthermore, it regulates transcription of protein coding genes by terminating transcription after unstable pausing. The molecular basis for Integrator’s functions remains obscure. Here, we show that INTS10, Asunder/INTS13 and INTS14 form a separable, functional Integrator module. The structure of INTS13-INTS14 reveals a strongly entwined complex with a unique chain interlink. Unexpected structural homology to the Ku70-Ku80 DNA repair complex suggests nucleic acid affinity. Indeed, the module displays affinity for DNA and RNA but prefers RNA hairpins. While the module plays an accessory role in snRNA maturation, it has a stronger influence on transcription termination after pausing. Asunder/INTS13 directly binds Integrator’s cleavage module via a conserved C-terminal motif that is involved in snRNA processing and required for spermatogenesis. Collectively, our data establish INTS10-INTS13-INTS14 as a nucleic acid-binding module and suggest that it brings cleavage module and target transcripts into proximity. The Integrator complex (INT) is responsible for the 3′-end processing of several classes of non-coding RNAs. Here the authors show that the INTS10-INTS13-INTS14 complex forms a distinct submodule of INT and suggest it facilitates RNA substrate targeting.
Collapse
Affiliation(s)
- Kevin Sabath
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Melanie L Stäubli
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Sabrina Marti
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Murielle Moes
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Stefanie Jonas
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland.
| |
Collapse
|
20
|
Räsch F, Weber R, Izaurralde E, Igreja C. 4E-T-bound mRNAs are stored in a silenced and deadenylated form. Genes Dev 2020; 34:847-860. [PMID: 32354837 PMCID: PMC7263148 DOI: 10.1101/gad.336073.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Human 4E-T is an eIF4E-binding protein (4E-BP) present in processing (P)-bodies that represses translation and regulates decay of mRNAs destabilized by AU-rich elements and microRNAs (miRNAs). However, the underlying regulatory mechanisms are still unclear. Here, we show that upon mRNA binding 4E-T represses translation and promotes deadenylation via the recruitment of the CCR4-NOT deadenylase complex. The interaction with CCR4-NOT is mediated by previously uncharacterized sites in the middle region of 4E-T. Importantly, mRNA decapping and decay are inhibited by 4E-T and the deadenylated target is stored in a repressed form. Inhibition of mRNA decapping requires the interaction of 4E-T with the cap-binding proteins eIF4E/4EHP. We further show that regulation of decapping by 4E-T participates in mRNA repression by the miRNA effector protein TNRC6B and that 4E-T overexpression interferes with tristetraprolin (TTP)- and NOT1-mediated mRNA decay. Thus, we postulate that 4E-T modulates 5'-to-3' decay by swapping the fate of a deadenylated mRNA from complete degradation to storage. Our results provide insight into the mechanism of mRNA storage that controls localized translation and mRNA stability in P-bodies.
Collapse
Affiliation(s)
- Felix Räsch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| |
Collapse
|
21
|
Granadillo JL, P A Stegmann A, Guo H, Xia K, Angle B, Bontempo K, Ranells JD, Newkirk P, Costin C, Viront J, Stumpel CT, Sinnema M, Panis B, Pfundt R, Krapels IPC, Klaassens M, Nicolai J, Li J, Jiang Y, Marco E, Canton A, Latronico AC, Montenegro L, Leheup B, Bonnet C, M Amudhavalli S, Lawson CE, McWalter K, Telegrafi A, Pearson R, Kvarnung M, Wang X, Bi W, Rosenfeld JA, Shinawi M. Pathogenic variants in TNRC6B cause a genetic disorder characterised by developmental delay/intellectual disability and a spectrum of neurobehavioural phenotypes including autism and ADHD. J Med Genet 2020; 57:717-724. [PMID: 32152250 DOI: 10.1136/jmedgenet-2019-106470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rare variants in hundreds of genes have been implicated in developmental delay (DD), intellectual disability (ID) and neurobehavioural phenotypes. TNRC6B encodes a protein important for RNA silencing. Heterozygous truncating variants have been reported in three patients from large cohorts with autism, but no full phenotypic characterisation was described. METHODS Clinical and molecular characterisation was performed on 17 patients with TNRC6B variants. Clinical data were obtained by retrospective chart review, parent interviews, direct patient interaction with providers and formal neuropsychological evaluation. RESULTS Clinical findings included DD/ID (17/17) (speech delay in 94% (16/17), fine motor delay in 82% (14/17) and gross motor delay in 71% (12/17) of subjects), autism or autistic traits (13/17), attention deficit and hyperactivity disorder (ADHD) (11/17), other behavioural problems (7/17) and musculoskeletal findings (12/17). Other congenital malformations or clinical findings were occasionally documented. The majority of patients exhibited some dysmorphic features but no recognisable gestalt was identified. 17 heterozygous TNRC6B variants were identified in 12 male and five female unrelated subjects by exome sequencing (14), a targeted panel (2) and a chromosomal microarray (1). The variants were nonsense (7), frameshift (5), splice site (2), intragenic deletions (2) and missense (1). CONCLUSIONS Variants in TNRC6B cause a novel genetic disorder characterised by recurrent neurocognitive and behavioural phenotypes featuring DD/ID, autism, ADHD and other behavioural abnormalities. Our data highly suggest that haploinsufficiency is the most likely pathogenic mechanism. TNRC6B should be added to the growing list of genes of the RNA-induced silencing complex associated with ID/DD, autism and ADHD.
