1
|
Xu H, Kong L, Cheng J, Al Moussawi K, Chen X, Iqbal A, Wing PAC, Harris JM, Tsukuda S, Embarc-Buh A, Wei G, Castello A, Kriaucionis S, McKeating JA, Lu X, Song CX. Absolute quantitative and base-resolution sequencing reveals comprehensive landscape of pseudouridine across the human transcriptome. Nat Methods 2024; 21:2024-2033. [PMID: 39349603 PMCID: PMC11541003 DOI: 10.1038/s41592-024-02439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/04/2024] [Indexed: 11/08/2024]
Abstract
Pseudouridine (Ψ) is one of the most abundant modifications in cellular RNA. However, its function remains elusive, mainly due to the lack of highly sensitive and accurate detection methods. Here, we introduced 2-bromoacrylamide-assisted cyclization sequencing (BACS), which enables Ψ-to-C transitions, for quantitative profiling of Ψ at single-base resolution. BACS allowed the precise identification of Ψ positions, especially in densely modified Ψ regions and consecutive uridine sequences. BACS detected all known Ψ sites in human rRNA and spliceosomal small nuclear RNAs and generated the quantitative Ψ map of human small nucleolar RNA and tRNA. Furthermore, BACS simultaneously detected adenosine-to-inosine editing sites and N1-methyladenosine. Depletion of pseudouridine synthases TRUB1, PUS7 and PUS1 elucidated their targets and sequence motifs. We further identified a highly abundant Ψ114 site in Epstein-Barr virus-encoded small RNA EBER2. Surprisingly, applying BACS to a panel of RNA viruses demonstrated the absence of Ψ in their viral transcripts or genomes, shedding light on differences in pseudouridylation across virus families.
Collapse
MESH Headings
- Humans
- Pseudouridine/metabolism
- Pseudouridine/genetics
- Transcriptome
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Ribosomal/genetics
- Sequence Analysis, RNA/methods
- RNA, Viral/genetics
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Adenosine/analogs & derivatives
- Adenosine/genetics
- Adenosine/metabolism
- Adenosine/chemistry
- Herpesvirus 4, Human/genetics
- Intramolecular Transferases
Collapse
Affiliation(s)
- Haiqi Xu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Linzhen Kong
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jingfei Cheng
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Khatoun Al Moussawi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xiufei Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aleema Iqbal
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A C Wing
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Azman Embarc-Buh
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Guifeng Wei
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alfredo Castello
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Hayashi S. Variation of tRNA modifications with and without intron dependency. Front Genet 2024; 15:1460902. [PMID: 39296543 PMCID: PMC11408192 DOI: 10.3389/fgene.2024.1460902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
tRNAs have recently gained attention for their novel regulatory roles in translation and for their diverse functions beyond translation. One of the most remarkable aspects of tRNA biogenesis is the incorporation of various chemical modifications, ranging from simple base or ribose methylation to more complex hypermodifications such as formation of queuosine and wybutosine. Some tRNAs are transcribed as intron-containing pre-tRNAs. While the majority of these modifications occur independently of introns, some are catalyzed in an intron-inhibitory manner, and in certain cases, they occur in an intron-dependent manner. This review focuses on pre-tRNA modification, including intron-containing pre-tRNA, in both intron-inhibitory and intron-dependent fashions. Any perturbations in the modification and processing of tRNAs may lead to a range of diseases and disorders, highlighting the importance of understanding these mechanisms in molecular biology and medicine.
Collapse
Affiliation(s)
- Sachiko Hayashi
- Graduate School of Science, University of Hyogo, Ako-gun, Japan
| |
Collapse
|
3
|
Fujita S, Sugio Y, Kawamura T, Yamagami R, Oka N, Hirata A, Yokogawa T, Hori H. ArcS from Thermococcus kodakarensis transfers L-lysine to preQ 0 nucleoside derivatives as minimum substrate RNAs. J Biol Chem 2024; 300:107505. [PMID: 38944122 PMCID: PMC11298593 DOI: 10.1016/j.jbc.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5'-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.
Collapse
Affiliation(s)
- Shu Fujita
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Yuzuru Sugio
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Natsuhisa Oka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Gifu, Japan
| | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima, Tokushima, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
4
|
Li Y, Wu S, Ye K. Landscape of RNA pseudouridylation in archaeon Sulfolobus islandicus. Nucleic Acids Res 2024; 52:4644-4658. [PMID: 38375885 PMCID: PMC11077068 DOI: 10.1093/nar/gkae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.
