1
|
Yan S, Ilgu M, Nilsen-Hamilton M, Lamm MH. Computational Modeling of RNA Aptamers: Structure Prediction of the Apo State. J Phys Chem B 2022; 126:7114-7125. [PMID: 36097649 PMCID: PMC9512008 DOI: 10.1021/acs.jpcb.2c04649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Indexed: 11/28/2022]
Abstract
RNA aptamers are single-stranded oligonucleotides that bind to specific molecular targets with high affinity and specificity. To design aptamers for new applications, it is critical to understand the ligand binding mechanism in terms of the structure and dynamics of the ligand-bound and apo states. The problem is that most of the NMR or X-ray crystal structures available for RNA aptamers are for ligand-bound states. Available apo state structures, mostly characterized by crystallization under nonphysiological conditions or probed by low resolution techniques, might fail to represent the diverse structural variations of the apo state in solution. Here, we develop an approach to obtain a representative ensemble of apo structures that are based on in silico RNA 3D structure prediction and in vitro experiments that characterize base stacking. Using the neomycin-B aptamer as a case study, an ensemble of structures for the aptamer in the apo (unbound) state are validated and then used to investigate the ligand-binding mechanism for the aptamer in complex with neomycin-B.
Collapse
Affiliation(s)
- Shuting Yan
- Iowa
State University, Ames, Iowa 50011, United States
| | - Muslum Ilgu
- Iowa
State University, Ames, Iowa 50011, United States
- Ames
National Laboratory, Ames, Iowa 50011, United States
- Aptalogic
Inc., Ames, Iowa 50014, United States
| | - Marit Nilsen-Hamilton
- Iowa
State University, Ames, Iowa 50011, United States
- Ames
National Laboratory, Ames, Iowa 50011, United States
- Aptalogic
Inc., Ames, Iowa 50014, United States
| | | |
Collapse
|
2
|
Todisco M, Szostak JW. Hybridization kinetics of out-of-equilibrium mixtures of short RNA oligonucleotides. Nucleic Acids Res 2022; 50:9647-9662. [PMID: 36099434 PMCID: PMC9508827 DOI: 10.1093/nar/gkac784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Hybridization and strand displacement kinetics determine the evolution of the base paired configurations of mixtures of oligonucleotides over time. Although much attention has been focused on the thermodynamics of DNA and RNA base pairing in the scientific literature, much less work has been done on the time dependence of interactions involving multiple strands, especially in RNA. Here we provide a study of oligoribonucleotide interaction kinetics and show that it is possible to calculate the association, dissociation and strand displacement rates displayed by short oligonucleotides (5nt–12nt) that exhibit no expected secondary structure as simple functions of oligonucleotide length, CG content, ΔG of hybridization and ΔG of toehold binding. We then show that the resultant calculated kinetic parameters are consistent with the experimentally observed time dependent changes in concentrations of the different species present in mixtures of multiple competing RNA strands. We show that by changing the mixture composition, it is possible to create and tune kinetic traps that extend by orders of magnitude the typical sub-second hybridization timescale of two complementary oligonucleotides. We suggest that the slow equilibration of complex oligonucleotide mixtures may have facilitated the nonenzymatic replication of RNA during the origin of life.
Collapse
Affiliation(s)
- Marco Todisco
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Hognon C, Bignon E, Harle G, Touche N, Grandemange S, Monari A. The Iron Maiden. Cytosolic Aconitase/IRP1 Conformational Transition in the Regulation of Ferritin Translation and Iron Hemostasis. Biomolecules 2021; 11:biom11091329. [PMID: 34572542 PMCID: PMC8469783 DOI: 10.3390/biom11091329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
Maintaining iron homeostasis is fundamental for almost all living beings, and its deregulation correlates with severe and debilitating pathologies. The process is made more complicated by the omnipresence of iron and by its role as a fundamental component of a number of crucial metallo proteins. The response to modifications in the amount of the free-iron pool is performed via the inhibition of ferritin translation by sequestering consensus messenger RNA (mRNA) sequences. In turn, this is regulated by the iron-sensitive conformational equilibrium between cytosolic aconitase and IRP1, mediated by the presence of an iron-sulfur cluster. In this contribution, we analyze by full-atom molecular dynamics simulation, the factors leading to both the interaction with mRNA and the conformational transition. Furthermore, the role of the iron-sulfur cluster in driving the conformational transition is assessed by obtaining the related free energy profile via enhanced sampling molecular dynamics simulations.
Collapse
Affiliation(s)
- Cécilia Hognon
- Université de Lorraine and CNRS, UMR 7019 LPCT, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, UMR 7019 LPCT, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Guillaume Harle
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France; (G.H.); (N.T.)
| | - Nadège Touche
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France; (G.H.); (N.T.)
| | - Stéphanie Grandemange
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France; (G.H.); (N.T.)
- Correspondence: (S.G.); (A.M.)
| | - Antonio Monari
- Université de Lorraine and CNRS, UMR 7019 LPCT, F-54000 Nancy, France; (C.H.); (E.B.)
- Université de Paris and CNRS, ITODYS, F-75006 Paris, France
- Correspondence: (S.G.); (A.M.)