Collapse
Affiliation(s)
- Jorge Luis Granadillo
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, Missouri, USA
| | - Alexander P A Stegmann
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Hui Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Brad Angle
- Advocate Lutheran General Hospital, Park Ridge, Illinois, USA
| | - Kelly Bontempo
- Advocate Lutheran General Hospital, Park Ridge, Illinois, USA
| | - Judith D Ranells
- Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | - Patricia Newkirk
- Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | | | | | - Constanze T Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Bianca Panis
- Zuyderland Medical Centre Heerlen, Heerlen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Centre, Nijmgen, The Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University, Maastricht, The Netherlands
| | - Merel Klaassens
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jinliang Li
- Peking University First Hospital, Beijing, Beijing, China
| | - Yuwu Jiang
- Peking University First Hospital, Beijing, Beijing, China
| | - Elysa Marco
- UCSF Pediatric Brain Center, UCSF, San Francisco, California, USA
| | - Ana Canton
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Leheup
- Service de Génétique clinique, Höpital Brabois, Centre Hospitalier Universitaire de Nancy, Nancy, Lorraine, France
| | - Celine Bonnet
- Centre Hospitalier Universitaire de Nancy, Nancy, Lorraine, France
| | | | | | | | | | | | - Malin Kvarnung
- Department of Clinical Genetics & Department of Molecular Medicine and Surgery, Karolinska University Hospital & Karolinska Institute, Stockholm, Sweden
| | - Xia Wang
- Baylor Genetics Laboratories, Houston, Texas, USA
| | - Weimin Bi
- Baylor College of Medicine Department of Molecular and Human Genetics, Houston, Texas, USA
| | - Jill Anne Rosenfeld
- Baylor Genetics Laboratories, Houston, Texas, USA.,Baylor College of Medicine Department of Molecular and Human Genetics, Houston, Texas, USA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, Missouri, USA
| |
Collapse
|
22
|
ncRNAs in Type-2 Immunity. Noncoding RNA 2020; 6:ncrna6010010. [PMID: 32155783 PMCID: PMC7151598 DOI: 10.3390/ncrna6010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Immunological diseases, including asthma, autoimmunity and immunodeficiencies, affect a growing percentage of the population with significant unmet medical needs. As we slowly untangle and better appreciate these complex genetic and environment-influenced diseases, new therapeutically targetable pathways are emerging. Non-coding RNA species, which regulate epigenetic, transcriptional and translational responses are critical regulators of immune cell development, differentiation and effector function, and may represent one such new class of therapeutic targets. In this review we focus on type-2 immune responses, orchestrated by TH2 cell-derived cytokines, IL-4, IL-5 and IL-13, which stimulate a variety of immune and tissue responses- commonly referred to as type-2 immunity. Evolved to protect us from parasitic helminths, type-2 immune responses are observed in individuals with allergic diseases, including Asthma, atopic dermatitis and food allergy. A growing number of studies have identified the involvement of various RNA species, including microRNAs (miRNA) and long non-coding (lncRNA), in type-2 immune responses and in both clinical and pre-clinical disease settings. We highlight these recent findings, identify gaps in our understanding and provide a perspective on how our current understanding can be harnessed for novel treat opportunities to treat type-2 immune-mediated diseases.
Collapse
|
23
|
Sala L, Chandrasekhar S, Vidigal JA. AGO unchained: Canonical and non-canonical roles of Argonaute proteins in mammals. Front Biosci (Landmark Ed) 2020; 25:1-42. [PMID: 31585876 DOI: 10.2741/4793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Argonaute (AGO) proteins play key roles in animal physiology by binding to small RNAs and regulating the expression of their targets. In mammals, they do so through two distinct pathways: the miRNA pathway represses genes through a multiprotein complex that promotes both decay and translational repression; the siRNA pathway represses transcripts through direct Ago2-mediated cleavage. Here, we review our current knowledge of mechanistic details and physiological requirements of both these pathways and briefly discuss their implications to human disease.
Collapse
Affiliation(s)
- Laura Sala
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Srividya Chandrasekhar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA,
| |
Collapse
|
24
|
Liu Z, Johnson ST, Zhang Z, Corey DR. Expression of TNRC6 (GW182) Proteins Is Not Necessary for Gene Silencing by Fully Complementary RNA Duplexes. Nucleic Acid Ther 2019; 29:323-334. [PMID: 31670606 PMCID: PMC6885777 DOI: 10.1089/nat.2019.0815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The trinucleotide repeat containing 6 (TNRC6) family of proteins are core components of RNA interference (RNAi) and consist of three paralogs (TNRC6A, TNRC6B, and TNRC6C). The TNRC6 paralogs associate with argonaute (AGO) protein, the core RNAi factor, and bridge its interactions with other proteins. We obtained TNRC6A and TNRC6B single and double knockout cell lines to investigate how the TNRC6 paralogs contribute to RNAi. We found that TNRC6 proteins are not required for gene silencing when duplex RNAs are fully complementary. TNRC6 expression was necessary for regulation by a microRNA. TNRC6A, but not TNRC6B, expression was necessary for transcriptional activation by a duplex RNA targeting a gene promoter. By contrast, AGO2 is required for all three gene expression pathways. TNRC6A can affect the Dicer localization in cytoplasm versus the nucleus, but none of the three TNRC6 paralogs was necessary for nuclear localization of AGO2. Our data suggest that the roles of the TNRC6 paralogs differ in some details and that TNRC6 is not required for clinical therapeutic silencing mechanisms that involve fully complementary duplex RNAs.
Collapse
Affiliation(s)
- Zhongtian Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China.,Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Samantha T Johnson
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
25
|
Hanet A, Räsch F, Weber R, Ruscica V, Fauser M, Raisch T, Kuzuoğlu-Öztürk D, Chang CT, Bhandari D, Igreja C, Wohlbold L. HELZ directly interacts with CCR4-NOT and causes decay of bound mRNAs. Life Sci Alliance 2019; 2:2/5/e201900405. [PMID: 31570513 PMCID: PMC6769256 DOI: 10.26508/lsa.201900405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
The putative UPF1-like SF1 helicase HELZ directly interacts with the CCR4–NOT deadenylase complex to induce translational repression and 5′-to-3′ decay of bound mRNAs. Eukaryotic superfamily (SF) 1 helicases have been implicated in various aspects of RNA metabolism, including transcription, processing, translation, and degradation. Nevertheless, until now, most human SF1 helicases remain poorly understood. Here, we have functionally and biochemically characterized the role of a putative SF1 helicase termed “helicase with zinc-finger,” or HELZ. We discovered that HELZ associates with various mRNA decay factors, including components of the carbon catabolite repressor 4-negative on TATA box (CCR4–NOT) deadenylase complex in human and Drosophila melanogaster cells. The interaction between HELZ and the CCR4–NOT complex is direct and mediated by extended low-complexity regions in the C-terminal part of the protein. We further reveal that HELZ requires the deadenylase complex to mediate translational repression and decapping-dependent mRNA decay. Finally, transcriptome-wide analysis of Helz-null cells suggests that HELZ has a role in the regulation of the expression of genes associated with the development of the nervous system.
