1
|
Amith W, Chen VT, Dutagaci B. Clustering of RNA Polymerase II C-Terminal Domain Models upon Phosphorylation. J Phys Chem B 2024; 128:10385-10396. [PMID: 39395159 PMCID: PMC11514005 DOI: 10.1021/acs.jpcb.4c04457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
RNA polymerase II (Pol II) C-terminal domain (CTD) is known to have crucial roles in regulating transcription. CTD has also been highly recognized for undergoing phase separation, which is further associated with its regulatory functions. However, the molecular interactions that the CTD forms to induce clustering to drive phase separations and how the phosphorylation of the CTD affects clustering are not entirely known. In this work, we studied the concentrated solutions of two heptapeptide repeat (2CTD) models at different phosphorylation patterns and protein and ion concentrations using all-atom molecular dynamics simulations to investigate clustering behavior and molecular interactions driving the cluster formation. Our results show that salt concentration and phosphorylation patterns play an important role in determining the clustering pattern, specifically at low protein concentrations. The balance between inter- and intrapeptide interactions and counterion coordination together impact the clustering behavior upon phosphorylation.
Collapse
Affiliation(s)
- Weththasinghage
D. Amith
- Department
of Molecular and Cell Biology, University
of California, Merced, California 95343, United States
| | - Vincent T. Chen
- Department
of Molecular and Cell Biology, University
of California, Merced, California 95343, United States
| | - Bercem Dutagaci
- Department
of Molecular and Cell Biology, University
of California, Merced, California 95343, United States
- Health
Sciences Research Institute, University
of California, Merced, California 95343, United States
| |
Collapse
|
2
|
Lee C, Quintana A, Suppanz I, Gomez-Auli A, Mittler G, Cissé II. Light-induced targeting enables proteomics on endogenous condensates. Cell 2024:S0092-8674(24)01140-1. [PMID: 39426378 DOI: 10.1016/j.cell.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Endogenous condensates with transient constituents are notoriously difficult to study with common biological assays like mass spectrometry and other proteomics profiling. Here, we report a method for light-induced targeting of endogenous condensates (LiTEC) in living cells. LiTEC combines the identification of molecular zip codes that target the endogenous condensates with optogenetics to enable controlled and reversible partitioning of an arbitrary cargo, such as enzymes commonly used in proteomics, into the condensate in a blue light-dependent manner. We demonstrate a proof of concept by combining LiTEC with proximity-based biotinylation (BioID) and uncover putative components of transcriptional condensates in mouse embryonic stem cells. Our approach opens the road to genome-wide functional studies of endogenous condensates.
Collapse
Affiliation(s)
- Choongman Lee
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Quintana
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ida Suppanz
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Alejandro Gomez-Auli
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ibrahim I Cissé
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
3
|
Boulanger C, Haidara N, Yague-Sanz C, Larochelle M, Jacques PÉ, Hermand D, Bachand F. Repression of pervasive antisense transcription is the primary role of fission yeast RNA polymerase II CTD serine 2 phosphorylation. Nucleic Acids Res 2024; 52:7572-7589. [PMID: 38801067 PMCID: PMC11260464 DOI: 10.1093/nar/gkae436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The RNA polymerase II carboxy-terminal domain (CTD) consists of conserved heptapeptide repeats that can be phosphorylated to influence distinct stages of the transcription cycle, including RNA processing. Although CTD-associated proteins have been identified, phospho-dependent CTD interactions have remained elusive. Proximity-dependent biotinylation (PDB) has recently emerged as an alternative approach to identify protein-protein associations in the native cellular environment. In this study, we present a PDB-based map of the fission yeast RNAPII CTD interactome in living cells and identify phospho-dependent CTD interactions by using a mutant in which Ser2 was replaced by alanine in every repeat of the fission yeast CTD. This approach revealed that CTD Ser2 phosphorylation is critical for the association between RNAPII and the histone methyltransferase Set2 during transcription elongation, but is not required for 3' end processing and transcription termination. Accordingly, loss of CTD Ser2 phosphorylation causes a global increase in antisense transcription, correlating with elevated histone acetylation in gene bodies. Our findings reveal that the fundamental role of CTD Ser2 phosphorylation is to establish a chromatin-based repressive state that prevents cryptic intragenic transcription initiation.
Collapse
Affiliation(s)
- Cédric Boulanger
- RNA Group, Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Nouhou Haidara
- RNA Group, Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Carlo Yague-Sanz
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000, Belgium
| | - Marc Larochelle
- RNA Group, Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | | | - Damien Hermand
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000, Belgium
- The Francis Crick Institute, 1 Midland Road London NW1 1AT, UK
| | - Francois Bachand
- RNA Group, Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
4
|
Mann R, Notani D. Transcription factor condensates and signaling driven transcription. Nucleus 2023; 14:2205758. [PMID: 37129580 PMCID: PMC10155639 DOI: 10.1080/19491034.2023.2205758] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023] Open
Abstract
Transcription Factor (TF) condensates are a heterogenous mix of RNA, DNA, and multiple co-factor proteins capable of modulating the transcriptional response of the cell. The dynamic nature and the spatial location of TF-condensates in the 3D nuclear space is believed to provide a fast response, which is on the same pace as the signaling cascade and yet ever-so-specific in the crowded environment of the nucleus. However, the current understanding of how TF-condensates can achieve these feet so quickly and efficiently is still unclear. In this review, we draw parallels with other protein condensates and share our speculations on how the nucleus uses these TF-condensates to achieve high transcriptional specificity and fidelity. We discuss the various constituents of TF-condensates, their properties, and the known and unknown functions of TF-condensates with a particular focus on steroid signaling-induced transcriptional programs.
Collapse
Affiliation(s)
- Rajat Mann
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Dimple Notani
- National Centre for Biological Sciences, TIFR, Bangalore, India
| |
Collapse
|
5
|
Lee HT, Lee IH, Kim JH, Lee S, Kwak S, Suh MY, Hwang IY, Kang BG, Cha SS, Lee BI, Lee SE, Choi J, Roe JS, Cho EJ, Youn HD. Phosphorylation of OGFOD1 by Cell Cycle-Dependent Kinase 7/9 Enhances the Transcriptional Activity of RNA Polymerase II in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13143418. [PMID: 34298635 PMCID: PMC8304009 DOI: 10.3390/cancers13143418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Among the causes of accelerating cancer properties, dysregulated transcription is considerably prominent in many cancers. However, it is difficult to target transcriptional machineries due to their fundamental importance. Compared to breast cancer cell lines, we found that OGFOD1 aggravates cancers by enhancing RNA polymerase II transcriptional activity and it is improved by cell cycle-dependent kinases. Overall, we uncovered the novel mechanism for how OGFOD1 maliciously functions in breast cancers, suggesting it as a rational cancer treatment target protein. Abstract 2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) expression is upregulated in a variety of cancers and has been related to poor prognosis. However, despite this significance to cancer progression, the precise oncogenic mechanism of OGFOD1 is not understood. We demonstrated that OGFOD1 plays a role in enhancing the transcriptional activity of RNA polymerase II in breast cancer cells. OGFOD1 directly binds to the C-terminal domain of RNA polymerase II to alter phosphorylation status. The elimination of OGFOD1 resulted in decreased tumor development. Additionally, cell cycle-dependent kinase 7 and cell cycle-dependent kinase 9, critical enzymes for activating RNA polymerase II, phosphorylated serine 256 of OGFOD1, whereas a non-phosphorylated mutant OGFOD1 failed to enhance transcriptional activation and tumor growth. Consequently, OGFOD1 helps promote tumor growth by enhancing RNA polymerase II, whereas simultaneous phosphorylation of OGFOD1 by CDK enzymes is essential in stimulating RNA polymerase II-mediated transcription both in vitro and in vivo, and expression of target genes.
Collapse
Affiliation(s)
- Han-Teo Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Il-Hwan Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Jae-Hwan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Sangho Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Sojung Kwak
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Min-Young Suh
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - In-Young Hwang
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Bu-Gyeong Kang
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea; (B.-G.K.); (S.-S.C.)