| |
Collapse
|
4
|
Samaan GN, Wyllie MK, Cizmic JM, Needham LM, Nobis D, Ngo K, Andersen S, Magennis SW, Lee SF, Purse BW. Single-molecule fluorescence detection of a tricyclic nucleoside analogue. Chem Sci 2020; 12:2623-2628. [PMID: 34164030 PMCID: PMC8179283 DOI: 10.1039/d0sc03903a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fluorescent nucleobase surrogates capable of Watson–Crick hydrogen bonding are essential probes of nucleic acid structure and dynamics, but their limited brightness and short absorption and emission wavelengths have rendered them unsuitable for single-molecule detection. Aiming to improve on these properties, we designed a new tricyclic pyrimidine nucleoside analogue with a push–pull conjugated system and synthesized it in seven sequential steps. The resulting C-linked 8-(diethylamino)benzo[b][1,8]naphthyridin-2(1H)-one nucleoside, which we name ABN, exhibits ε442 = 20 000 M−1 cm−1 and Φem,540 = 0.39 in water, increasing to Φem = 0.50–0.53 when base paired with adenine in duplex DNA oligonucleotides. Single-molecule fluorescence measurements of ABN using both one-photon and two-photon excitation demonstrate its excellent photostability and indicate that the nucleoside is present to > 95% in a bright state with count rates of at least 15 kHz per molecule. This new fluorescent nucleobase analogue, which, in duplex DNA, is the brightest and most red-shifted known, is the first to offer robust and accessible single-molecule fluorescence detection capabilities. Fluorescent nucleoside analogue ABN is readily detected at the single-molecule level and retains a quantum yield >50% in duplex DNA oligonucleotides.![]()
Collapse
Affiliation(s)
- George N Samaan
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University San Diego CA 92182 USA
| | - Mckenzie K Wyllie
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University San Diego CA 92182 USA
| | - Julian M Cizmic
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University San Diego CA 92182 USA
| | - Lisa-Maria Needham
- University of Cambridge, Chemistry Department Lensfield Road Cambridge CB2 1EW UK
| | - David Nobis
- School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Katrina Ngo
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University San Diego CA 92182 USA
| | - Susan Andersen
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University San Diego CA 92182 USA
| | - Steven W Magennis
- School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Steven F Lee
- University of Cambridge, Chemistry Department Lensfield Road Cambridge CB2 1EW UK
| | - Byron W Purse
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University San Diego CA 92182 USA
| |
Collapse
|
5
|
Welty R, Pabit SA, Katz AM, Calvey GD, Pollack L, Hall KB. Divalent ions tune the kinetics of a bacterial GTPase center rRNA folding transition from secondary to tertiary structure. RNA (NEW YORK, N.Y.) 2018; 24:1828-1838. [PMID: 30254137 PMCID: PMC6239185 DOI: 10.1261/rna.068361.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 05/22/2023]
Abstract
Folding of an RNA from secondary to tertiary structure often depends on divalent ions for efficient electrostatic charge screening (nonspecific association) or binding (specific association). To measure how different divalent cations modify folding kinetics of the 60 nucleotide Ecoli rRNA GTPase center, we combined stopped-flow fluorescence in the presence of Mg2+, Ca2+, or Sr2+ together with time-resolved small angle X-ray scattering (SAXS) in the presence of Mg2+ to observe the folding process. Immediately upon addition of each divalent ion, the RNA undergoes a transition from an extended state with secondary structure to a more compact structure. Subsequently, specific divalent ions modulate populations of intermediates in conformational ensembles along the folding pathway with transition times longer than 10 msec. Rate constants for the five folding transitions act on timescales from submillisecond to tens of seconds. The sensitivity of RNA tertiary structure to divalent cation identity affects all but the fastest events in RNA folding, and allowed us to identify those states that prefer Mg2+ The GTPase center RNA appears to have optimized its folding trajectory to specifically utilize this most abundant intracellular divalent ion.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Andrea M Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - George D Calvey
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
6
|
Carr CE, Marky LA. Melting Behavior of a DNA Four-Way Junction Using Spectroscopic and Calorimetric Techniques. J Am Chem Soc 2017; 139:14443-14455. [DOI: 10.1021/jacs.7b06429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carolyn E. Carr
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luis A. Marky
- Department of Pharmaceutical
Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
7
|
Voltz K, Léonard J, Touceda PT, Conyard J, Chaker Z, Dejaegere A, Godet J, Mély Y, Haacke S, Stote RH. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy. Nucleic Acids Res 2016; 44:3408-19. [PMID: 26896800 PMCID: PMC4838372 DOI: 10.1093/nar/gkw077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/29/2016] [Indexed: 01/22/2023] Open
Abstract
Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies.
Collapse
Affiliation(s)
- Karine Voltz
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, CNRS UMR 7504, Université de Strasbourg, Strasbourg, France
| | - Patricia Tourón Touceda
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, CNRS UMR 7504, Université de Strasbourg, Strasbourg, France
| | - Jamie Conyard
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, CNRS UMR 7504, Université de Strasbourg, Strasbourg, France
| | - Ziyad Chaker
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, CNRS UMR 7504, Université de Strasbourg, Strasbourg, France
| | - Annick Dejaegere
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch Cedex, France
| | - Stefan Haacke
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, CNRS UMR 7504, Université de Strasbourg, Strasbourg, France
| | - Roland H Stote
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
8
|
Biswas A, Narayan S, Kallianpur MV, Krishnamoorthy G, Anand R. Mode of DNA binding with γ-butyrolactone receptor protein CprB from Streptomyces coelicolor revealed by site-specific fluorescence dynamics. Biochim Biophys Acta Gen Subj 2015; 1850:2283-92. [PMID: 26278022 DOI: 10.1016/j.bbagen.2015.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/16/2015] [Accepted: 08/12/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND The γ-butyrolactone (GBL) binding transcription factors in Streptomyces species are known for their involvement in quorum sensing where they control the expression of various genes initiating secondary metabolic pathways. The structurally characterized member of this family CprB from Streptomyces coelicolor had earlier been demonstrated to bind a multitude of sequences containing a specific binding signature. Though structural breakthrough has been obtained for its complex with a consensus DNA sequence there is, however a dearth of information regarding the overall and site specific dynamics of protein-DNA interaction. METHODS To delineate the effect of CprB on the bound DNA, changes in motional dynamics of the fluorescent probe 2-aminopurine were monitored at three conserved base positions (5th, 12th and 23rd) for two DNA sequences: the consensus and the biologically relevant cognate element, on complex formation. RESULTS The changes in lifetime and generalized order parameter revealed a similarity in the binding pattern of the protein to both sequences with greater dynamic restriction at the end positions, 5th and 23rd, as compared to the middle 12th position. Also differences within this pattern demonstrated the influence of even small changes in sequence on protein interactions. CONCLUSIONS Here the study of motional dynamics was instrumental in establishing a structural footprint for the cognate DNA sequence and explaining the dynamics for the consensus DNA from structural correspondence. GENERAL SIGNIFICANCE Motional dynamics can be a powerful tool to efficiently study the mode of DNA binding to proteins that interact differentially with a plethora of DNA sequences, even in the absence of structural breakthrough.
Collapse
Affiliation(s)
- Anwesha Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Satya Narayan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Mamata V Kallianpur
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - G Krishnamoorthy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India.