Collapse
Affiliation(s)
- Aoife Hanet
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Räsch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Vincenzo Ruscica
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maria Fauser
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Tobias Raisch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Duygu Kuzuoğlu-Öztürk
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Helen Diller Family Cancer Research, University of California San Francisco, San Francisco, CA, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dipankar Bhandari
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lara Wohlbold
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
26
|
Park MS, Araya-Secchi R, Brackbill JA, Phan HD, Kehling AC, Abd El-Wahab EW, Dayeh DM, Sotomayor M, Nakanishi K. Multidomain Convergence of Argonaute during RISC Assembly Correlates with the Formation of Internal Water Clusters. Mol Cell 2019; 75:725-740.e6. [PMID: 31324450 DOI: 10.1016/j.molcel.2019.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/30/2019] [Accepted: 06/07/2019] [Indexed: 11/17/2022]
Abstract
Despite the relevance of Argonaute proteins in RNA silencing, little is known about the structural steps of small RNA loading to form RNA-induced silencing complexes (RISCs). We report the 1.9 Å crystal structure of human Argonaute4 with guide RNA. Comparison with the previously determined apo structure of Neurospora crassa QDE2 revealed that the PIWI domain has two subdomains. Binding of guide RNA fastens the subdomains, thereby rearranging the active-site residues and increasing the affinity for TNRC6 proteins. We also identified two water pockets beneath the nucleic acid-binding channel that appeared to stabilize the mature RISC. Indeed, mutating the water-pocket residues of Argonaute2 and Argonaute4 compromised RISC assembly. Simulations predict that internal water molecules are exchangeable with the bulk solvent but always occupy specific positions at the domain interfaces. These results suggest that after guide RNA-driven conformational changes, water-mediated hydrogen-bonding networks tie together the converged domains to complete the functional RISC structure.
Collapse
Affiliation(s)
- Mi Seul Park
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - James A Brackbill
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Hong-Duc Phan
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Audrey C Kehling
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ekram W Abd El-Wahab
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel M Dayeh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Li Y, Wang L, Rivera-Serrano EE, Chen X, Lemon SM. TNRC6 proteins modulate hepatitis C virus replication by spatially regulating the binding of miR-122/Ago2 complexes to viral RNA. Nucleic Acids Res 2019; 47:6411-6424. [PMID: 30997501 PMCID: PMC6614814 DOI: 10.1093/nar/gkz278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 01/17/2023] Open
Abstract
The liver-specific microRNA, miR-122, is an essential host factor for replication of the hepatitis C virus (HCV). miR-122 stabilizes the positive-strand HCV RNA genome and promotes its synthesis by binding two sites (S1 and S2) near its 5' end in association with Ago2. Ago2 is essential for both host factor activities, but whether other host proteins are involved is unknown. Using an unbiased quantitative proteomics screen, we identified the TNRC6 protein paralogs, TNRC6B and TNRC6C, as functionally important but redundant components of the miR-122/Ago2 host factor complex. Doubly depleting TNRC6B and TNRC6C proteins reduced HCV replication in human hepatoma cells, dampening miR-122 stimulation of viral RNA synthesis without reducing the stability or translational activity of the viral RNA. TNRC6B/C were required for optimal miR-122 host factor activity only when S1 was able to bind miR-122, and restricted replication when S1 was mutated and only S2 bound by miR-122. TNRC6B/C preferentially associated with S1, and TNRC6B/C depletion enhanced Ago2 association at S2. Collectively, these data suggest a model in which TNRC6B/C regulate the assembly of miR-122/Ago complexes on HCV RNA, preferentially directing miR-122/Ago2 to S1 while restricting its association with S2, thereby fine-tuning the spatial organization of miR-122/Ago2 complexes on the viral genome.
Collapse
Affiliation(s)
- You Li
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Efraín E Rivera-Serrano
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stanley M Lemon
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Liu J, Liu Z, Corey DR. The Requirement for GW182 Scaffolding Protein Depends on Whether Argonaute Is Mediating Translation, Transcription, or Splicing. Biochemistry 2018; 57:5247-5256. [PMID: 30086238 DOI: 10.1021/acs.biochem.8b00602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
GW182 and argonaute 2 (AGO2) are core proteins of the RNA interference complex. GW182 is a scaffolding protein that physically associates with AGO2 and bridges its interactions with other proteins. A fundamental problem in biology is how scaffolding proteins adapt or contribute to differing functional demands within cells. Here we test the necessity for human GW182 proteins (paralogs TNRC6A, TNRC6B, and TNRC6C) for several mechanisms of small duplex RNA-mediated control of gene expression, including translational silencing by miRNAs, translational silencing by siRNAs, transcriptional silencing, transcriptional activation, and splicing. We find that GW182 is required for transcriptional activation and for the activity of miRNAs but is dispensable for the regulation of splicing, transcriptional silencing, and the action of siRNAs. AGO2, by contrast, is necessary for each of these processes. Our data suggest that GW182 does not alter AGO2 to make it active. Instead, GW182 organizes protein complexes around AGO2. Sometimes this higher level of organization is necessary, and sometimes it is not. AGO2 and GW182 offer an example for how a partnership between a scaffolding protein and a functional protein can be powerful but not obligatory.
Collapse
Affiliation(s)
- Jing Liu
- Departments of Pharmacology and Biochemistry , The University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Zhongtian Liu
- Departments of Pharmacology and Biochemistry , The University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States.,College of Animal Science and Technology , Northwest A&F University , Shaanxi , China 712100
| | - David R Corey
- Departments of Pharmacology and Biochemistry , The University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| |
Collapse
|
29
|
Standart N, Weil D. P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. Trends Genet 2018; 34:612-626. [PMID: 29908710 DOI: 10.1016/j.tig.2018.05.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022]
Abstract
P-bodies (PBs) are cytosolic RNP granules that are conserved among eukaryotic organisms. In the past few years, major progress has been made in understanding the biochemical and biophysical mechanisms that lead to their formation. However, whether they play a role in mRNA storage or decay remains actively debated. P-bodies were recently isolated from human cells by a novel fluorescence-activated particle sorting (FAPS) approach that enabled the characterization of their protein and RNA content, providing new insights into their function. Together with recent innovative imaging studies, these new data show that mammalian PBs are primarily involved not in RNA decay but rather in the coordinated storage of mRNAs encoding regulatory functions. These small cytoplasmic droplets could thus be important for cell adaptation to the environment.