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea; (B.-G.K.); (S.-S.C.)
| | - Byung-Il Lee
- Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Sang-Eun Lee
- Cardiology Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jinmi Choi
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Eun-Jung Cho
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Correspondence: ; Tel.: +82-2-740-8250; Fax: +82-2-3668-7622
| |
Collapse
|
6
|
Chou J, Quigley DA, Robinson TM, Feng FY, Ashworth A. Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy. Cancer Discov 2020; 10:351-370. [DOI: 10.1158/2159-8290.cd-19-0528] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/29/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
|
7
|
Haijes HA, Koster MJE, Rehmann H, Li D, Hakonarson H, Cappuccio G, Hancarova M, Lehalle D, Reardon W, Schaefer GB, Lehman A, van de Laar IMBH, Tesselaar CD, Turner C, Goldenberg A, Patrier S, Thevenon J, Pinelli M, Brunetti-Pierri N, Prchalová D, Havlovicová M, Vlckova M, Sedláček Z, Lopez E, Ragoussis V, Pagnamenta AT, Kini U, Vos HR, van Es RM, van Schaik RFMA, van Essen TAJ, Kibaek M, Taylor JC, Sullivan J, Shashi V, Petrovski S, Fagerberg C, Martin DM, van Gassen KLI, Pfundt R, Falk MJ, McCormick EM, Timmers HTM, van Hasselt PM. De Novo Heterozygous POLR2A Variants Cause a Neurodevelopmental Syndrome with Profound Infantile-Onset Hypotonia. Am J Hum Genet 2019; 105:283-301. [PMID: 31353023 PMCID: PMC6699192 DOI: 10.1016/j.ajhg.2019.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/30/2019] [Indexed: 11/26/2022] Open
Abstract
The RNA polymerase II complex (pol II) is responsible for transcription of all ∼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.
Collapse
Affiliation(s)
- Hanneke A Haijes
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands; Department of Biomedical Genetics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands; German Cancer Consortium (DKTK) standort Freiburg and German Cancer Research Center (DKFZ), 79106 Heidelberg, Germany
| | - Maria J E Koster
- Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands; German Cancer Consortium (DKTK) standort Freiburg and German Cancer Research Center (DKFZ), 79106 Heidelberg, Germany
| | - Holger Rehmann
- Expertise Center for Structural Biology, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands; Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Oncode Institute, 3584 CT Utrecht, the Netherlands
| | - Dong Li
- Center for Applied Genomics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Human Genetics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, 80126 Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, 80126 Naples, Italy
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Daphne Lehalle
- Department of Genetics, Centre Hospitalier Universitaire de Dijon, 21000 Dijon, France
| | - Willie Reardon
- Department of Clinical and Medical Genetics, Our Lady's Hospital for Sick Children, D12 N512 Dublin, Ireland
| | - G Bradley Schaefer
- Department of Pediatrics, Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, AR 72223, USA
| | - Anna Lehman
- Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, BC V6H 3N1 Vancouver, Canada
| | - Ingrid M B H van de Laar
- Department of Clinical Genetics, Erasmus Medical University Center Rotterdam, 3000 CA Rotterdam, the Netherlands
| | - Coranne D Tesselaar
- Department of Pediatrics, Amphia Hospital Breda, 4818 CK Breda, the Netherlands
| | - Clesson Turner
- Department of Clinical Genetics and Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland, MD 20814, USA
| | - Alice Goldenberg
- Department of Genetics, Rouen University Hospital, Centre de Référence Anomalies du Développement, Normandy Centre for Genomic and Personalized Medicine, 76000 Rouen, France
| | - Sophie Patrier
- Department of Pathology, Rouen University Hospital, Centre de Référence Anomalies du Développement, 76000 Rouen, France
| | - Julien Thevenon
- Department of Genetics and Reproduction, Centre Hospitalier Universitaire de Grenoble, 38700 Grenoble, France
| | - Michele Pinelli
- Department of Translational Medicine, Federico II University, 80126 Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, 80126 Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, 80126 Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, 80126 Naples, Italy
| | - Darina Prchalová
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Markéta Havlovicová
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Markéta Vlckova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Zdeněk Sedláček
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Elena Lopez
- Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, BC V6H 3N1 Vancouver, Canada
| | - Vassilis Ragoussis
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Alistair T Pagnamenta
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Usha Kini
- Department of Genomic Medicine, Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Service Foundation Trust, OX3 7LE Oxford, UK
| | - Harmjan R Vos
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Oncode Institute, 3584 CT Utrecht, the Netherlands
| | - Robert M van Es
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Oncode Institute, 3584 CT Utrecht, the Netherlands
| | - Richard F M A van Schaik
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Oncode Institute, 3584 CT Utrecht, the Netherlands
| | - Ton A J van Essen
- Department of Clinical Genetics, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Maria Kibaek
- H.C. Andersen Children Hospital, Odense University Hospital, 5000 Odense, Denmark
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Jennifer Sullivan
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, NC 27710, USA
| | - Vandana Shashi
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, NC 27710, USA
| | - Slave Petrovski
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, NC 27710, USA; AstraZeneca Centre for Genomics Research, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, CB4 0WG Cambridge, United Kingdom; Department of Medicine, the University of Melbourne, VIC 3010 Melbourne, Australia
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | - Donna M Martin
- Departments of Pediatrics and Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, MI 48109, USA
| | - Koen L I van Gassen
- Department of Biomedical Genetics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, 6525 HR Nijmegen, the Netherlands
| | - Marni J Falk
- Division of Human Genetics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Mitochondrial Medicine Frontier Program, Division of Human Genetics, the Children's Hospital of Philadelphia, PA 19104, Philadelphia, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, the Children's Hospital of Philadelphia, PA 19104, Philadelphia, USA
| | - H T Marc Timmers
- Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands; Department of Urology, University Medical Center Freiburg, University of Freiburg, 79110 Freiburg, Germany
| | - Peter M van Hasselt
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands.
| |
Collapse
|
8
|
Dery KJ, Silver C, Yang L, Shively JE. Interferon regulatory factor 1 and a variant of heterogeneous nuclear ribonucleoprotein L coordinately silence the gene for adhesion protein CEACAM1. J Biol Chem 2018; 293:9277-9291. [PMID: 29720400 DOI: 10.1074/jbc.ra117.001507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
The adhesion protein carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is widely expressed in epithelial cells as a short cytoplasmic isoform (S-iso) and in leukocytes as a long cytoplasmic isoform (L-iso) and is frequently silenced in cancer by unknown mechanisms. Previously, we reported that interferon response factor 1 (IRF1) biases alternative splicing (AS) to include the variable exon 7 (E7) in CEACAM1, generating long cytoplasmic isoforms. We now show that IRF1 and a variant of heterogeneous nuclear ribonucleoprotein L (Lv1) coordinately silence the CEACAM1 gene. RNAi-mediated Lv1 depletion in IRF1-treated HeLa and melanoma cells induced significant CEACAM1 protein expression, reversed by ectopic Lv1 expression. The Lv1-mediated CEACAM1 repression resided in residues Gly71-Gly89 and Ala38-Gly89 in Lv1's N-terminal extension. ChIP analysis of IRF1- and FLAG-tagged Lv1-treated HeLa cells and global treatment with the global epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A indicated that IRF1 and Lv1 together induce chromatin remodeling, restricting IRF1 access to the CEACAM1 promoter. In interferon γ-treated HeLa cells, the transcription factor SP1 did not associate with the CEACAM1 promoter, but binding by upstream transcription factor 1 (USF1), a known CEACAM1 regulator, was greatly enhanced. ChIP-sequencing revealed that Lv1 overexpression in IRF1-treated cells induces transcriptional silencing across many genes, including DCC (deleted in colorectal carcinoma), associated with CEACAM5 in colon cancer. Notably, IRF1, but not IRF3 and IRF7, affected CEACAM1 expression via translational repression. We conclude that IRF1 and Lv1 coordinately regulate CEACAM1 transcription, alternative splicing, and translation and may significantly contribute to CEACAM1 silencing in cancer.
Collapse
Affiliation(s)
- Kenneth J Dery
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Craig Silver
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, and
| | - Lu Yang
- The Integrative Genomics and Bioinformatics Core, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - John E Shively
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010,
| |
Collapse
|
9
|
Bates DO, Morris JC, Oltean S, Donaldson LF. Pharmacology of Modulators of Alternative Splicing. Pharmacol Rev 2017; 69:63-79. [PMID: 28034912 PMCID: PMC5226212 DOI: 10.1124/pr.115.011239] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
More than 95% of genes in the human genome are alternatively spliced to form multiple transcripts, often encoding proteins with differing or opposing function. The control of alternative splicing is now being elucidated, and with this comes the opportunity to develop modulators of alternative splicing that can control cellular function. A number of approaches have been taken to develop compounds that can experimentally, and sometimes clinically, affect splicing control, resulting in potential novel therapeutics. Here we develop the concepts that targeting alternative splicing can result in relatively specific pathway inhibitors/activators that result in dampening down of physiologic or pathologic processes, from changes in muscle physiology to altering angiogenesis or pain. The targets and pharmacology of some of the current inhibitors/activators of alternative splicing are demonstrated and future directions discussed.