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
9
|
Nguyen H, Pérez A, Bermeo S, Simmerling C. Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and Their Complexes with Proteins. J Chem Theory Comput 2015; 11:3714-28. [PMID: 26574454 PMCID: PMC4805114 DOI: 10.1021/acs.jctc.5b00271] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Generalized Born (GB) implicit solvent model has undergone significant improvements in accuracy for modeling of proteins and small molecules. However, GB still remains a less widely explored option for nucleic acid simulations, in part because fast GB models are often unable to maintain stable nucleic acid structures or they introduce structural bias in proteins, leading to difficulty in application of GB models in simulations of protein-nucleic acid complexes. Recently, GB-neck2 was developed to improve the behavior of protein simulations. In an effort to create a more accurate model for nucleic acids, a similar procedure to the development of GB-neck2 is described here for nucleic acids. The resulting parameter set significantly reduces absolute and relative energy error relative to Poisson-Boltzmann for both nucleic acids and nucleic acid-protein complexes, when compared to its predecessor GB-neck model. This improvement in solvation energy calculation translates to increased structural stability for simulations of DNA and RNA duplexes, quadruplexes, and protein-nucleic acid complexes. The GB-neck2 model also enables successful folding of small DNA and RNA hairpins to near native structures as determined from comparison with experiment. The functional form and all required parameters are provided here and also implemented in the AMBER software.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Chemistry, ‡Laufer Center for Physical and Quantitative Biology, and §Department of Biochemistry, Stony Brook University , Stony Brook, New York 11794, USA
| | - Alberto Pérez
- Department of Chemistry, ‡Laufer Center for Physical and Quantitative Biology, and §Department of Biochemistry, Stony Brook University , Stony Brook, New York 11794, USA
| | - Sherry Bermeo
- Department of Chemistry, ‡Laufer Center for Physical and Quantitative Biology, and §Department of Biochemistry, Stony Brook University , Stony Brook, New York 11794, USA
| | - Carlos Simmerling
- Department of Chemistry, ‡Laufer Center for Physical and Quantitative Biology, and §Department of Biochemistry, Stony Brook University , Stony Brook, New York 11794, USA
| |
Collapse
|
10
|
Rau MJ, Hall KB. 2-Aminopurine Fluorescence as a Probe of Local RNA Structure and Dynamics and Global Folding. Methods Enzymol 2015; 558:99-124. [PMID: 26068739 DOI: 10.1016/bs.mie.2015.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The biology of an RNA is encoded in its structure and dynamics, whether that be binding to a protein, binding to another RNA, enzymatic catalysis, or becoming a substrate. In solution, most RNA molecules are sampling conformations, and their structures are best described as conformational ensembles. For larger RNAs, experiments that can describe the conformations of their domains can be particularly daunting, especially when the RNA is novel and not well characterized. Here, we explain how we have used site-specific 2-aminopurine as a fluorescent probe of the secondary and tertiary structures of a 60 nucleotide RNA, and what new findings we have about its Mg(2+)-dependent conformational changes. We focus on this RNA from prokaryotic ribosome as a proof of concept as well as a research project. Its tertiary structure is known from a cocrystal, and its secondary structure is modeled from phylogenetic conservation, but there are virtually no data describing the motions of its nucleotides in solution, or its folding kinetics. It is a perfect system to illustrate the unique information that comes from a comprehensive fluorescence study of this intricate RNA.
Collapse
Affiliation(s)
- Michael J Rau
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri, USA.
| |
Collapse
|
11
|
Sanbonmatsu KY. Dynamics of riboswitches: Molecular simulations. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1046-1050. [PMID: 24953187 DOI: 10.1016/j.bbagrm.2014.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/15/2022]
Abstract
Riboswitch RNAs play key roles in bacterial metabolism and represent a promising new class of antibiotic targets for treatment of infectious disease. While many studies of riboswitches have been performed, the exact mechanism of riboswitch operation is still not fully understood at the atomistic level of detail. Molecular dynamics simulations are useful for interpreting existing experimental data and producing predictions for new experiments. Here, a wide range of computational studies on riboswitches is reviewed. By elucidating the key principles of riboswitch operation, computation may aid in the effort to design more specific antibiotics with affinities greater than those of the native ligand. Such a detailed understanding may be required to improve efficacy and reduce side effects. These studies are laying the groundwork for understanding the action mechanism of new compounds that inhibit riboswitch activity. Future directions such as magnesium effects, large-scale conformational changes, expression platforms and co-transcriptional folding are also discussed. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Karissa Y Sanbonmatsu
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, USA
| |
Collapse
|
12
|
Push-Pull-Type Purine Nucleoside-Based Fluorescent Sensors for the Selective Detection of Pd2+in Aqueous Buffer. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
van der Werf R, Wijmenga SS, Heus HA, Olsthoorn RC. Structural and thermodynamic signatures that define pseudotriloop RNA hairpins. RNA (NEW YORK, N.Y.) 2013; 19:1833-9. [PMID: 24158793 PMCID: PMC3884659 DOI: 10.1261/rna.039636.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pseudotriloop (PTL) structures in RNAs have been recognized as essential elements in RNA folding and recognition of proteins. PTL structures are derived from hexaloops by formation of a cross-loop base pair leaving a triloop and 3' bulged out residue. Despite their common presence and functional importance, insufficient structural and thermodynamic data are available that can be used to predict formation of PTLs from sequence alone. Using NMR spectroscopy and UV-melting data we established factors that contribute to the formation and stability of PTL structures derived from hepatitis B virus and human foamy virus. The NMR data show that, besides the cross-loop base pair, also a 3' pyrimidine bulge and a G-C loop-closing base pair are primary determinants of PTL formation. By changing the G-C closing base pair into C-G, the PTL switches into a hexaloop. Comparison of these rules with regular triloop hairpins and PTLs from other sources is discussed as well as the conservation of a PTL in human foamy virus and other spumaretroviruses.