Collapse
Affiliation(s)
- Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France.
| |
Collapse
|
30
|
Role of GW182 protein in the cell. Int J Biochem Cell Biol 2018; 101:29-38. [PMID: 29791863 DOI: 10.1016/j.biocel.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Abstract
GW182 proteins interact directly with the argonaute proteins and constitute key components of miRNA repressor complexes (miRISC) in metazoans. As argonautes are insufficient for silencing they recruit the GW182 s that act as scaffold proteins inducing downstream translational repression, target mRNA deadenylation and exonucleolytic mRNA degradation. Besides their role as part of repressor complexes inside the cell, they function in wide variety of cellular processes as highlighted in this review. The present review summarises and discusses in detail our current knowledge of the GW182 s and their role inside the cell.
Collapse
|
31
|
From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4968321. [PMID: 29849898 PMCID: PMC5932428 DOI: 10.1155/2018/4968321] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/04/2018] [Indexed: 11/24/2022]
Abstract
Oxidative stress can alter the expression level of many microRNAs (miRNAs), but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy.
Collapse
|
32
|
Wakiyama M, Ogami K, Iwaoka R, Aoki K, Hoshino SI. MicroRNP-mediated translational activation of nonadenylated mRNAs in a mammalian cell-free system. Genes Cells 2018; 23:332-344. [PMID: 29626383 DOI: 10.1111/gtc.12580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/09/2018] [Indexed: 01/08/2023]
Abstract
MicroRNAs are small noncoding RNAs that regulate translation and mRNA stability by binding target mRNAs in complex with Argonaute (AGO) proteins. AGO interacts with a member of the TNRC6 family proteins to form a microRNP complex, which recruits the CCR4-NOT complex to accelerate deadenylation and inhibits translation. MicroRNAs primarily repress translation of target mRNAs but have been shown to enhance translation of a specific type of target reporter mRNAs in various experimental systems: G0 quiescent mammalian cells, Xenopus laevis oocytes, Drosophila embryo extracts, and HeLa cells. In all of the cases mentioned, a common feature of the activated target mRNAs is the lack of a poly(A) tail. Here, we show let-7-microRNP-mediated translational activation of nonadenylated target mRNAs in a mammalian cell-free system, which contains over-expressed AGO2, TNRC6B, and PAPD7 (TUTase5, TRF4-1). Importantly, translation of nonadenylated mRNAs was activated also by tethered TNRC6B silencing domain (SD), in the presence of PAPD7. Deletion of the poly(A)-binding protein (PABP) interacting motif (PAM2) from the TNRC6B-SD abolished the translational activation, suggesting the involvement of PABP in the process. Similar results were also obtained in cultured HEK293T cells. This work may provide novel insights into microRNP-mediated mRNA regulation.
Collapse
Affiliation(s)
- Motoaki Wakiyama
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Koichi Ogami
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Ryo Iwaoka
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Kazuma Aoki
- Post-transcriptional Control Research Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Shin-Ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
33
|
Khazina E, Weichenrieder O. Human LINE-1 retrotransposition requires a metastable coiled coil and a positively charged N-terminus in L1ORF1p. eLife 2018; 7:34960. [PMID: 29565245 PMCID: PMC5940361 DOI: 10.7554/elife.34960] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
LINE-1 (L1) is an autonomous retrotransposon, which acted throughout mammalian evolution and keeps contributing to human genotypic diversity, genetic disease and cancer. L1 encodes two essential proteins: L1ORF1p, a unique RNA-binding protein, and L1ORF2p, an endonuclease and reverse transcriptase. L1ORF1p contains an essential, but rapidly evolving N-terminal portion, homo-trimerizes via a coiled coil and packages L1RNA into large assemblies. Here, we determined crystal structures of the entire coiled coil domain of human L1ORF1p. We show that retrotransposition requires a non-ideal and metastable coiled coil structure, and a strongly basic L1ORF1p amino terminus. Human L1ORF1p therefore emerges as a highly calibrated molecular machine, sensitive to mutation but functional in different hosts. Our analysis rationalizes the locally rapid L1ORF1p sequence evolution and reveals striking mechanistic parallels to coiled coil-containing membrane fusion proteins. It also suggests how trimeric L1ORF1p could form larger meshworks and indicates critical novel steps in L1 retrotransposition. Almost half of the human genome consists of DNA strings that have been copied and pasted from one part of the genome to another many thousands of times. These strings of DNA are called mobile genetic elements. Mobile elements can disrupt important genes, causing disease and cancer, but they can also drive evolution. Presently, only one type of mobile element, called LINE-1, is active in the human genome and able to multiply without help from other mobile elements. LINE-1 DNA is ‘transcribed’ to form molecules of LINE-1 RNA, which can then be ‘translated’ into two distinct proteins. These bind to LINE-1 RNA, which then gets back-transcribed into DNA and inserted as a new LINE-1 element in a new region of the genome. One of the two proteins, called L1ORF1p, forms complexes where three copies of the protein come together. These ‘trimers’ cover and protect LINE-1 RNA and are required for LINE-1 mobility. Different versions of L1ORF1p are found in different animals. Part of the protein is the same across all mammals, and this ‘conserved’ part controls the ability of L1ORF1p to bind to RNA. The non-conserved part of L1ORF1p differs even between humans and their closest animal relatives and little was known about its structure or role. However, this rapidly evolving part of L1ORF1p is essential for LINE-1 mobility. Using X-ray crystallography, Khazina and Weichenrieder obtained a molecular snapshot of the part of L1ORF1p that interacts with other copies of the protein to form trimers. Combined with earlier snapshots of L1ORF1p’s conserved part, this generated a complete structural model of the L1ORF1p trimer. Additional biophysical characterizations suggest that L1ORF1p trimers form a semi-stable structure that can partially open up, indicating how trimers could form larger assemblies of L1ORF1p on LINE-1 RNA. Indeed, the need to maintain a semi-stable structure could explain why L1ORF1p is evolving so rapidly. A second important finding is that the beginning of L1ORF1p needs to be positively charged – a requirement that warrants further exploration. The structural and mechanistic insight into L1ORF1p points to critical new steps in LINE-1 mobilization. It will help to design inhibitor molecules with the goal to halt the mobilization process at various points and to dissect such steps in great detail. Understanding how to control LINE-1 mobility could help to improve stem cell therapies and reproduction assistance techniques, due to the fact that LINE-1 mobility is a potential source of mutation in stem cells, egg and sperm cells, and newly formed embryos.