Collapse
Affiliation(s)
- David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Jonathan C Morris
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Sebastian Oltean
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Lucy F Donaldson
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| |
Collapse
|
10
|
Hollander D, Naftelberg S, Lev-Maor G, Kornblihtt AR, Ast G. How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing? Trends Genet 2016; 32:596-606. [PMID: 27507607 DOI: 10.1016/j.tig.2016.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 11/19/2022]
Abstract
The splice sites (SSs) delimiting an intron are brought together in the earliest step of spliceosome assembly yet it remains obscure how SS pairing occurs, especially when introns are thousands of nucleotides long. Splicing occurs in vivo in mammals within minutes regardless of intron length, implying that SS pairing can instantly follow transcription. Also, factors required for SS pairing, such as the U1 small nuclear ribonucleoprotein (snRNP) and U2AF65, associate with RNA polymerase II (RNAPII), while nucleosomes preferentially bind exonic sequences and associate with U2 snRNP. Based on recent publications, we assume that the 5' SS-bound U1 snRNP can remain tethered to RNAPII until complete synthesis of the downstream intron and exon. An additional U1 snRNP then binds the downstream 5' SS, whereas the RNAPII-associated U2AF65 binds the upstream 3' SS to facilitate SS pairing along with exon definition. Next, the nucleosome-associated U2 snRNP binds the branch site to advance splicing complex assembly. This may explain how RNAPII and chromatin are involved in spliceosome assembly and how introns lengthened during evolution with a relatively minimal compromise in splicing.
Collapse
Affiliation(s)
- Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Alberto R Kornblihtt
- IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
11
|
Garrido-Lecca A, Saldi T, Blumenthal T. Localization of RNAPII and 3' end formation factor CstF subunits on C. elegans genes and operons. Transcription 2016; 7:96-110. [PMID: 27124504 DOI: 10.1080/21541264.2016.1168509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcription termination is mechanistically coupled to pre-mRNA 3' end formation to prevent transcription much beyond the gene 3' end. C. elegans, however, engages in polycistronic transcription of operons in which 3' end formation between genes is not accompanied by termination. We have performed RNA polymerase II (RNAPII) and CstF ChIP-seq experiments to investigate at a genome-wide level how RNAPII can transcribe through multiple poly-A signals without causing termination. Our data shows that transcription proceeds in some ways as if operons were composed of multiple adjacent single genes. Total RNAPII shows a small peak at the promoter of the gene cluster and a much larger peak at 3' ends. These 3' peaks coincide with maximal phosphorylation of Ser2 within the C-terminal domain (CTD) of RNAPII and maximal localization of the 3' end formation factor CstF. This pattern occurs at all 3' ends including those at internal sites in operons where termination does not occur. Thus the normal mechanism of 3' end formation does not always result in transcription termination. Furthermore, reduction of CstF50 by RNAi did not substantially alter the pattern of CstF64, total RNAPII, or Ser2 phosphorylation at either internal or terminal 3' ends. However, CstF50 RNAi did result in a subtle reduction of CstF64 binding upstream of the site of 3' cleavage, suggesting that the CstF50/CTD interaction may facilitate bringing the 3' end machinery to the transcription complex.
Collapse
Affiliation(s)
- Alfonso Garrido-Lecca
- a Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , CO , USA
| | - Tassa Saldi
- a Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , CO , USA
| | - Thomas Blumenthal
- a Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , CO , USA
| |
Collapse
|
12
|
Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL. The Biogenesis of Nascent Circular RNAs. Cell Rep 2016; 15:611-624. [DOI: 10.1016/j.celrep.2016.03.058] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 12/18/2022] Open
|
13
|
Lu L, Fan D, Hu CW, Worth M, Ma ZX, Jiang J. Distributive O-GlcNAcylation on the Highly Repetitive C-Terminal Domain of RNA Polymerase II. Biochemistry 2016; 55:1149-58. [PMID: 26807597 DOI: 10.1021/acs.biochem.5b01280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
O-GlcNAcylation is a nutrient-responsive glycosylation that plays a pivotal role in transcriptional regulation. Human RNA polymerase II (Pol II) is extensively modified by O-linked N-acetylglucosamine (O-GlcNAc) on its unique C-terminal domain (CTD), which consists of 52 heptad repeats. One approach to understanding the function of glycosylated Pol II is to determine the mechanism of dynamic O-GlcNAcylation on the CTD. Here, we discovered that the Pol II CTD can be extensively O-GlcNAcylated in vitro and in cells. Efficient glycosylation requires a minimum of 20 heptad repeats of the CTD and more than half of the N-terminal domain of O-GlcNAc transferase (OGT). Under conditions of saturated sugar donor, we monitored the attachment of more than 20 residues of O-GlcNAc to the full-length CTD. Surprisingly, glycosylation on the periodic CTD follows a distributive mechanism, resulting in highly heterogeneous glycoforms. Our data suggest that initial O-GlcNAcylation can take place either on the proximal or on the distal region of the CTD, and subsequent glycosylation occurs similarly over the entire CTD with nonuniform distributions. Moreover, removal of O-GlcNAc from glycosylated CTD is also distributive and is independent of O-GlcNAcylation level. Our results suggest that O-GlcNAc cycling enzymes can employ a similar mechanism to react with other protein substrates on multiple sites. Distributive O-GlcNAcylation on Pol II provides another regulatory mechanism of transcription in response to fluctuating cellular conditions.
Collapse
Affiliation(s)
- Lei Lu
- Pharmaceutical Sciences Division, School of Pharmacy, and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Dacheng Fan
- Pharmaceutical Sciences Division, School of Pharmacy, and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Chia-Wei Hu
- Pharmaceutical Sciences Division, School of Pharmacy, and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Matthew Worth
- Pharmaceutical Sciences Division, School of Pharmacy, and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Zhi-Xiong Ma
- Pharmaceutical Sciences Division, School of Pharmacy, and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| |
Collapse
|
14
|
Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem 2015; 84:165-98. [PMID: 26034889 DOI: 10.1146/annurev-biochem-060614-034242] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative precursor messenger RNA (pre-mRNA) splicing plays a pivotal role in the flow of genetic information from DNA to proteins by expanding the coding capacity of genomes. Regulation of alternative splicing is as important as regulation of transcription to determine cell- and tissue-specific features, normal cell functioning, and responses of eukaryotic cells to external cues. Its importance is confirmed by the evolutionary conservation and diversification of alternative splicing and the fact that its deregulation causes hereditary disease and cancer. This review discusses the multiple layers of cotranscriptional regulation of alternative splicing in which chromatin structure, DNA methylation, histone marks, and nucleosome positioning play a fundamental role in providing a dynamic scaffold for interactions between the splicing and transcription machineries. We focus on evidence for how the kinetics of RNA polymerase II (RNAPII) elongation and the recruitment of splicing factors and adaptor proteins to chromatin components act in coordination to regulate alternative splicing.
Collapse
Affiliation(s)
- Shiran Naftelberg
- Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel;
| | | | | | | |
Collapse
|
15
|
Wang Y, Liu J, Huang BO, Xu YM, Li J, Huang LF, Lin J, Zhang J, Min QH, Yang WM, Wang XZ. Mechanism of alternative splicing and its regulation. Biomed Rep 2014; 3:152-158. [PMID: 25798239 DOI: 10.3892/br.2014.407] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of precursor mRNA is an essential mechanism to increase the complexity of gene expression, and it plays an important role in cellular differentiation and organism development. Regulation of alternative splicing is a complicated process in which numerous interacting components are at work, including cis-acting elements and trans-acting factors, and is further guided by the functional coupling between transcription and splicing. Additional molecular features, such as chromatin structure, RNA structure and alternative transcription initiation or alternative transcription termination, collaborate with these basic components to generate the protein diversity due to alternative splicing. All these factors contributing to this one fundamental biological process add up to a mechanism that is critical to the proper functioning of cells. Any corruption of the process may lead to disruption of normal cellular function and the eventuality of disease. Cancer is one of those diseases, where alternative splicing may be the basis for the identification of novel diagnostic and prognostic biomarkers, as well as new strategies for therapy. Thus, an in-depth understanding of alternative splicing regulation has the potential not only to elucidate fundamental biological principles, but to provide solutions for various diseases.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Liu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - B O Huang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Yan-Mei Xu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Lin-Feng Huang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jin Lin
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Zhang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Qing-Hua Min
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Wei-Ming Yang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| |
Collapse
|
16
|
Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing. Mol Cell Biol 2014; 34:2488-98. [PMID: 24752900 DOI: 10.1128/mcb.00181-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The C-terminal domain of the RNA polymerase II largest subunit (the Rpb1 CTD) is composed of tandem heptad repeats of the consensus sequence Y(1)S(2)P(3)T(4)S(5)P(6)S(7). We reported previously that Thr 4 is phosphorylated and functions in histone mRNA 3'-end formation in chicken DT40 cells. Here, we have extended our studies on Thr 4 and to other CTD mutations by using these cells. We found that an Rpb1 derivative containing only the N-terminal half of the CTD, as well as a similar derivative containing all-consensus repeats (26r), conferred full viability, while the C-terminal half, with more-divergent repeats, did not, reflecting a strong and specific defect in snRNA 3'-end formation. Mutation in 26r of all Ser 2 (S2A) or Ser 5 (S5A) residues resulted in lethality, while Ser 7 (S7A) mutants were fully viable. While S2A and S5A cells displayed defects in transcription and RNA processing, S7A cells behaved identically to 26r cells in all respects. Finally, we found that Thr 4 was phosphorylated by cyclin-dependent kinase 9 in cells and dephosphorylated both in vitro and in vivo by the phosphatase Fcp1.