Collapse
Affiliation(s)
- Ramon van der Werf
- Leiden Institute of Chemistry, University of Leiden, 2333 CC Leiden, The Netherlands
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
- Department of Radiology, Erasmus Medical Centre, 3015 CE Rotterdam, The Netherlands
| | - Sybren S. Wijmenga
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Hans A. Heus
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - René C.L. Olsthoorn
- Leiden Institute of Chemistry, University of Leiden, 2333 CC Leiden, The Netherlands
- Corresponding authorE-mail
| |
Collapse
|
14
|
Pechlaner M, Sigel RKO, van Gunsteren WF, Dolenc J. Structure and Conformational Dynamics of the Domain 5 RNA Hairpin of a Bacterial Group II Intron Revealed by Solution Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Biochemistry 2013; 52:7099-113. [DOI: 10.1021/bi400784r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Maria Pechlaner
- Institute
of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Roland K. O. Sigel
- Institute
of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Wilfred F. van Gunsteren
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Jožica Dolenc
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| |
Collapse
|
15
|
Dahabieh MS, Samanta D, Brodovitch JC, Frech C, O'Neill MA, Pinto BM. Sequence-dependent structural dynamics of primate adenosine-to-inosine editing substrates. Chembiochem 2012. [PMID: 23193088 DOI: 10.1002/cbic.201200526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Humans have the highest level of adenosine-to-inosine (A-to-I) editing amongst primates, yet the reasons for this difference remain unclear. Sequence analysis of the Alu Sg elements (A-to-I RNA substrates) corresponding to the Nup50 gene in human, chimp, and rhesus reveals subtle sequence variations surrounding the edit sites. We have developed three constructs that represent human (HuAp5), chimp (ChAp5), and rhesus (RhAp5) Nup50 Alu Sg A-to-I editing substrates. Here, 2-aminopurine (2-Ap) was substituted for edited adenosine (A5) so as to monitor the fluorescence intensity with respect to temperature. UV and steady-state fluorescence (SSF) T(M) plots indicate that local and global unfolding are coincident, with the human construct displaying a T(M) of approximately 70°C, compared to 60°C for chimp and 54°C for rhesus. However, time-resolved fluorescence (TRF) resolves three different fluorescence lifetimes that we assign to folded, intermediate(s), and unfolded states. The TRF data fit well to a two-intermediate model, whereby both intermediates (M, J) are in equilibrium with each other, and the folded/unfolded states. Our model suggests that, at 37°C, human state J and the folded state will be the most heavily populated in comparison to the other primate constructs. In order for adenosine deaminase acting on RNA (ADAR) to efficiently dock, a stable duplex must be present that corresponds to the human construct, globally. Next, the enzyme must "flip out" the base of interest to facilitate the A-to-I conversion; a nucleotide in an intermediate-like position would enhance this conformational change. Our experiments demonstrate that subtle variations in RNA sequence might contribute to the high A-to-I editing levels found in humans.
Collapse
|
16
|
Singh TS, Rao BJ, Krishnamoorthy G. GTP binding leads to narrowing of the conformer population while preserving the structure of the RNA aptamer: a site-specific time-resolved fluorescence dynamics study. Biochemistry 2012; 51:9260-9. [PMID: 23110669 DOI: 10.1021/bi301110u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we employed a combination of steady-state and time-resolved fluorescence spectroscopy and studied the site-specific dynamics in a GTP aptamer using 2-aminopurine as a fluorescent probe. We compared the dynamics of the GTP-bound aptamer with that of the free aptamer as well as when it is denatured. GTP binding leads to an overall compaction of structure in the aptamer. The general pattern of fluorescence lifetimes and correlation times scanned across several locations in the aptamer does not seem to change following GTP binding. However, a remarkable narrowing of the lifetime distribution of the aptamer ensues following its compaction by GTP binding. Interestingly, such a "conformational narrowing" is evident from the lifetime readouts of the nucleotide belonging to the stem as well as the "bulge" part of the aptamer, independent of whether it is directly interacting with GTP. Taken together, these results underscore the importance of an overall intrinsic structure associated with the free aptamer that is further modulated following GTP binding. This work provides strong support for the "conformational selection" hypothesis of ligand binding.
Collapse
Affiliation(s)
- T Sanjoy Singh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | | | | |
Collapse
|
17
|
Abstract
A single technique is insufficient to characterize the properties of an RNA molecule so this Guide provides advice and suggestions for use of several spectroscopic methods applied to RNA. It begins with a discussion of design features to synthesize a suitable molecule for study, assuming that the reader is familiar with in vitro enzymatic and chemical synthesis of RNA. With the RNA in hand, the application of UV melting studies to characterize its folding/unfolding transitions is presented, followed by instructions for fluorescence experiments to augment the UV data. Since RNAs are flexible molecules, it is important to characterize their mobility, and so time-resolved fluorescence data are analyzed. A brief exposition of the power of NMR spectroscopy to identify ion-binding sites is provided. RNA examples are described for each method to give a perspective on what can and cannot be learned.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Moreno A, Knee J, Mukerji I. Applying 6-methylisoxanthopterin-enhanced fluorescence to examine protein-DNA interactions in the picomolar range. Biochemistry 2012; 51:6847-59. [PMID: 22849374 DOI: 10.1021/bi300466d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporation of fluorescent nucleoside analogues into duplex DNA usually leads to a reduction in quantum yield, which significantly limits their potential use and application. We have identified two pentamer DNA sequences containing 6-methylisoxanthopterin (6-MI) (ATFAA and AAFTA, where F is 6-MI) that exhibit significant enhancement of fluorescence upon formation of duplex DNA with quantum yields close to that of monomeric 6-MI. The enhanced fluorescence dramatically increases the utility and sensitivity of the probe and is used to study protein-DNA interactions of nanomolar specificity in this work. The increased sensitivity of 6-MI allows anisotropy binding measurements to be performed at DNA concentrations of 1 nM and fluorescence intensity measurements at 50 pM DNA. The ATFAA sequence was incorporated into DNA constructs to measure the binding affinity of four different protein-DNA interactions that exhibit sequence-specific and non-sequence-specific recognition. In all cases, the K(d) values obtained were consistent with previously reported values measured by other methods. Time-resolved and steady-state fluorescence measurements demonstrate that 6-MI fluorescence is very sensitive to local distortion and reports on different degrees of protein-induced perturbations with single-base resolution, where the largest changes occur at the site of protein binding.