Collapse
Affiliation(s)
- Elena Khazina
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
34
|
Cieplak-Rotowska MK, Tarnowski K, Rubin M, Fabian MR, Sonenberg N, Dadlez M, Niedzwiecka A. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:158-173. [PMID: 29080206 PMCID: PMC5785596 DOI: 10.1007/s13361-017-1830-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. Graphical Abstract.
Collapse
Affiliation(s)
- Maja K Cieplak-Rotowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Krzysztof Tarnowski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Marcin Rubin
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Goodman Cancer Center, McGill University, Montréal, Québec, Canada
| | - Michal Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
35
|
Li YE, Xiao M, Shi B, Yang YCT, Wang D, Wang F, Marcia M, Lu ZJ. Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites. Genome Biol 2017; 18:169. [PMID: 28886744 PMCID: PMC5591525 DOI: 10.1186/s13059-017-1298-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Crosslinking immunoprecipitation sequencing (CLIP-seq) technologies have enabled researchers to characterize transcriptome-wide binding sites of RNA-binding protein (RBP) with high resolution. We apply a soft-clustering method, RBPgroup, to various CLIP-seq datasets to group together RBPs that specifically bind the same RNA sites. Such combinatorial clustering of RBPs helps interpret CLIP-seq data and suggests functional RNA regulatory elements. Furthermore, we validate two RBP–RBP interactions in cell lines. Our approach links proteins and RNA motifs known to possess similar biochemical and cellular properties and can, when used in conjunction with additional experimental data, identify high-confidence RBP groups and their associated RNA regulatory elements.
Collapse
Affiliation(s)
- Yang Eric Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mu Xiao
- Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Binbin Shi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu-Cheng T Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dong Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fei Wang
- Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Marco Marcia
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
36
|
Kang L, Yang C, Wu H, Chen Q, Huang L, Li X, Tang H, Jiang Y. miR-26a-5p Regulates TNRC6A Expression and Facilitates Theca Cell Proliferation in Chicken Ovarian Follicles. DNA Cell Biol 2017; 36:922-929. [PMID: 28876086 DOI: 10.1089/dna.2017.3863] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ovarian theca cells play an indispensable role in ovarian follicular development and hormone secretion. miR-26a-5p was reported to be differentially expressed in mature and immature chicken ovaries in our previous study; however, the role of miR-26a-5p in regulating ovarian follicle function is still unclear. In this study, we demonstrated that the expression dynamics of TNRC6A mRNA in either chicken ovaries or follicles showed an opposite trend compared with that of chicken miR-26a-5p expression. miR-26a-5p inhibited TNRC6A mRNA expression by directly targeting its 3'-untranslated region in cultured chicken theca cells. Overexpression of miR-26a-5p promoted chicken follicular theca cell proliferation in vitro. Furthermore, overexpression of miR-26a-5p and knockdown of TNRC6A significantly upregulated the antiapoptotic BCL-2 gene. Taken together, this study revealed the expression dynamics of miR-26a-5p and TNRC6A in chicken ovaries and ovarian follicles and the relationship between the expression of miR-26a-5p and TNRC6A in chicken ovarian theca cells. These results suggest that miR-26a-5p facilitates chicken ovarian theca cell proliferation by targeting the TNRC6A gene.
Collapse
Affiliation(s)
- Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, People's Republic of China
| | - Chunhong Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, People's Republic of China
| | - Haizhen Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, People's Republic of China
| | - Qiuyue Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, People's Republic of China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, People's Republic of China
| | - Xianyao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, People's Republic of China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, People's Republic of China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Taian, People's Republic of China
| |
Collapse
|
37
|
Chaston JJ, Stewart AG, Christie M. Structural characterisation of TNRC6A nuclear localisation signal in complex with importin-alpha. PLoS One 2017; 12:e0183587. [PMID: 28837617 PMCID: PMC5570423 DOI: 10.1371/journal.pone.0183587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The GW182/TNRC6 family of proteins are central scaffolds that link microRNA-associated Argonaute proteins to the cytoplasmic decay machinery for targeted mRNA degradation processes. Although nuclear roles for the GW182/TNRC6 proteins are unknown, recent reports have demonstrated nucleocytoplasmic shuttling activity that utilises the importin-α and importin-β transport receptors for nuclear translocation. Here we describe the structure of mouse importin-α in complex with the TNRC6A nuclear localisation signal peptide. We further show that the interactions observed between TNRC6A and importin-α are conserved between mouse and human complexes. Our results highlight the ability of monopartite cNLS sequences to maximise contacts at the importin-α major binding site, as well as regions outside the main binding cavities.