Collapse
|
17
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
18
|
Abstract
Precursor mRNA splicing is one of the most highly regulated processes in metazoan species. In addition to generating vast repertoires of RNAs and proteins, splicing has a profound impact on other gene regulatory layers, including mRNA transcription, turnover, transport, and translation. Conversely, factors regulating chromatin and transcription complexes impact the splicing process. This extensive crosstalk between gene regulatory layers takes advantage of dynamic spatial, physical, and temporal organizational properties of the cell nucleus, and further emphasizes the importance of developing a multidimensional understanding of splicing control.
Collapse
|
19
|
Hsu WL, Oldfield CJ, Xue B, Meng J, Huang F, Romero P, Uversky VN, Dunker AK. Exploring the binding diversity of intrinsically disordered proteins involved in one-to-many binding. Protein Sci 2013; 22:258-73. [PMID: 23233352 DOI: 10.1002/pro.2207] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 11/09/2022]
Abstract
Molecular recognition features (MoRFs) are intrinsically disordered protein regions that bind to partners via disorder-to-order transitions. In one-to-many binding, a single MoRF binds to two or more different partners individually. MoRF-based one-to-many protein-protein interaction (PPI) examples were collected from the Protein Data Bank, yielding 23 MoRFs bound to 2-9 partners, with all pairs of same-MoRF partners having less than 25% sequence identity. Of these, 8 MoRFs were bound to 2-9 partners having completely different folds, whereas 15 MoRFs were bound to 2-5 partners having the same folds but with low sequence identities. For both types of partner variation, backbone and side chain torsion angle rotations were used to bring about the conformational changes needed to enable close fits between a single MoRF and distinct partners. Alternative splicing events (ASEs) and posttranslational modifications (PTMs) were also found to contribute to distinct partner binding. Because ASEs and PTMs both commonly occur in disordered regions, and because both ASEs and PTMs are often tissue-specific, these data suggest that MoRFs, ASEs, and PTMs may collaborate to alter PPI networks in different cell types. These data enlarge the set of carefully studied MoRFs that use inherent flexibility and that also use ASE-based and/or PTM-based surface modifications to enable the same disordered segment to selectively associate with two or more partners. The small number of residues involved in MoRFs and in their modifications by ASEs or PTMs may simplify the evolvability of signaling network diversity.
Collapse
Affiliation(s)
- Wei-Lun Hsu
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Schor IE, Gómez Acuña LI, Kornblihtt AR. Coupling between transcription and alternative splicing. Cancer Treat Res 2013; 158:1-24. [PMID: 24222352 DOI: 10.1007/978-3-642-31659-3_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The scenario of alternative splicing regulation is far more complex than the classical picture of a pre-mRNA being processed post-transcriptionally in more than one way. Introns are efficiently removed while transcripts are still being synthesized, supporting the idea of a co-transcriptional regulation of alternative splicing. Evidence of a functional coupling between splicing and transcription has recently emerged as it was observed that properties of one process may affect the outcome of the other. Co-transcriptionality is thought to improve splicing efficiency and kinetics by directing the nascent pre-mRNA into proper spliceosome assembly and favoring splicing factor recruitment. Two models have been proposed to explain the coupling of transcription and alternative splicing: in the recruitment model, promoters and pol II status affect the recruitment to the transcribing gene of splicing factors or bifunctional factors acting on both transcription and splicing; in the kinetic model, differences in the elongation rate of pol II would determine the timing in which splicing sites are presented, and thus the outcome of alternative splicing decisions. In the later model, chromatin structure has emerged as a key regulator. Although definitive evidence for transcriptionally coupled alternative splicing alterations in tumor development or cancer pathogenesis is still missing, many alternative splicing events altered in cancer might be subject to transcription-splicing coupling regulation.
Collapse
Affiliation(s)
- Ignacio E Schor
- Laboratorio de Fisiologia y Biologia Molecular, Departmento de Fisiologia, Biologia Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, PAB. II, 20 Piso, Buenos Aires, 1428, Argentina
| | | | | |
Collapse
|
21
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 478] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
22
|
Montes M, Becerra S, Sánchez-Álvarez M, Suñé C. Functional coupling of transcription and splicing. Gene 2012; 501:104-17. [DOI: 10.1016/j.gene.2012.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/13/2023]
|
23
|
Tsao DC, Park NJ, Nag A, Martinson HG. Prolonged α-amanitin treatment of cells for studying mutated polymerases causes degradation of DSIF160 and other proteins. RNA (NEW YORK, N.Y.) 2012; 18:222-229. [PMID: 22194310 PMCID: PMC3264909 DOI: 10.1261/rna.030452.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/04/2011] [Indexed: 05/31/2023]
Abstract
A useful method for studying the function of the mammalian RNA polymerase II takes advantage of the extreme sensitivity of its largest subunit, Rpb1, to α-amanitin. Mutations of interest are introduced into an α-amanitin-resistant version of Rpb1, which is then expressed ectopically in cells. The phenotypes of these cells are then examined after inhibiting the endogenous wild-type polymerase with α-amanitin. Here, we show that cells that are enabled to grow in α-amanitin by expression of an α-amanitin-resistant Rpb1 exhibit changes in cell physiology that can lead to misleading experimental outcomes. The changes we have characterized include the accelerated degradation of some proteins, such as DSIF160, and the reduced rate of synthesis of others. In one series of experiments, we examined an α-amanitin-resistant construct, with a mutant C-terminal domain (CTD), that was unable to direct poly(A)-dependent transcription termination in cells growing in α-amanitin. The potential interpretation that the termination defect in this construct is due to the mutation in the CTD was rejected when the construct was found to be termination-competent in cells grown in the absence of α-amanitin. Instead, it appears that certain termination factors become limiting when the cells are grown in α-amanitin, presumably due to the α-amanitin-induced degradation we have characterized and/or to the inadequate transcription of certain genes by the α-amanitin-resistant Rpb1-containing polymerase.