Collapse
Affiliation(s)
- Andrew Moreno
- Departments of Chemistry and Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | | | | |
Collapse
|
19
|
Fe2+ binds iron responsive element-RNA, selectively changing protein-binding affinities and regulating mRNA repression and activation. Proc Natl Acad Sci U S A 2012; 109:8417-22. [PMID: 22586079 DOI: 10.1073/pnas.1120045109] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Iron increases synthesis rates of proteins encoded in iron-responsive element (IRE)-mRNAs; metabolic iron ("free," "labile") is Fe(2+). The noncoding IRE-RNA structure, approximately 30 nt, folds into a stem loop to control synthesis of proteins in iron trafficking, cell cycling, and nervous system function. IRE-RNA riboregulators bind specifically to iron-regulatory proteins (IRP) proteins, inhibiting ribosome binding. Deletion of the IRE-RNA from an mRNA decreases both IRP binding and IRP-independent protein synthesis, indicating effects of other "factors." Current models of IRE-mRNA regulation, emphasizing iron-dependent degradation/modification of IRP, lack answers about how iron increases IRE-RNA/IRP protein dissociation or how IRE-RNA, after IRP dissociation, influences protein synthesis rates. However, we observed Fe(2+) (anaerobic) or Mn(2+) selectively increase the IRE-RNA/IRP K(D). Here we show: (i) Fe(2+) binds to the IRE-RNA, altering its conformation (by 2-aminopurine fluorescence and ethidium bromide displacement); (ii) metal ions increase translation of IRE-mRNA in vitro; (iii) eukaryotic initiation factor (eIF)4F binds specifically with high affinity to IRE-RNA; (iv) Fe(2+) increased eIF4F/IRE-RNA binding, which outcompetes IRP binding; (v) exogenous eIF4F rescued metal-dependent IRE-RNA translation in eIF4F-depeleted extracts. The regulation by metabolic iron binding to IRE-RNA to decrease inhibitor protein (IRP) binding and increase activator protein (eIF4F) binding identifies IRE-RNA as a riboregulator.
Collapse
|
20
|
Bell NM, Kenyon JC, Balasubramanian S, Lever AML. Comparative structural effects of HIV-1 Gag and nucleocapsid proteins in binding to and unwinding of the viral RNA packaging signal. Biochemistry 2012; 51:3162-9. [PMID: 22448757 DOI: 10.1021/bi2017969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major RNA binding region of the HIV-1 Gag polyprotein is the nucleocapsid (NC) domain, which is responsible for the specific capture of the genomic RNA genome during viral assembly. The Gag polyprotein has other RNA chaperone functions, which are mirrored by the isolated NC protein after physiological cleavage from Gag. Gag, however, is suggested to have superior nucleic acid chaperone activity. Here we investigate the interaction of Gag and NC with the core RNA structure of the HIV-1 packaging signal (Ψ), using 2-aminopurine substitution to create a series of modified RNAs based on the Ψ helix loop structure. The effects of 2-aminopurine substitution on the physical and structural properties of the viral Ψ were characterized. The fluorescence properties of the 2-aminopurine substitutions showed features consistent with the native GNAR tetraloop. Dissociation constants (K(d)) of the two viral proteins, measured by fluorescence polarization (FP), were similar, and both NC and Gag affected the 2-aminopurine fluorescence of bases close to the loop binding region in a similar fashion. However, the influence of Gag on the fluorescence of the 2-aminopurine nucleotides at the base of the helix implied a much more potent helix destabilizing action on the RNA stem loop (SL) versus that seen with NC. This was further supported when the viral Ψ SL was tagged with a 5' fluorophore and 3' quencher. In the absence of any viral protein, minimal fluorescence was detected; addition of NC yielded a slight increase in fluorescence, while addition of the Gag protein yielded a large change in fluorescence, further suggesting that, compared to NC, the Gag protein has a greater propensity to affect RNA structure and that Ψ helix unwinding may be an intrinsic step in RNA encapsidation.
Collapse
Affiliation(s)
- Neil M Bell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 OQQ, UK
| | | | | | | |
Collapse
|
21
|
Gray RD, Petraccone L, Trent JO, Chaires JB. Characterization of a K+-induced conformational switch in a human telomeric DNA oligonucleotide using 2-aminopurine fluorescence. Biochemistry 2010; 49:179-94. [PMID: 19961180 DOI: 10.1021/bi901357r] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human telomeric DNA consists of tandem repeats of the DNA sequence d(GGGTTA). Oligodeoxynucleotide telomere models such as d[A(GGGTTA)(3)GGG] (Tel22) fold in a cation-dependent manner into quadruplex structures consisting of stacked G-quartets linked by d(TTA) loops. NMR has shown that in Na(+) solutions Tel22 forms a "basket" topology of four antiparallel strands; in contrast, Tel22 in K(+) solutions consists of a mixture of unknown topologies. Our previous studies on the mechanism of folding of Tel22 and similar telomere analogues utilized changes in UV absorption between 270 and 325 nm that report primarily on G-quartet formation and stacking showed that quadruplex formation occurs within milliseconds upon mixing with an appropriate cation. In this study, we assess the dynamics and equilibria of folding of specific loops by using Tel22 derivatives in which the dA residues were serially substituted with the fluorescent reporter base, 2-aminopurine (2-AP). Tel22 folding induced by Na(+) or K(+) assessed by changes in 2-AP fluorescence consists of at least three kinetic steps with time constants spanning a range from milliseconds to several hundred seconds. Na(+)-dependent equilibrium titrations of Tel22 folding could be approximated as a cooperative two-state process. In contrast, K(+)-dependent folding curves were biphasic, revealing that different conformational ensembles are present in 1 and 30 mM K(+). This conclusion was confirmed by (1)H NMR. Molecular dynamics simulations revealed a K(+) binding pocket in Tel22 located near dA1 that is specific for the so-called hybrid-1 conformation in which strand 1 is in a parallel arrangement. The possible presence of this topologically specific binding site suggests that K(+) may play an allosteric role in regulating telomere conformation and function by modulating quadruplex tertiary structure.
Collapse
Affiliation(s)
- Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
22
|
Sarkar K, Meister K, Sethi A, Gruebele M. Fast folding of an RNA tetraloop on a rugged energy landscape detected by a stacking-sensitive probe. Biophys J 2009; 97:1418-27. [PMID: 19720030 DOI: 10.1016/j.bpj.2009.06.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/25/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022] Open
Abstract
We investigate the microsecond-timescale kinetics of the RNA hairpin ga*cUUCGguc. The fluorescent nucleotide 2-aminopurine (a*) reports mainly on base stacking. Ten kinetic traces and the temperature denaturation curve are globally fitted to four-state models of the free-energy surface. In the best-fitting sequential model, the hairpin unfolds over successively larger barriers in at least three stages: stem fraying and increased base-stacking fluctuations; concerted loss of hydrogen bonding and partial unstacking; and additional unstacking of single strands at the highest temperatures. Parallel and trap models also provide adequate fits: such pathways probably also play a role in the complete free-energy surface of the hairpin. To interpret the model states structurally, 200 ns of molecular dynamics, including six temperature-jump simulations, were run. Although the sampling is by no means comprehensive, five different states were identified using hydrogen bonding and base stacking as reaction coordinates. The four to five states required to explain the experiments or simulations set a lower limit on the complexity of this small RNA hairpin's energy landscape.