Collapse
Affiliation(s)
- Jessica J. Chaston
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alastair Gordon Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mary Christie
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Elkayam E, Faehnle CR, Morales M, Sun J, Li H, Joshua-Tor L. Multivalent Recruitment of Human Argonaute by GW182. Mol Cell 2017; 67:646-658.e3. [PMID: 28781232 PMCID: PMC5915679 DOI: 10.1016/j.molcel.2017.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
In miRNA-mediated gene silencing, the physical interaction between human Argonaute (hAgo) and GW182 (hGW182) is essential for facilitating the downstream silencing of the targeted mRNA. GW182 can interact with hAgo via three of the GW/WG repeats in its Argonaute-binding domain: motif-1, motif-2, and the hook motif. The structure of hAgo1 in complex with the hook motif of hGW182 reveals a "gate"-like interaction that is critical for GW182 docking into one of hAgo1's tryptophan-binding pockets. We show that hAgo1 and hAgo2 have a single GW182-binding site and that miRNA binding increases hAgo's affinity to GW182. With target binding occurring rapidly, this ensures that only mature RISC would be recruited for silencing. Finally, we show that hGW182 can recruit up to three copies of hAgo via its three GW motifs. This may explain the observed cooperativity in miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Elad Elkayam
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Christopher R Faehnle
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Marjorie Morales
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Undergraduate Research Program, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jingchuan Sun
- Department of Biochemistry and Cell Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Huilin Li
- Department of Biochemistry and Cell Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Leemor Joshua-Tor
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
39
|
Guo H, Kazadaeva Y, Ortega FE, Manjunath N, Desai TJ. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol 2017; 430:214-223. [PMID: 28811219 PMCID: PMC5634525 DOI: 10.1016/j.ydbio.2017.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023]
Abstract
GW182 (also known asTNRC6) family members are critically involved in the final effector phase of miRNA-mediated mRNA repression. The three mammalian paralogs, TNRC6a, b and c, are thought to be redundant based on Argonaute (Ago) binding, tethering assays, and RNAi silencing of individual members in cell lines. To test this idea, we generated TNRC6a, b and c knockout mice. TNRC6a mutants die at mid-gestation, while b- and c- deleted mice are born at a Mendelian ratio. However, the majority of TNRC6b and all TNRC6c mutants die within 24h after birth, the latter with respiratory failure. Necropsy of TNRC6c mutants revealed normal-appearing airways that give rise to abnormally thick-walled distal gas exchange sacs. Immunohistological analysis of mutant lungs demonstrated a normal distribution of bronchiolar and alveolar cells, indicating that loss of TNRC6c did not abrogate epithelial cell differentiation. The cellular kinetics and relative proportions of endothelial, epithelial, and mesenchymal cells were also not altered. However, the underlying capillary network was simplified and endothelial cells had failed to become tightly apposed to the surface epithelium in TNRC6c mutants, presumably causing the observed respiratory failure. TGFβ family mutant mice exhibit a similar lung phenotype of thick-walled air sacs and neonatal lethality, and qRT-PCR confirmed dynamic downregulation of TGFβ1 and TGFβR2 in TNRC6c mutant lungs during sacculation. VEGFR, but not VEGF-A ligand, was also lower, likely reflecting the overall reduced capillary density in TNRC6c mutants. Together, these results demonstrate that GW182 paralogs are not functionally redundant in vivo. Surprisingly, despite regulating a general cellular process, TNRC6c is selectively required only in the distal lung and not until late in gestation for proper expression of the TGFβ family genes that drive sacculation. These results imply a complex and indirect mode of regulation of sacculation by TNRC6c, mediated in part by dynamic transcriptional repression of an inhibitor of TGFβ family gene expression.
Collapse
Affiliation(s)
- Hua Guo
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States
| | - Yana Kazadaeva
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Fabian E Ortega
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Narasimaswamy Manjunath
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States
| | - Tushar J Desai
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
40
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
41
|
Jin S, Choi H, Kwon JT, Kim J, Jeong J, Kim J, Hong SH, Cho C. Identification of target genes for spermatogenic cell-specific KRAB transcription factor ZFP819 in a male germ cell line. Cell Biosci 2017; 7:4. [PMID: 28053699 PMCID: PMC5209904 DOI: 10.1186/s13578-016-0132-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zfp819, a member of the Krüppel-associated box (KRAB) family, encodes a spermatogenic cell-specific transcription factor. Zfp819-overexpression induces apoptosis and inhibits proliferation in somatic cell lines. RESULTS In the present study, we examined the cellular effects of Zfp819 in a male germ cell line (GC-2 cells). Overexpression of Zfp819 demonstrated an increase in the number of apoptotic cells, leading to inhibition of proliferation in GC-2 cells. We further investigated genes regulated by ZFP819 using microarray analysis and chromatin-immunoprecipitation combined with microarray analysis (ChIP-chip) in GC-2 cells. We identified 118 downregulated genes in Zfp819-overexpressing GC-2 cells using microarray analysis. ChIP-chip assay revealed that 1011 promoter sites (corresponding to 262 genes) were specifically enriched in GC-2 cells transfected with Zfp819. Two genes (trinucleotide repeat containing 6b and annexin A11) were commonly found when we compared the data between microarray and ChIP-chip analyses. Consistent with these results, Zfp819 overexpression significantly reduced the transcript levels of the two genes by binding to their promoter regions. Tissue distribution analysis indicated that both genes were predominantly expressed in testis. It has been reported that these two genes function in apoptosis. CONCLUSION Collectively, our study provides inclusive information on germ cell-specific gene regulation by ZFP819, which is involved in apoptosis, to maintain the integrity of spermatogenesis.
Collapse
Affiliation(s)
- Sora Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 South Korea
| | - Heejin Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 South Korea
| | - Jun Tae Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 South Korea
| | - Jihye Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 South Korea
| | - Juri Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 South Korea
| | - Jaehwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 South Korea
| | - Seong Hyeon Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 South Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 South Korea
| |
Collapse
|
42
|
Hauptmann J, Meister G. Peptide-Based Isolation of Argonaute Protein Complexes Using Ago-APP. Methods Mol Biol 2017; 1580:107-116. [PMID: 28439830 DOI: 10.1007/978-1-4939-6866-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Argonaute (Ago) proteins bind small RNAs such as microRNAs (miRNAs) or short interfering RNAs (siRNAs), which guide them to distinct mRNAs for post-transcriptional gene silencing. Mammalian miRNA-guided gene silencing pathways mainly lead to translational repression and mRNA destabilization. To facilitate these processes, Ago proteins bind members of the GW protein family, which form central interaction platforms for the recruitment of downstream effector proteins. GW proteins use tryptophane residues (W) to bind to the surface of Ago proteins. This high affinity interaction is retained when a short, GST-fused GW peptide is used in biochemical pull-down experiments-an approach referred to as "Ago Affinity Purification by Peptides" (Ago-APP). Since the binding interface is conserved among different paralogues and different species, Ago-APP represents a universal tool to purify Ago proteins and associated small RNAs using samples from species with conserved miRNA pathways.