Collapse
Affiliation(s)
- David C. Tsao
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | - Noh Jin Park
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | - Anita Nag
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | - Harold G. Martinson
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| |
Collapse
|
24
|
Sharma A, Lou H. Depolarization-mediated regulation of alternative splicing. Front Neurosci 2011; 5:141. [PMID: 22207834 PMCID: PMC3246316 DOI: 10.3389/fnins.2011.00141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/06/2011] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing in eukaryotes plays an important role in regulating gene expression by selectively including alternative exons. A wealth of information has been accumulated that explains how alternative exons are selected in a developmental stage- or tissue-specific fashion. However, our knowledge of how cells respond to environmental changes to alter alternative splicing is very limited. For example, although a number of alternative exons have been shown to be regulated by calcium level alterations, the underlying mechanisms are not well understood. As calcium signaling in neurons plays a crucial role in essential neuronal functions such as learning and memory formation, it is important to understand how this process is regulated at every level in gene expression. The significance of the dynamic control of alternative splicing in response to changes of calcium levels has been largely unappreciated. In this communication, we will summarize the recent advances in calcium signaling-mediated alternative splicing that have provided some insights into the important regulatory mechanisms. In addition to describing the cis-acting RNA elements on the pre-mRNA molecules that respond to changes of intracellular calcium levels, we will summarize how splicing regulators change and affect alternative splicing in this process. We will also discuss a novel mode of calcium-mediated splicing regulation at the level of chromatin structure and transcription.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Genetics, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
| | - Hua Lou
- Department of Genetics, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
| |
Collapse
|
25
|
Sharma A, Markey M, Torres-Muñoz K, Varia S, Kadakia M, Bubulya A, Bubulya PA. Son maintains accurate splicing for a subset of human pre-mRNAs. J Cell Sci 2011; 124:4286-98. [PMID: 22193954 PMCID: PMC3258111 DOI: 10.1242/jcs.092239] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Serine-arginine-rich (SR) proteins play a key role in alternative pre-mRNA splicing in eukaryotes. We recently showed that a large SR protein called Son has unique repeat motifs that are essential for maintaining the subnuclear organization of pre-mRNA processing factors in nuclear speckles. Motif analysis of Son highlights putative RNA interaction domains that suggest a direct role for Son in pre-mRNA splicing. Here, we used in situ approaches to show that Son localizes to a reporter minigene transcription site, and that RNAi-mediated Son depletion causes exon skipping on reporter transcripts at this transcription site. A genome-wide exon microarray analysis was performed to identify human transcription and splicing targets of Son. Our data show that Son-regulated splicing encompasses all known types of alternative splicing, the most common being alternative splicing of cassette exons. We confirmed that knockdown of Son leads to exon skipping in pre-mRNAs for chromatin-modifying enzymes, including ADA, HDAC6 and SetD8. This study reports a comprehensive view of human transcription and splicing targets for Son in fundamental cellular pathways such as integrin-mediated cell adhesion, cell cycle regulation, cholesterol biosynthesis, apoptosis and epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Alok Sharma
- Biomedical Sciences Ph.D. Program, Wright State University, Dayton, OH 45435, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Žumer K, Plemenitaš A, Saksela K, Peterlin BM. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res 2011; 39:7908-19. [PMID: 21724609 PMCID: PMC3185428 DOI: 10.1093/nar/gkr527] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 01/17/2023] Open
Abstract
Autoimmune regulator (AIRE) is a transcription factor that induces the expression of a large subset of otherwise strictly tissue restricted antigens in medullary thymic epithelial cells, thereby enabling their presentation to developing T cells for negative selection. Mutations in AIRE lead to autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a rare monogenetic disease. Although it has been reported that AIRE interacts with proteins involved in nuclear transport, DNA-damage response, chromatin remodeling, transcription and pre-mRNA-splicing, the precise mechanism of AIRE-induced tissue restricted antigen expression has remained elusive. In this study, we investigated an APECED patient mutation that causes the loss of the extreme C-terminus of AIRE and found that this mutant protein is transcriptionaly inactive. When tethered heterologously to DNA, this domain could stimulate transcription and splicing by itself. Moreover, the loss of this C-terminus disrupted interactions with the positive transcription elongation factor b (P-TEFb). Via P-TEFb, AIRE increased levels of RNA polymerase II on and enhanced pre-mRNA splicing of heterologous and endogenous target genes. Indeed, the inhibition of CDK9, the kinase subunit of P-TEFb, inhibited AIRE-induced pre-mRNA splicing of these genes. Thus, AIRE requires P-TEFb to activate transcription elongation and co-transcriptional processing of target genes.
Collapse
Affiliation(s)
- Kristina Žumer
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia, Department of Virology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland and Department of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, 533 Parnassus Ave., San Francisco, CA 94143-070, USA
| | - Ana Plemenitaš
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia, Department of Virology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland and Department of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, 533 Parnassus Ave., San Francisco, CA 94143-070, USA
| | - Kalle Saksela
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia, Department of Virology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland and Department of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, 533 Parnassus Ave., San Francisco, CA 94143-070, USA
| | - B. Matija Peterlin
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia, Department of Virology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland and Department of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, 533 Parnassus Ave., San Francisco, CA 94143-070, USA
| |
Collapse
|
27
|
Brody Y, Shav-Tal Y. Transcription and splicing: when the twain meet. Transcription 2011; 2:216-20. [PMID: 22231117 PMCID: PMC3265778 DOI: 10.4161/trns.2.5.17273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/14/2011] [Indexed: 11/19/2022] Open
Abstract
Splicing can occur co-transcriptionally. What happens when the splicing reaction lags after the completed transcriptional process? We found that elongation rates are independent of ongoing splicing on the examined genes and suggest that when transcription has completed but splicing has not, the splicing machinery is retained at the site of transcription, independently of the polymerase.
Collapse
Affiliation(s)
- Yehuda Brody
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University; Ramat-Gan, Israel
| | | |
Collapse
|
28
|
RNA polymerase II C-terminal domain phosphorylation patterns in Caenorhabditis elegans operons, polycistronic gene clusters with only one promoter. Mol Cell Biol 2010; 30:3887-93. [PMID: 20498277 DOI: 10.1128/mcb.00325-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heptad repeat of the RNA polymerase II (RNAPII) C-terminal domain is phosphorylated at serine 5 near gene 5' ends and serine 2 near 3' ends in order to recruit pre-mRNA processing factors. Ser-5(P) is associated with gene 5' ends to recruit capping enzymes, whereas Ser-2(P) is associated with gene 3' ends to recruit cleavage and polyadenylation factors. In the gene clusters called operons in Caenorhabditis elegans, there is generally only a single promoter, but each gene in the operon forms a 3' end by the usual mechanism. Although downstream operon genes have 5' ends, they receive their caps by trans splicing rather than by capping enzymes. Thus, they are predicted to not need Ser-5 phosphorylation. Here we show by RNAPII chromatin immunoprecipitation (ChIP) that internal operon gene 5' ends do indeed lack Ser-5(P) peaks. In contrast, Ser-2(P) peaks occur at each mRNA 3' end, where the 3'-end formation machinery binds. These results provide additional support for the idea that the serine phosphorylation of the C-terminal domain (CTD) serves to bring RNA-processing enzymes to the transcription complex. Furthermore, these results provide a novel demonstration that genes in operons are cotranscribed from a single upstream promoter.
Collapse
|
29
|
The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem Sci 2010; 35:497-504. [PMID: 20418102 DOI: 10.1016/j.tibs.2010.03.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 03/28/2010] [Accepted: 03/30/2010] [Indexed: 01/27/2023]
Abstract
Alternative splicing is controlled by cis-regulatory sequences present in the pre-mRNA and their cognate trans-acting factors, as well as by its coupling to RNA polymerase II (pol II) transcription. A unique feature of this polymerase is the presence of a highly repetitive carboxy terminal domain (CTD), which is subject to multiple regulatory post-translational modifications. CTD phosphorylation events affect the transcriptional properties of pol II and the outcome of co-transcriptional alternative splicing by mediating the effects of splicing factors and by modulating transcription elongation rates. Here, we discuss various examples of involvement of the CTD in alternative splicing regulation as well as the current methodological limitations in deciphering the detailed mechanisms of this process.
Collapse
|
30
|
Sharma A, Takata H, Shibahara KI, Bubulya A, Bubulya PA. Son is essential for nuclear speckle organization and cell cycle progression. Mol Biol Cell 2010; 21:650-63. [PMID: 20053686 PMCID: PMC2820428 DOI: 10.1091/mbc.e09-02-0126] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 11/24/2009] [Accepted: 12/17/2009] [Indexed: 11/11/2022] Open
Abstract
Subnuclear organization and spatiotemporal regulation of pre-mRNA processing factors is essential for the production of mature protein-coding mRNAs. We have discovered that a large protein called Son has a novel role in maintaining proper nuclear organization of pre-mRNA processing factors in nuclear speckles. The primary sequence of Son contains a concentrated region of multiple unique tandem repeat motifs that may support a role for Son as a scaffolding protein for RNA processing factors in nuclear speckles. We used RNA interference (RNAi) approaches and high-resolution microscopy techniques to study the functions of Son in the context of intact cells. Although Son precisely colocalizes with pre-mRNA splicing factors in nuclear speckles, its depletion by RNAi leads to cell cycle arrest in metaphase and causes dramatic disorganization of small nuclear ribonuclear protein and serine-arginine rich protein splicing factors during interphase. Here, we propose that Son is essential for appropriate subnuclear organization of pre-mRNA splicing factors and for promoting normal cell cycle progression.