Collapse
Affiliation(s)
- Krishnarjun Sarkar
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
23
|
Zhao L, Xia T. Probing RNA conformational dynamics and heterogeneity using femtosecond time-resolved fluorescence spectroscopy. Methods 2009; 49:128-35. [DOI: 10.1016/j.ymeth.2009.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/26/2009] [Accepted: 04/02/2009] [Indexed: 01/16/2023] Open
|
24
|
Campbell CJ, Mountford CP, Stoquert HC, Buck AH, Dickinson P, Ferapontova E, Terry JG, Beattie JS, Walton AJ, Crain J, Ghazal P, Mount AR. A DNA nanoswitch incorporating the fluorescent base analogue 2-aminopurine detects single nucleotide mismatches in unlabelled targets. Analyst 2009; 134:1873-9. [PMID: 19684913 DOI: 10.1039/b900325h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA nanoswitches can be designed to detect unlabelled nucleic acid targets and have been shown to discriminate between targets which differ in the identity of only one base. This paper demonstrates that the fluorescent base analogue 2-aminopurine (AP) can be used to discriminate between nanoswitches with and without targets and to discriminate between matched and mismatched targets. In particular, we have used both steady-state and time-resolved fluorescence spectroscopy to determine differences in AP environment at the branchpoint of nanoswitches assembled using complementary targets and targets which incorporate single base mismatches.
Collapse
Affiliation(s)
- Colin J Campbell
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, UK EH16 4SB.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee HW, Briggs KT, Marino JP. Dissecting structural transitions in the HIV-1 dimerization initiation site RNA using 2-aminopurine fluorescence. Methods 2009; 49:118-27. [PMID: 19460437 DOI: 10.1016/j.ymeth.2009.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/08/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022] Open
Abstract
A highly conserved 35 nucleotide RNA stem-loop, the dimerization initiation site (DIS), in the 5' untranslated region (UTR) of the human immunodeficiency virus type I (HIV-1) genome has been identified as the sequence primarily responsible for initiation of viral genome dimerization. The DIS initiates viral genome dimerization through a loop-loop 'kissing' interaction and is converted from an intermediate 'kissing' to a more thermodynamically stable extended duplex dimer in a conformational rearrangement that is chaperoned by the HIV-1 nucleocapsid protein (NCp7). Here we describe fluorescence methods designed to probe local RNA dynamics and structural transitions associated with the DIS dimer formation and its NCp7 chaperoned structural conversion. These methods take advantage of the exquisite sensitivity of the quantum yield of the fluorescent nucleotide base analog, 2-aminopurine (2-AP), to its immediate structural and dynamic environment. The 2-AP fluorescence methods described allow a detailed kinetic and thermodynamic examination of this type of RNA-RNA interaction, as well as an analysis of the molecular mechanism of NCp7 chaperone activity.
Collapse
Affiliation(s)
- Hui-Wen Lee
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, The National Institute of Standards and Technology, Rockville, MD 20850, USA
| | | | | |
Collapse
|
26
|
Abstract
2-aminopurine (2AP) is a fluorescent nucleobase that provides the means to probe structure and dynamics of RNA molecules. Because 2AP can base pair with Uridine, it can replace normal A:U pairs without substantial deformation of duplexes. It is best used as a probe of ostensibly single-stranded regions: its fluorescence intensity reports on base stacking and its fluorescence decay lifetimes report on its conformational dynamics. Three examples of its use are described here, illustrating how 2AP fluorescence has been used to probe RNA folding and hairpin loop dynamics.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis,Missouri, USA
| |
Collapse
|
27
|
Abstract
RNA folding is a remarkably complex problem that involves ion-mediated electrostatic interaction, conformational entropy, base pairing and stacking, and noncanonical interactions. During the past decade, results from a variety of experimental and theoretical studies pointed to (a) the potential ion correlation effect in Mg2+-RNA interactions, (b) the rugged energy landscapes and multistate RNA folding kinetics even for small RNA systems such as hairpins and pseudoknots, (c) the intraloop interactions and sequence-dependent loop free energy, and (d) the strong nonadditivity of chain entropy in RNA pseudoknot and other tertiary folds. Several related issues, which have not been thoroughly resolved, require combined approaches with thermodynamic and kinetic experiments, statistical mechanical modeling, and all-atom computer simulations.
Collapse
Affiliation(s)
- Shi-Jie Chen
- Department of Physics and Astronomy and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
28
|
Kenfack CA, Piémont E, Ben Gaied N, Burger A, Mély Y. Time-resolved fluorescent properties of 8-vinyl-deoxyadenosine and 2-amino-deoxyribosylpurine exhibit different sensitivity to their opposite base in duplexes. J Phys Chem B 2008; 112:9736-45. [PMID: 18646799 DOI: 10.1021/jp8028243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
8-Vinyl-deoxyadenosine (8VA) has been recently introduced as a fluorescent analogue of adenosine that is less perturbing and less quenched than the well-established 2-amino-deoxyribosylpurine (2AP) probe when inserted in oligonucleotides. To further validate 8VA as a fluorescent substitute of A, we compared the ability of 8VA and 2AP in sequences of the type d(CGT TTT XNX TTT TGC) (with N=8VA or 2AP and X=T and C) to discriminate the nature of the opposite base (Y) in duplexes. For both probes, systematic variations in the amplitudes of the short- and long-lived lifetimes of the fluorescence intensity decays as well as in the amplitude of the fast rotational correlation time of the fluorescence anisotropy decays were observed as a function of the nature of Y. From these parameters, we inferred a stability order 8VA-T > 8VA-G > 8VA-A > 8VA-C, similar to the stability order with the native A base, but different from the stability order with 2AP. Using a combination of molecular mechanics and ab initio calculations, we found that the time-resolved parameters of 8VA, but not the 2AP ones, correlate well with the geometry and the strength of the A-Y base-pairing interaction. This may be rationalized by the smaller structural and electronic perturbations induced by the vinyl group in position 8 as compared to the amino group at position 2. As a consequence, substitution of A by 8VA in a base pair was found to only minimally modify the structure and interaction energy of the base pair. Thus, 8VA can be used as a fluorescent substitute of the natural A, to straightforwardly discriminate the nature of the opposite base. This may find interesting applications notably in the elucidation of the mechanisms and dynamics of the DNA mismatch repair system.