Collapse
|
43
|
Boehm V, Gerbracht JV, Marx MC, Gehring NH. Interrogating the degradation pathways of unstable mRNAs with XRN1-resistant sequences. Nat Commun 2016; 7:13691. [PMID: 27917860 PMCID: PMC5150221 DOI: 10.1038/ncomms13691] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
The turnover of messenger RNAs (mRNAs) is a key regulatory step of gene expression in eukaryotic cells. Due to the complexity of the mammalian degradation machinery, the contribution of decay factors to the directionality of mRNA decay is poorly understood. Here we characterize a molecular tool to interrogate mRNA turnover via the detection of XRN1-resistant decay fragments (xrFrag). Using nonsense-mediated mRNA decay (NMD) as a model pathway, we establish xrFrag analysis as a robust indicator of accelerated 5'-3' mRNA decay. In tethering assays, monitoring xrFrag accumulation allows to distinguish decapping and endocleavage activities from deadenylation. Moreover, xrFrag analysis of mRNA degradation induced by miRNAs, AU-rich elements (AREs) as well as the 3' UTRs of cytokine mRNAs reveals the contribution of 5'-3' decay and endonucleolytic cleavage. Our work uncovers formerly unrecognized modes of mRNA turnover and establishes xrFrag as a powerful tool for RNA decay analyses.
Collapse
Affiliation(s)
- Volker Boehm
- Institute for Genetics, Department of Biology, University of Cologne, Zuelpicher Straße 47a, 50674 Cologne, Germany
| | - Jennifer V Gerbracht
- Institute for Genetics, Department of Biology, University of Cologne, Zuelpicher Straße 47a, 50674 Cologne, Germany
| | - Marie-Charlotte Marx
- Institute for Genetics, Department of Biology, University of Cologne, Zuelpicher Straße 47a, 50674 Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, Department of Biology, University of Cologne, Zuelpicher Straße 47a, 50674 Cologne, Germany
| |
Collapse
|
44
|
Kato M, Wang M, Chen Z, Bhatt K, Oh HJ, Lanting L, Deshpande S, Jia Y, Lai JYC, O'Connor CL, Wu Y, Hodgin JB, Nelson RG, Bitzer M, Natarajan R. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat Commun 2016; 7:12864. [PMID: 27686049 PMCID: PMC5553130 DOI: 10.1038/ncomms12864] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
It is important to find better treatments for diabetic nephropathy (DN), a debilitating renal complication. Targeting early features of DN, including renal extracellular matrix accumulation (ECM) and glomerular hypertrophy, can prevent disease progression. Here we show that a megacluster of nearly 40 microRNAs and their host long non-coding RNA transcript (lnc-MGC) are coordinately increased in the glomeruli of mouse models of DN, and mesangial cells treated with transforming growth factor-β1 (TGF- β1) or high glucose. Lnc-MGC is regulated by an endoplasmic reticulum (ER) stress-related transcription factor, CHOP. Cluster microRNAs and lnc-MGC are decreased in diabetic Chop-/- mice that showed protection from DN. Target genes of megacluster microRNAs have functions related to protein synthesis and ER stress. A chemically modified oligonucleotide targeting lnc-MGC inhibits cluster microRNAs, glomerular ECM and hypertrophy in diabetic mice. Relevance to human DN is also demonstrated. These results demonstrate the translational implications of targeting lnc-MGC for controlling DN progression.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Kirti Bhatt
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Hyung Jung Oh
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Supriya Deshpande
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Ye Jia
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Jennifer Y C Lai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - YiFan Wu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robert G Nelson
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85014, USA
| | - Markus Bitzer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| |
Collapse
|
45
|
Mauri M, Kirchner M, Aharoni R, Ciolli Mattioli C, van den Bruck D, Gutkovitch N, Modepalli V, Selbach M, Moran Y, Chekulaeva M. Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution. Nucleic Acids Res 2016; 45:938-950. [PMID: 27604873 PMCID: PMC5314787 DOI: 10.1093/nar/gkw792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/22/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022] Open
Abstract
Our current knowledge about the mechanisms of miRNA silencing is restricted to few lineages such as vertebrates, arthropods, nematodes and land plants. miRNA-mediated silencing in bilaterian animals is dependent on the proteins of the GW182 family. Here, we dissect the function of GW182 protein in the cnidarian Nematostella, separated by 600 million years from other Metazoa. Using cultured human cells, we show that Nematostella GW182 recruits the CCR4-NOT deadenylation complexes via its tryptophan-containing motifs, thereby inhibiting translation and promoting mRNA decay. Further, similarly to bilaterians, GW182 in Nematostella is recruited to the miRNA repression complex via interaction with Argonaute proteins, and functions downstream to repress mRNA. Thus, our work suggests that this mechanism of miRNA-mediated silencing was already active in the last common ancestor of Cnidaria and Bilateria.
Collapse
Affiliation(s)
- Marta Mauri
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Marieluise Kirchner
- Proteome dynamics, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Camilla Ciolli Mattioli
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - David van den Bruck
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Nadya Gutkovitch
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Matthias Selbach
- Proteome dynamics, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Marina Chekulaeva
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| |
Collapse
|
46
|
Coordinated Regulation of Cap-Dependent Translation and MicroRNA Function by Convergent Signaling Pathways. Mol Cell Biol 2016; 36:2360-73. [PMID: 27354062 DOI: 10.1128/mcb.01011-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Cell growth and proliferation require the coordinated activation of many cellular processes, including cap-dependent mRNA translation. MicroRNAs oppose cap-dependent translation and set thresholds for expression of target proteins. Emerging data suggest that microRNA function is enhanced by cellular activation due in part to induction of the RNA-induced silencing complex (RISC) scaffold protein GW182. In the current study, we demonstrate that increased expression of GW182 in activated or transformed immune cells results from effects of phosphoinositol 3-kinase-Akt-mechanistic target of rapamycin (PI3K-Akt-mTOR) and Jak-Stat-Pim signaling on the translation of GW182 mRNA. Both signaling pathways enhanced polysome occupancy and eukaryotic initiation factor 4E (eIF4E) binding to the 5' 7mG cap of GW182 mRNA. The effect of Jak-Stat-Pim signaling on polysome occupancy and expression of GW182 protein was greater than that of PI3K-Akt-mTOR signaling, likely resulting from enhanced eIF4A-dependent unwinding of G-quadruplexes in the 5' untranslated region of GW182 mRNA. Consistent with this, GW182 expression and microRNA function were reduced by inhibition of mTOR or Pim kinases, translation initiation complex assembly, or eIF4A function. Taken together, these data provide a mechanistic link between microRNA function and cap-dependent translation that allows activated immune cells to maintain microRNA-mediated repression of targets despite enhanced rates of protein synthesis.