Collapse
Affiliation(s)
- Alok Sharma
- *Biomedical Sciences Ph.D. Program
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| | - Hideaki Takata
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Kei-ichi Shibahara
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Athanasios Bubulya
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| | - Paula A. Bubulya
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| |
Collapse
|
31
|
Collart C, Ramis JM, Down TA, Smith JC. Smicl is required for phosphorylation of RNA polymerase II and affects 3'-end processing of RNA at the midblastula transition in Xenopus. Development 2009; 136:3451-61. [PMID: 19783735 DOI: 10.1242/dev.027714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Smicl (Smad-interacting CPSF 30-like) is an unusual protein that interacts with transcription factors as well as with the cleavage and polyadenylation specificity factor (CPSF). Previous work has shown that Smicl is expressed maternally in the Xenopus embryo and is later required for transcription of Chordin. In this paper we search for additional targets of Smicl. We identify many genes whose onset of expression at the midblastula transition (MBT) requires Smicl and is correlated with the translocation of Smicl from cytoplasm to nucleus. At least one such gene, Xiro1, is regulated via 3'-end processing. In searching for a general mechanism by which Smicl might regulate gene expression at the MBT, we have discovered that it interacts with the tail of Rpb1, the largest subunit of RNA polymerase II. Our results show that Smicl is required for the phosphorylation of the Rpb1 tail at serine 2 of the repeated heptapeptide YSPTSPS. This site becomes hyperphosphorylated at the MBT, thus allowing the docking of proteins required for elongation of transcription and RNA processing. Our work links the onset of zygotic gene expression in the Xenopus embryo with the translocation of Smicl from cytoplasm to nucleus, the phosphorylation of Rpb1 and the 3'-end processing of newly transcribed mRNAs.
Collapse
Affiliation(s)
- Clara Collart
- Wellcome Trust/CR-UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
32
|
Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 2009; 16:1128-33. [PMID: 19820712 PMCID: PMC2783620 DOI: 10.1038/nsmb.1666] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 08/11/2009] [Indexed: 12/26/2022]
Abstract
Transcription and splicing must proceed over genomic distances of hundreds of kilobases in many human genes. However, the rates and mechanisms of these processes are poorly understood. We have used the compound 5,6-Dichlorobenzimidazole 1-b-D-ribofuranoside (DRB) that reversibly blocks gene transcription in vivo combined with quantitative RT-PCR to analyze the transcription and RNA processing of several long human genes. We found that the rate of RNA polymerase II transcription over long genomic distances is about 3.8 kb per minute and is nearly the same whether transcribing long introns or exon rich regions. We also determined that co-transcriptional pre-mRNA splicing of U2-dependent introns occurs within 5–10 minutes of synthesis irrespective of intron length between 1 kb and 240 kb. Similarly, U12-dependent introns were co-transcriptionally spliced within 10 minutes of synthesis confirming that these introns are spliced within the nuclear compartment. These results show that the expression of large genes is surprisingly rapid and efficient.
Collapse
|
33
|
Chapman RD, Heidemann M, Hintermair C, Eick D. Molecular evolution of the RNA polymerase II CTD. Trends Genet 2008; 24:289-96. [PMID: 18472177 DOI: 10.1016/j.tig.2008.03.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 11/19/2022]
Abstract
In higher eukaryotes, an unusual C-terminal domain (CTD) is crucial to the function of RNA polymerase II in transcription. The CTD consists of multiple heptapeptide repeats; differences in the number of repeats between organisms and their degree of conservation have intrigued researchers for two decades. Here, we review the evolution of the CTD at the molecular level. Several primitive motifs have been integrated into compound heptads that can be readily amplified. The selection of phosphorylatable residues in the heptad repeat provided the opportunity for advanced gene regulation in eukaryotes. Current findings suggest that the CTD should be considered as a collection of continuous overlapping motifs as opposed to a specific functional unit defined by a heptad.
Collapse
Affiliation(s)
- Rob D Chapman
- Institute for Clinical Molecular Biology and Tumour Genetics, Helmholtz Center for Environmental Health, Center for Integrated Protein Science (CiPSM), D-81377 Munich, Germany.
| | | | | | | |
Collapse
|
34
|
de Almeida SF, Carmo-Fonseca M. The CTD role in cotranscriptional RNA processing and surveillance. FEBS Lett 2008; 582:1971-6. [PMID: 18435923 DOI: 10.1016/j.febslet.2008.04.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 04/13/2008] [Accepted: 04/14/2008] [Indexed: 11/24/2022]
Abstract
In higher eukaryotes, the production of mature messenger RNA that exits the nucleus to be translated into protein requires precise and extensive processing of the nascent transcript. The processing steps include 5'-end capping, splicing, and 3'-end formation. Pre-mRNA processing is coupled to transcription by mechanisms that are not well understood but involve the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. This review focuses on recent findings that provide novel insight into the role of the CTD in promoting RNA processing and surveillance.
Collapse
Affiliation(s)
- Sérgio F de Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | |
Collapse
|
35
|
Custódio N, Vivo M, Antoniou M, Carmo-Fonseca M. Splicing- and cleavage-independent requirement of RNA polymerase II CTD for mRNA release from the transcription site. ACTA ACUST UNITED AC 2007; 179:199-207. [PMID: 17938247 PMCID: PMC2064756 DOI: 10.1083/jcb.200612109] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Eukaryotic cells have a surveillance mechanism that identifies aberrantly processed pre-mRNAs and prevents their flow to the cytoplasm by tethering them near the site of transcription. Here we provide evidence that mRNA release from the transcription site requires the heptad repeat structure of the C-terminal domain (CTD) of RNA polymerase II. The mammalian CTD, which is essential for normal co-transcriptional maturation of mRNA precursors, comprises 52 heptad repeats. We show that a truncated CTD containing 31 repeats (heptads 1–23, 36–38, and 48–52) is sufficient to support transcription, splicing, cleavage, and polyadenylation. Yet, the resulting mRNAs are mostly retained in the vicinity of the gene after transcriptional shutoff. The retained mRNAs maintain the ability to recruit components of the exon junction complex and the nuclear exosome subunit Rrp6p, suggesting that binding of these proteins is not sufficient for RNA release. We propose that the missing heptads in the truncated CTD mutant are required for binding of proteins implicated in a final co-transcriptional maturation of spliced and 3′ end cleaved and polyadenylated mRNAs into export-competent ribonucleoprotein particles.
Collapse
Affiliation(s)
- Noélia Custódio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | |
Collapse
|
36
|
Young TM, Tsai M, Tian B, Mathews MB, Pe'ery T. Cellular mRNA activates transcription elongation by displacing 7SK RNA. PLoS One 2007; 2:e1010. [PMID: 17925858 PMCID: PMC1995758 DOI: 10.1371/journal.pone.0001010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 09/11/2007] [Indexed: 11/24/2022] Open
Abstract
The positive transcription elongation factor P-TEFb is a pivotal regulator of gene expression in higher cells. Originally identified in Drosophila, attention was drawn to human P-TEFb by the discovery of its role as an essential cofactor for HIV-1 transcription. It is recruited to HIV transcription complexes by the viral transactivator Tat, and to cellular transcription complexes by a plethora of transcription factors. P-TEFb activity is negatively regulated by sequestration in a complex with the HEXIM proteins and 7SK RNA. The mechanism of P-TEFb release from the inhibitory complex is not known. We report that P-TEFb-dependent transcription from the HIV promoter can be stimulated by the mRNA encoding HIC, the human I-mfa domain-containing protein. The 3′-untranslated region of HIC mRNA is necessary and sufficient for this action. It forms complexes with P-TEFb and displaces 7SK RNA from the inhibitory complex in cells and cell extracts. A 314-nucleotide sequence near the 3′ end of HIC mRNA has full activity and contains a predicted structure resembling the 3′-terminal hairpin of 7SK that is critical for P-TEFb binding. This represents the first example of a cellular mRNA that can regulate transcription via P-TEFb. Our findings offer a rationale for 7SK being an RNA transcriptional regulator and suggest a practical means for enhancing gene expression.