Collapse
Affiliation(s)
- Cyril A Kenfack
- Photophysique des Interactions Biomoleculaires, UMR 7175 CNRS, Institut Gilbert Laustriat, Faculte de Pharmacie, Universite Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France.
| | | | | | | | | |
Collapse
|
29
|
Ballin JD, Bharill S, Fialcowitz-White EJ, Gryczynski I, Gryczynski Z, Wilson GM. Site-specific variations in RNA folding thermodynamics visualized by 2-aminopurine fluorescence. Biochemistry 2007; 46:13948-60. [PMID: 17997580 DOI: 10.1021/bi7011977] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fluorescent base analogue 2-aminopurine (2-AP) is commonly used to study specific conformational and protein binding events involving nucleic acids. Here, combinations of steady-state and time-resolved fluorescence spectroscopy of 2-AP were employed to monitor conformational transitions within a model hairpin RNA from diverse structural perspectives. RNA substrates adopting stable, unambiguous secondary structures were labeled with 2-AP at an unpaired base, within the loop, or inside the base-paired stem. Steady-state fluorescence was monitored as the RNA hairpins made the transitions between folded and unfolded conformations using thermal denaturation, urea titration, and cation-mediated folding. Unstructured control RNA substrates permitted the effects of higher-order RNA structures on 2-AP fluorescence to be distinguished from stimulus-dependent changes in intrinsic 2-AP photophysics and/or interactions with adjacent residues. Thermodynamic parameters describing local conformational changes were thus resolved from multiple perspectives within the model RNA hairpin. These data provided energetic bases for construction of folding mechanisms, which varied among different folding-unfolding stimuli. Time-resolved fluorescence studies further revealed that 2-AP exhibits characteristic signatures of component fluorescence lifetimes and respective fractional contributions in different RNA structural contexts. Together, these studies demonstrate localized conformational events contributing to RNA folding and unfolding that could not be observed by approaches monitoring only global structural transitions.
Collapse
Affiliation(s)
- Jeff D Ballin
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
30
|
Somsen OJG, Keukens LB, de Keijzer MN, van Hoek A, van Amerongen H. Structural heterogeneity in DNA: temperature dependence of 2-aminopurine fluorescence in dinucleotides. Chemphyschem 2007; 6:1622-7. [PMID: 16082664 DOI: 10.1002/cphc.200400648] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The fluorescent base analogue 2-aminopurine is a sensitive probe for local dynamics of DNA. Its fluorescence is quenched by interaction with the neighboring bases, but the underlying mechanisms are still under investigation. We studied 2-aminopurine fluorescence in dinucleotides with each of the natural bases. Consistently, two of the four fluorescence-decay components depend strongly on temperature. Our results indicate that these components are due to the excited-state dynamics of a single conformational state. We propose a variation of the gating model in which transient unstacking occurs in the excited state.
Collapse
Affiliation(s)
- Oscar J G Somsen
- Wageningen University, Laboratory of Biophysics, P.O. Box 8128, 6700 ET Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Flodell S, Petersen M, Girard F, Zdunek J, Kidd-Ljunggren K, Schleucher J, Wijmenga S. Solution structure of the apical stem-loop of the human hepatitis B virus encapsidation signal. Nucleic Acids Res 2006; 34:4449-57. [PMID: 16945960 PMCID: PMC1636360 DOI: 10.1093/nar/gkl582] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatitis B virus (HBV) replication is initiated by HBV RT binding to the highly conserved encapsidation signal, epsilon, at the 5′ end of the RNA pregenome. Epsilon contains an apical stem–loop, whose residues are either totally conserved or show rare non-disruptive mutations. Here we present the structure of the apical stem–loop based on NOE, RDC and 1H chemical shift NMR data. The 1H chemical shifts proved to be crucial to define the loop conformation. The loop sequence 5′-CUGUGC-3′ folds into a UGU triloop with a CG closing base pair and a bulged out C and hence forms a pseudo-triloop, a proposed protein recognition motif. In the UGU loop conformations most consistent with experimental data, the guanine nucleobase is located on the minor groove face and the two uracil bases on the major groove face. The underlying helix is disrupted by a conserved non-paired U bulge. This U bulge adopts multiple conformations, with the nucleobase being located either in the major groove or partially intercalated in the helix from the minor groove side, and bends the helical stem. The pseudo-triloop motif, together with the U bulge, may represent important anchor points for the initial recognition of epsilon by the viral RT.
Collapse
Affiliation(s)
| | - Michael Petersen
- Biophysical Chemistry, University of Nijmegen, Toernooiveld 16225ED Nijmegen, The Netherlands
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark5230 Odense M, Denmark
| | - Frederic Girard
- Biophysical Chemistry, University of Nijmegen, Toernooiveld 16225ED Nijmegen, The Netherlands
| | | | | | | | - Sybren Wijmenga
- Biophysical Chemistry, University of Nijmegen, Toernooiveld 16225ED Nijmegen, The Netherlands
- To whom correspondence should be addressed. Tel: +31 24 3653384/2678; Fax: +31 24 3652112;
| |
Collapse
|
32
|
Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:668-89. [PMID: 16872694 PMCID: PMC2291536 DOI: 10.1016/j.bbamcr.2006.05.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 02/06/2023]
Abstract
Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.
Collapse
Affiliation(s)
- Michelle L. Wallander
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Richard S. Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
- Corresponding author. Tel.: +1 608 262 5830. E-mail address: (R.S. Eisenstein)
| |
Collapse
|
33
|
Jean JM, Krueger BP. Structural Fluctuations and Excitation Transfer between Adenine and 2-Aminopurine in Single-Stranded Deoxytrinucleotides. J Phys Chem B 2006; 110:2899-909. [PMID: 16471900 DOI: 10.1021/jp054755+] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Steady-state fluorescence measurements on the deoxytrinucleotides (5')dTp2APpA(3') and (5')dAp2APpA(3') show a temperature-dependence and a viscosity-dependence for energy transfer that qualitatively differ from those seen in our previous study of charge transfer (CT) in these systems. Time-resolved anisotropy studies and molecular dynamics simulations are presented that provide a detailed characterization of the structural dynamics of these systems and how these fluctuations modulate the electronic interaction between 2AP and its neighbors. To gain quantitative insight into the interplay of conformational fluctuations and stacking-induced energy transfer, we present results from a new hybrid quantum-classical simulation method for computing the A --> 2AP energy transfer rate that makes use of the full three-dimensional nature of the donor and acceptor transition densities. Analysis of the results shows that the standard transition dipole-transition dipole approximation for the Coulombic coupling substantially overestimates the transfer rate and that the nearest neighbor energy transfer from adenine to 2AP occurs on a much faster time scale than that for CT. This suggests that, unlike the CT dynamics where conformational "gating" plays a critical role, the large amplitude fluctuations that modulate the process are largely "frozen" out on the energy transfer time scale.