Collapse
|
47
|
Kalantari R, Hicks JA, Li L, Gagnon KT, Sridhara V, Lemoff A, Mirzaei H, Corey DR. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA (NEW YORK, N.Y.) 2016; 22:1085-98. [PMID: 27198507 PMCID: PMC4911916 DOI: 10.1261/rna.056499.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/25/2016] [Indexed: 05/25/2023]
Abstract
Argonaute 2 (AGO2), the catalytic engine of RNAi, is typically associated with inhibition of translation in the cytoplasm. AGO2 has also been implicated in nuclear processes including transcription and splicing. There has been little insight into AGO2's nuclear interactions or how they might differ relative to cytoplasm. Here we investigate the interactions of cytoplasmic and nuclear AGO2 using semi-quantitative mass spectrometry. Mass spectrometry often reveals long lists of candidate proteins, complicating efforts to rigorously discriminate true interacting partners from artifacts. We prioritized candidates using orthogonal analytical strategies that compare replicate mass spectra of proteins associated with Flag-tagged and endogenous AGO2. Interactions with TRNC6A, TRNC6B, TNRC6C, and AGO3 are conserved between nuclei and cytoplasm. TAR binding protein interacted stably with cytoplasmic AGO2 but not nuclear AGO2, consistent with strand loading in the cytoplasm. Our data suggest that interactions between functionally important components of RNAi machinery are conserved between the nucleus and cytoplasm but that accessory proteins differ. Orthogonal analysis of mass spectra is a powerful approach to streamlining identification of protein partners.
Collapse
Affiliation(s)
- Roya Kalantari
- Department of Pharmacology, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jessica A Hicks
- Department of Pharmacology, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Liande Li
- Department of Pharmacology, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Keith T Gagnon
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Viswanadham Sridhara
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hamid Mirzaei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - David R Corey
- Department of Pharmacology, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
48
|
Rissland OS. The organization and regulation of mRNA-protein complexes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27324829 PMCID: PMC5213448 DOI: 10.1002/wrna.1369] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022]
Abstract
In a eukaryotic cell, each messenger RNA (mRNA) is bound to a variety of proteins to form an mRNA-protein complex (mRNP). Together, these proteins impact nearly every step in the life cycle of an mRNA and are critical for the proper control of gene expression. In the cytoplasm, for instance, mRNPs affect mRNA translatability and stability and provide regulation of specific transcripts as well as global, transcriptome-wide control. mRNPs are complex, diverse, and dynamic, and so they have been a challenge to understand. But the advent of high-throughput sequencing technology has heralded a new era in the study of mRNPs. Here, I will discuss general principles of cytoplasmic mRNP organization and regulation. Using microRNA-mediated repression as a case study, I will focus on common themes in mRNPs and highlight the interplay between mRNP composition and posttranscriptional regulation. mRNPs are an important control point in regulating gene expression, and while the study of these fascinating complexes presents remaining challenges, recent advances provide a critical lens for deciphering gene regulation. WIREs RNA 2017, 8:e1369. doi: 10.1002/wrna.1369 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Olivia S Rissland
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Kryszke MH, Adjeriou B, Liang F, Chen H, Dautry F. Post-transcriptional gene silencing activity of human GIGYF2. Biochem Biophys Res Commun 2016; 475:289-94. [PMID: 27157137 DOI: 10.1016/j.bbrc.2016.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 12/29/2022]
Abstract
In mammalian post-transcriptional gene silencing, the Argonaute protein AGO2 indirectly recruits translation inhibitors, deadenylase complexes, and decapping factors to microRNA-targeted mRNAs, thereby repressing mRNA translation and accelerating mRNA decay. However, the exact composition and assembly pathway of the microRNA-induced silencing complex are not completely elucidated. As the GYF domain of human GIGYF2 was shown to bind AGO2 in pulldown experiments, we wondered whether GIGYF2 could be a novel protein component of the microRNA-induced silencing complex. Here we show that full-length GIGYF2 coimmunoprecipitates with AGO2 in human cells, and demonstrate that, upon tethering to a reporter mRNA, GIGYF2 exhibits strong, dose-dependent silencing activity, involving both mRNA destabilization and translational repression.
Collapse
Affiliation(s)
| | - Badia Adjeriou
- UMR8113 LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 94230, Cachan, France.
| | - Feifei Liang
- UMR8113 LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 94230, Cachan, France.
| | - Hong Chen
- UMR8113 LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 94230, Cachan, France.
| | - François Dautry
- UMR8113 LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 94230, Cachan, France.
| |
Collapse
|
50
|
Kuzuoğlu-Öztürk D, Bhandari D, Huntzinger E, Fauser M, Helms S, Izaurralde E. miRISC and the CCR4-NOT complex silence mRNA targets independently of 43S ribosomal scanning. EMBO J 2016; 35:1186-203. [PMID: 27009120 PMCID: PMC4888236 DOI: 10.15252/embj.201592901] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
miRNAs associate with Argonaute (AGO) proteins to silence the expression of mRNA targets by inhibiting translation and promoting deadenylation, decapping, and mRNA degradation. A current model for silencing suggests that AGOs mediate these effects through the sequential recruitment of GW182 proteins, the CCR4–NOT deadenylase complex and the translational repressor and decapping activator DDX6. An alternative model posits that AGOs repress translation by interfering with eIF4A function during 43S ribosomal scanning and that this mechanism is independent of GW182 and the CCR4–NOT complex in Drosophila melanogaster. Here, we show that miRNAs, AGOs, GW182, the CCR4–NOT complex, and DDX6/Me31B repress and degrade polyadenylated mRNA targets that are translated via scanning‐independent mechanisms in both human and Dm cells. This and additional observations indicate a common mechanism used by these proteins and miRNAs to mediate silencing. This mechanism does not require eIF4A function during ribosomal scanning.
Collapse
Affiliation(s)
- Duygu Kuzuoğlu-Öztürk
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dipankar Bhandari
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eric Huntzinger
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maria Fauser
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sigrun Helms
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|