Collapse
Affiliation(s)
- Tara M. Young
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Michael Tsai
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Michael B. Mathews
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail: (MM); (TP)
| | - Tsafi Pe'ery
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail: (MM); (TP)
| |
Collapse
|
37
|
Skotheim RI, Nees M. Alternative splicing in cancer: Noise, functional, or systematic? Int J Biochem Cell Biol 2007; 39:1432-49. [PMID: 17416541 DOI: 10.1016/j.biocel.2007.02.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 02/13/2007] [Accepted: 02/22/2007] [Indexed: 12/22/2022]
Abstract
Pre-messenger RNA splicing is a fine-tuned process that generates multiple functional variants from individual genes. Various cell types and developmental stages regulate alternative splicing patterns differently in their generation of specific gene functions. In cancers, splicing is significantly altered, and understanding the underlying mechanisms and patterns in cancer will shed new light onto cancer biology. Cancer-specific transcript variants are promising biomarkers and targets for diagnostic, prognostic, and treatment purposes. In this review, we explore how alternative splicing cannot simply be considered as noise or an innocent bystander, but is actively regulated or deregulated in cancers. A special focus will be on aspects of cell biology and biochemistry of alternative splicing in cancer cells, addressing differences in splicing mechanisms between normal and malignant cells. The systems biology of splicing is only now applied to the field of cancer research. We explore functional annotations for some of the most intensely spliced gene classes, and provide a literature mining and clustering that reflects the most intensely investigated genes. A few well-established cancer-specific splice events, such as the CD44 antigen, are used to illustrate the potential behind the exploration of the mechanisms of their regulation. Accordingly, we describe the functional connection between the regulatory machinery (i.e., the spliceosome and its accessory proteins) and their global impact on qualitative transcript variation that are only now emerging from the use of genomic technologies such as microarrays. These studies are expected to open an entirely new level of genetic information that is currently still poorly understood.
Collapse
Affiliation(s)
- Rolf I Skotheim
- Department of Cancer Prevention, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | | |
Collapse
|
38
|
Ryman K, Fong N, Bratt E, Bentley DL, Ohman M. The C-terminal domain of RNA Pol II helps ensure that editing precedes splicing of the GluR-B transcript. RNA (NEW YORK, N.Y.) 2007; 13:1071-8. [PMID: 17525170 PMCID: PMC1894935 DOI: 10.1261/rna.404407] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The C-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II) influences many steps in the synthesis of an mRNA and helps control the final destiny of the mature transcript. ADAR2 edits RNA by converting adenosine to inosine within double-stranded or structured RNA. Site-selective A-to-I editing often occurs at sites near exon/intron borders, where it depends on intronic sequences for substrate recognition. It is therefore essential that editing precedes splicing. We have investigated whether there is coordination between ADAR2 editing and splicing of the GluR-B pre-mRNA. We show that the CTD is required for efficient editing at the R/G site one base upstream of a 5'-splice site. The results suggest that the CTD enhances editing at the R/G site by preventing premature splicing that would remove the intronic recognition sites for ADAR2. Editing at the GluR-B Q/R site, 24 bases upstream of the intron 11 5'-splice site, stimulates splicing at this intron. Furthermore, unlike previously studied introns, the CTD actually inhibits excision of intron 11, which includes the complementary recognition sequences for the Q/R editing site. In summary, these results show that the CTD and ADAR2 function together to enforce the order of events that allows editing to precede splicing, and they furthermore suggest a new role for the CTD as a coordinator of two interdependent pre-mRNA processing events.
Collapse
Affiliation(s)
- Kicki Ryman
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
39
|
Nag A, Narsinh K, Martinson HG. The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nat Struct Mol Biol 2007; 14:662-9. [PMID: 17572685 DOI: 10.1038/nsmb1253] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 04/24/2007] [Indexed: 11/09/2022]
Abstract
Eukaryotic poly(A) signals direct mRNA 3'-end processing and also pausing and termination of transcription. We show that pausing and termination require the processing factor CPSF, which binds the AAUAAA hexamer of the mammalian poly(A) signal. Pausing does not require the RNA polymerase II C-terminal domain (CTD) or the cleavage stimulation factor, CstF, that binds the CTD. Pull-down experiments show that CPSF binds, principally through its 30-kDa subunit, to the body of the polymerase. CPSF can also bind CstF, but this seems to be mutually exclusive with polymerase binding. We suggest that CPSF, while binding the body of the polymerase, scans for hexamers in the extruding RNA. Any encounter with a hexamer triggers pausing. If the hexamer is part of a functional poly(A) signal, CstF is recruited and binds CPSF, causing it to release the polymerase body and move (with CstF) to the CTD.
Collapse
Affiliation(s)
- Anita Nag
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
40
|
Aznarez I, Zielenski J, Rommens JM, Blencowe BJ, Tsui LC. Exon skipping through the creation of a putative exonic splicing silencer as a consequence of the cystic fibrosis mutation R553X. J Med Genet 2007; 44:341-6. [PMID: 17475917 PMCID: PMC2597982 DOI: 10.1136/jmg.2006.045880] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Nonsense mutations that occur more than 50 bases upstream of terminal spliced junctions are generally thought to lead to degradation of the corresponding transcripts by the process of nonsense-mediated mRNA decay. It has also been proposed that some nonsense mutations may affect splicing by the process of nonsense-associated altered splicing (NAS), or by the disruption of a splicing regulatory element. In this study, the effect of the R553X mutation on the splicing of exon 11 of the cystic fibrosis transmembrane conductance regulator gene was investigated. Evidence that R553X causes exon 11 to skip through the creation of a putative exonic splicing silencer (ESS) was provided. The putative ESS appears to be active when located immediately upstream of a 5' splice site. These findings argue against the possibility that R553X-associated exon 11 skipping is caused by NAS. The study further suggests that aminoglycoside antibiotic treatment would not be effective for patients with the R553X mutation, owing to the skipping of exon 11, and further emphasises the need for detailed mechanistic characterisation of the consequences of nonsense disease mutations.
Collapse
|
41
|
Kornblihtt AR. Coupling Transcription and Alternative Splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:175-89. [DOI: 10.1007/978-0-387-77374-2_11] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
de la Mata M, Kornblihtt AR. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 2006; 13:973-80. [PMID: 17028590 DOI: 10.1038/nsmb1155] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 09/15/2006] [Indexed: 01/02/2023]
Abstract
Previous studies have linked the C-terminal domain (CTD) of RNA polymerase II (pol II) with cotranscriptional precursor messenger RNA processing, but little is known about the CTD's function in regulating alternative splicing. We have examined this function using alpha-amanitin-resistant pol II CTD mutants and fibronectin reporter minigenes. We found that the CTD is required for the inhibitory action of the serine/arginine-rich (SR) protein SRp20 on the inclusion of a fibronectin cassette exon in the mature mRNA. CTD phosphorylation controls transcription elongation, which is a major contributor to alternative splicing regulation. However, the effect of SRp20 is still observed when transcription elongation is reduced. These results suggest that the CTD promotes exon skipping by recruiting SRp20 and that this contributes independently of elongation to the transcriptional control of alternative splicing.
Collapse
Affiliation(s)
- Manuel de la Mata
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | |
Collapse
|
43
|
Leoutsakou T, Talieri M, Scorilas A. Expression analysis and prognostic significance of the SRA1 gene, in ovarian cancer. Biochem Biophys Res Commun 2006; 344:667-74. [PMID: 16631123 DOI: 10.1016/j.bbrc.2006.03.184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 03/25/2006] [Indexed: 11/24/2022]
Abstract
The SR-related-CTD-associated-factors (SCAFs) have the ability to interact with the C-terminal domain of the RNA polymerase II, linking this way transcription to splicing. SRA1 (SR-A1) gene, encoding for a human high-molecular weight SCAF protein, is located on chromosome 19, between the IRF3 and the R-RAS oncogene and it has been demonstrated from members of our group that SRA1 is constitutively expressed in most of the human tissues, while it is overexpressed in a subset of ovarian tumors. In this study, we examine the expression of SRA1 gene in 111 ovarian malignant tissues and in the human ovarian carcinoma cell lines OVCAR-3, TOV21-G, and ES-2, using a semi-quantitative RT-PCR method. SRA1 gene was overexpressed in 61/111 (55%) of ovarian carcinomas. This higher expression was positively associated to the size of the tumor (p<0.001), the grade and the stage of the disease (p=0.003 and p=0.006, respectively), and the debulking success (p<0.001). Kaplan-Meier survival analysis revealed that lower SRA1 expression increases the probability of both the longer overall and the progression free survival of the patients. Multivariate Cox regression analysis revealed that SRA1 may be used as an independent prognostic biomarker in ovarian cancer. Our results suggest that SRA1 is associated with cancer progression and may possibly be characterized as a new marker of unfavorable prognosis for ovarian cancer.