Collapse
Affiliation(s)
- John M Jean
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63108, USA.
| | | |
Collapse
|
34
|
Zhang W, Chen SJ. Exploring the complex folding kinetics of RNA hairpins: I. General folding kinetics analysis. Biophys J 2005; 90:765-77. [PMID: 16272440 PMCID: PMC1367102 DOI: 10.1529/biophysj.105.062935] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Depending on the nucleotide sequence, the temperature, and other conditions, RNA hairpin-folding kinetics can be very complex. The complexity with a wide range of cooperative and noncooperative kinetic behaviors arises from the interplay between the formation of the loops, the disruption of the misfolded states, and the formation of the rate-limiting base stacks. With a rate constant model and a kinetic-cluster theory, we explore the broad landscape for RNA hairpin-folding kinetics. The model is validated through direct tests against several experimental measurements. The general kinetic folding mechanisms and the predicted great variety of folding kinetics are directly applicable and quantitatively testable in experiments. The results from this study suggest that 1), previous experimental findings based on the individual hairpins revealed only a small fraction of much broader and more complex RNA hairpin-folding landscapes; 2), even for structures as simple as hairpins, universal folding timescales and pathways do not exist; and 3), to treat the loop size as the sole factor to determine the hairpin-folding rate is an oversimplification.
Collapse
Affiliation(s)
- Wenbing Zhang
- Department of Physics and Astronomy and Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
35
|
Zhang W, Chen SJ. Exploring the complex folding kinetics of RNA hairpins: II. Effect of sequence, length, and misfolded states. Biophys J 2005; 90:778-87. [PMID: 16272439 PMCID: PMC1367103 DOI: 10.1529/biophysj.105.062950] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The complexity of RNA hairpin folding arises from the interplay between the loop formation, the disruption of the slow-breaking misfolded states, and the formation of the slow-forming native base stacks. We investigate the general physical mechanism for the dependence of the RNA hairpin folding kinetics on the sequence and the length of the hairpin loop and the helix stem. For example, 1), the folding would slow down when a stable GC basepair moves to the middle of the stem; 2), hairpin with GC basepair near the loop would fold/unfold faster than the one with GC near the tail of the stem; 3), within a certain range of the stem length, a longer stem can cause faster folding; and 4), certain misfolded states can assist folding through the formation of scaffold structures to lower the entropic barrier for the folding. All our findings are directly applicable and quantitatively testable in experiments. In addition, our results can be useful for molecular design to achieve desirable fast/slow-folding hairpins, hairpins with/without specific misfolded intermediates, and hairpins that fold along designed pathways.
Collapse
Affiliation(s)
- Wenbing Zhang
- Department of Physics and Astronomy and Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
36
|
Qin PZ, Feigon J, Hubbell WL. Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg(2+)-dependent docking of a GAAA tetraloop. J Mol Biol 2005; 351:1-8. [PMID: 15993422 DOI: 10.1016/j.jmb.2005.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 11/23/2022]
Abstract
The Mg(2+)-dependent GAAA tetraloop interaction with its 11 nucleotide receptor is one of the most frequently occurring long-range tertiary interactions in RNAs. To explore conformational changes in the receptor during tetraloop docking, nitroxide spin labels were attached at each of four uridine bases, one at a time, within an RNA molecule containing the receptor sequence. In the presence of Mg2+ and the tetraloop, the electron paramagnetic resonance (EPR) spectrum of one of the labeled bases reflected a large increase in mobility, indicating unstacking of the base upon tetraloop docking. This provides direct evidence that base unstacking is an intrinsic feature of the solution tetraloop-receptor complex formed in the presence of Mg2+. Additional evidence suggests that in solution the bound receptor conformation is similar to that observed in the crystal structure of a group I intron ribozyme domain. In Mg2+ alone, a receptor conformation with an unstacked base was not detectable, suggesting that this conformation is of higher standard state free energy than that of the free receptor. This leads to the conclusion that the extensive RNA-RNA interactions observed in the crystal structure of the tetraloop-receptor complex provide larger interaction energy than the measured apparent affinity between the tetraloop and the free receptor. This is compatible with a high specificity of the tetraloop-receptor interaction.
Collapse
Affiliation(s)
- Peter Z Qin
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
37
|
Wan C, Xia T, Becker HC, Zewail AH. Ultrafast unequilibrated charge transfer: A new channel in the quenching of fluorescent biological probes. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.06.101] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Showalter SA, Baker NA, Tang C, Hall KB. Iron responsive element RNA flexibility described by NMR and isotropic reorientational eigenmode dynamics. JOURNAL OF BIOMOLECULAR NMR 2005; 32:179-93. [PMID: 16132819 DOI: 10.1007/s10858-005-7948-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 05/01/2005] [Indexed: 05/04/2023]
Abstract
The first example of the application of reorientational eigenmode dynamics (RED) to RNA is shown here for the small and floppy Iron Responsive Element (IRE) RNA hairpin. Order parameters calculated for bases and riboses from a 12 ns molecular dynamics trajectory are compared to experimentally determined order parameters from 13C-1H NMR relaxation experiments, and shown to be in qualitative agreement. Given the small size of the IRE hairpin and its very flexible loop, isotropic RED (iRED) was also used to analyze the trajectory in order to describe its dynamic motions. iRED analysis shows that the global and internal dynamics of the IRE are not rigorously separable, which will result in inaccurate experimental order parameters. In addition, the iRED analysis described the many correlated motions that comprise the dynamics of the IRE RNA. The combined use of NMR relaxation, RED, and iRED provide a uniquely detailed description of IRE RNA dynamics.
Collapse
Affiliation(s)
- Scott A Showalter
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
39
|
Chapter 6 Molecular Modeling and Atomistic Simulation of Nucleic Acids. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1574-1400(05)01006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|