Collapse
Affiliation(s)
- Theoni Leoutsakou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, 15711 Panepistimioupoli, Athens, Greece
| | | | | |
Collapse
|
44
|
Laurencikiene J, Källman AM, Fong N, Bentley DL, Öhman M. RNA editing and alternative splicing: the importance of co-transcriptional coordination. EMBO Rep 2006; 7:303-7. [PMID: 16440002 PMCID: PMC1456888 DOI: 10.1038/sj.embor.7400621] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 12/01/2005] [Accepted: 12/01/2005] [Indexed: 11/09/2022] Open
Abstract
The carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (pol II) is essential for several co-transcriptional pre-messenger RNA processing events, including capping, 3'-end processing and splicing. We investigated the role of the CTD of RNA pol II in the coordination of A to I editing and splicing of the ADAR2 (ADAR: adenosine deaminases that act on RNA) pre-mRNA. The auto-editing of Adar2 intron 4 by the ADAR2 adenosine deaminase is tightly coupled to splicing, as the modification of the dinucleotide AA to AI creates a new 3' splice site. Unlike other introns, the CTD is not required for efficient splicing of intron 4 at either the normal 3' splice site or the alternative site created by editing. However, the CTD is required for efficient co-transcriptional auto-editing of ADAR2 intron 4. Our results implicate the CTD in site-selective RNA editing by ADAR2 and in coordination of editing with alternative splicing.
Collapse
Affiliation(s)
- Jurga Laurencikiene
- Department of Molecular Biology and Functional Genomics, Stockholm University, 106 91 Stockholm, Sweden
| | - Annika M Källman
- Department of Molecular Biology and Functional Genomics, Stockholm University, 106 91 Stockholm, Sweden
| | - Nova Fong
- Department of Biochemistry and Molecular Genetics, UCHSC, Aurora, Colorado 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, UCHSC, Aurora, Colorado 80045, USA
| | - Marie Öhman
- Department of Molecular Biology and Functional Genomics, Stockholm University, 106 91 Stockholm, Sweden
- Tel: +46 8 164451; Fax: +46 8 166488; E-mail:
| |
Collapse
|
45
|
Leoutsakou T, Talieri M, Scorilas A. Prognostic significance of the expression of SR-A1, encoding a novel SR-related CTD-associated factor, in breast cancer. Biol Chem 2006; 387:1613-8. [PMID: 17132108 DOI: 10.1515/bc.2006.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
SR-A1 is a human high-molecular-weight SR-related CTD-associated factor that links the machineries of transcription and mRNA splicing. In this study we examined the prognostic value of SR-A1 gene expression using a semi-quantitative RT-PCR method. High SR-A1 expression was observed in 31/81 (38.3%) breast cancer tissues and was found to be more frequent in patients with tumors of large size (p=0.027), as well as in lymph node-positive patients (p=0.035). Follow-up analysis revealed that low SR-A1 expression increases the probability of both overall and disease-free survival of patients. Our results suggest that SR-A1 may possibly be characterized as a new marker of unfavorable prognosis for breast cancer.
Collapse
Affiliation(s)
- Theoni Leoutsakou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, GR-15711 Athens, Greece
| | | | | |
Collapse
|
46
|
Tan JS, Mohandas N, Conboy JG. Evolutionarily conserved coupling of transcription and alternative splicing in the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes. Genomics 2005; 86:701-7. [PMID: 16242908 DOI: 10.1016/j.ygeno.2005.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 07/27/2005] [Accepted: 08/11/2005] [Indexed: 01/14/2023]
Abstract
Recent studies have shown that transcription and alternative splicing can be mechanistically coupled. In the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes, we showed previously that promoter/alternative first exon choice is coupled to downstream splicing events in exon 2. Here we demonstrate that this coupling is conserved among several vertebrate classes from fish to mammals. The EPB41 and EPB41L3 genes from fish, bird, amphibian, and mammal genomes exhibit shared features including alternative first exons and differential splice acceptors in exon 2. In all cases, the 5'-most exon (exon 1A) splices exclusively to a weaker internal acceptor site in exon 2, skipping a fragment designated as exon 2'. Conversely, alternative first exons 1B and 1C always splice to the stronger first acceptor site, retaining exon 2'. These correlations are independent of cell type or species of origin. Since exon 2' contains a translation initiation site, splice variants generate protein isoforms with distinct N-termini. We propose that these genes represent a physiologically relevant model system for mechanistic analysis of transcription-coupled alternative splicing.
Collapse
Affiliation(s)
- Jeff S Tan
- Life Sciences Division and Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
47
|
Chapman RD, Conrad M, Eick D. Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation. Mol Cell Biol 2005; 25:7665-74. [PMID: 16107713 PMCID: PMC1190292 DOI: 10.1128/mcb.25.17.7665-7674.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The C-terminal domain (CTD) of mammalian RNA polymerase II (Pol II) consists of 52 repeats of the consensus heptapeptide YSPTSPS and links transcription to the processing of pre-mRNA. The length of the CTD and the number of repeats diverging from the consensus sequence have increased through evolution, but their functional importance remains unknown. Here, we show that the deletion of repeats 1 to 3 or 52 leads to cleavage and degradation of the CTD from Pol II in vivo. Including these repeats, however, allowed the construction of stable, synthetic CTDs. To our surprise, polymerases consisting of just consensus repeats could support normal growth and viability of cells. We conclude that all other nonconsensus CTD repeats are dispensable for the transcription and pre-mRNA processing of genes essential for proliferation.
Collapse
Affiliation(s)
- Rob D Chapman
- GSF-Research Centre for Environment and Health, Institute for Clinical Molecular Biology and Tumour Genetics, Munich, Germany.
| | | | | |
Collapse
|
48
|
Rosonina E, Ip JYY, Calarco JA, Bakowski MA, Emili A, McCracken S, Tucker P, Ingles CJ, Blencowe BJ. Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo. Mol Cell Biol 2005; 25:6734-46. [PMID: 16024807 PMCID: PMC1190332 DOI: 10.1128/mcb.25.15.6734-6746.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/23/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022] Open
Abstract
In a recent study, we provided evidence that strong promoter-bound transcriptional activators result in higher levels of splicing and 3'-end cleavage of nascent pre-mRNA than do weak promoter-bound activators and that this effect of strong activators requires the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II). In the present study, we have investigated the mechanism of activator- and CTD-mediated stimulation of pre-mRNA processing. Affinity chromatography experiments reveal that two factors previously implicated in the coupling of transcription and pre-mRNA processing, PSF and p54(nrb)/NonO, preferentially bind a strong rather than a weak activation domain. Elevated expression in human 293 cells of PSF bypasses the requirement for a strong activator to promote efficient splicing and 3'-end cleavage. Truncation of the pol II CTD, which consists of 52 repeats of the consensus heptapeptide sequence YSPTSPS, to 15 heptapeptide repeats prevents PSF-dependent stimulation of splicing and 3'-end cleavage. Moreover, PSF and p54(nrb)/NonO bind in vitro to the wild-type CTD but not to the truncated 15-repeat CTD, and domains in PSF that are required for binding to activators and to the CTD are also important for the stimulation of pre-mRNA processing. Interestingly, activator- and CTD-dependent stimulation of splicing mediated by PSF appears to primarily affect the removal of first introns. Collectively, these results suggest that the recruitment of PSF to activated promoters and the pol II CTD provides a mechanism by which transcription and pre-mRNA processing are coordinated within the cell.
Collapse
Affiliation(s)
- Emanuel Rosonina
- Banting and Best Department of Medical Research, C. H. Best Institute, 112 College Street, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kornblihtt AR, de la Mata M, Fededa JP, Munoz MJ, Nogues G. Multiple links between transcription and splicing. RNA (NEW YORK, N.Y.) 2004; 10:1489-98. [PMID: 15383674 PMCID: PMC1370635 DOI: 10.1261/rna.7100104] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcription and pre-mRNA splicing are extremely complex multimolecular processes that involve protein-DNA, protein-RNA, and protein-protein interactions. Splicing occurs in the close vicinity of genes and is frequently cotranscriptional. This is consistent with evidence that both processes are coordinated and, in some cases, functionally coupled. This review focuses on the roles of cis- and trans-acting factors that regulate transcription, on constitutive and alternative splicing. We also discuss possible functions in splicing of the C-terminal domain (CTD) of the RNA polymerase II (pol II) largest subunit, whose participation in other key pre-mRNA processing reactions (capping and cleavage/polyadenylation) is well documented. Recent evidence indicates that transcriptional elongation and splicing can be influenced reciprocally: Elongation rates control alternative splicing and splicing factors can, in turn, modulate pol II elongation. The presence of transcription factors in the spliceosome and the existence of proteins, such as the coactivator PGC-1, with dual activities in splicing and transcription can explain the links between both processes and add a new level of complexity to the regulation of gene expression in eukaryotes.
Collapse
Affiliation(s)
- Alberto R Kornblihtt
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Ciudad Universitaria, Pabellón II (C1428EHA) Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|