Collapse
MESH Headings
- Pseudouridine/metabolism
- Sulfolobus/genetics
- Sulfolobus/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Archaeal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- Archaeal Proteins/metabolism
- Archaeal Proteins/genetics
- RNA Processing, Post-Transcriptional
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
Collapse
Affiliation(s)
- Yuqian Li
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Añazco-Guenkova AM, Miguel-López B, Monteagudo-García Ó, García-Vílchez R, Blanco S. The impact of tRNA modifications on translation in cancer: identifying novel therapeutic avenues. NAR Cancer 2024; 6:zcae012. [PMID: 38476632 PMCID: PMC10928989 DOI: 10.1093/narcan/zcae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Recent advancements have illuminated the critical role of RNA modifications in post-transcriptional regulation, shaping the landscape of gene expression. This review explores how tRNA modifications emerge as critical players, fine-tuning functionalities that not only maintain the fidelity of protein synthesis but also dictate gene expression and translation profiles. Highlighting their dysregulation as a common denominator in various cancers, we systematically investigate the intersection of both cytosolic and mitochondrial tRNA modifications with cancer biology. These modifications impact key processes such as cell proliferation, tumorigenesis, migration, metastasis, bioenergetics and the modulation of the tumor immune microenvironment. The recurrence of altered tRNA modification patterns across different cancer types underscores their significance in cancer development, proposing them as potential biomarkers and as actionable targets to disrupt tumorigenic processes, offering new avenues for precision medicine in the battle against cancer.
Collapse
Affiliation(s)
- Ana M Añazco-Guenkova
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Óscar Monteagudo-García
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Raquel García-Vílchez
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Lucas MC, Pryszcz LP, Medina R, Milenkovic I, Camacho N, Marchand V, Motorin Y, Ribas de Pouplana L, Novoa EM. Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing. Nat Biotechnol 2024; 42:72-86. [PMID: 37024678 PMCID: PMC10791586 DOI: 10.1038/s41587-023-01743-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Transfer RNAs (tRNAs) play a central role in protein translation. Studying them has been difficult in part because a simple method to simultaneously quantify their abundance and chemical modifications is lacking. Here we introduce Nano-tRNAseq, a nanopore-based approach to sequence native tRNA populations that provides quantitative estimates of both tRNA abundances and modification dynamics in a single experiment. We show that default nanopore sequencing settings discard the vast majority of tRNA reads, leading to poor sequencing yields and biased representations of tRNA abundances based on their transcript length. Re-processing of raw nanopore current intensity signals leads to a 12-fold increase in the number of recovered tRNA reads and enables recapitulation of accurate tRNA abundances. We then apply Nano-tRNAseq to Saccharomyces cerevisiae tRNA populations, revealing crosstalks and interdependencies between different tRNA modification types within the same molecule and changes in tRNA populations in response to oxidative stress.
Collapse
Affiliation(s)
- Morghan C Lucas
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Leszek P Pryszcz
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rebeca Medina
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ivan Milenkovic
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Virginie Marchand
- CNRS-Université de Lorraine, UAR2008 IBSLor/UMR7365 IMoPA, Nancy, France
| | - Yuri Motorin
- CNRS-Université de Lorraine, UAR2008 IBSLor/UMR7365 IMoPA, Nancy, France
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
7
|
Pham CT, Rangan L, Schlenner S. RNA modifications-a regulatory dimension yet to be deciphered in immunity. Genes Immun 2023; 24:281-282. [PMID: 37985689 DOI: 10.1038/s41435-023-00228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Affiliation(s)
- Cuong Thi Pham
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Laurie Rangan
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Grünberg S, Doyle LA, Wolf EJ, Dai N, Corrêa IR, Yigit E, Stoddard BL. The structural basis of mRNA recognition and binding by yeast pseudouridine synthase PUS1. PLoS One 2023; 18:e0291267. [PMID: 37939088 PMCID: PMC10631681 DOI: 10.1371/journal.pone.0291267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/25/2023] [Indexed: 11/10/2023] Open
Abstract
The chemical modification of RNA bases represents a ubiquitous activity that spans all domains of life. Pseudouridylation is the most common RNA modification and is observed within tRNA, rRNA, ncRNA and mRNAs. Pseudouridine synthase or 'PUS' enzymes include those that rely on guide RNA molecules and others that function as 'stand-alone' enzymes. Among the latter, several have been shown to modify mRNA transcripts. Although recent studies have defined the structural requirements for RNA to act as a PUS target, the mechanisms by which PUS1 recognizes these target sequences in mRNA are not well understood. Here we describe the crystal structure of yeast PUS1 bound to an RNA target that we identified as being a hot spot for PUS1-interaction within a model mRNA at 2.4 Å resolution. The enzyme recognizes and binds both strands in a helical RNA duplex, and thus guides the RNA containing the target uridine to the active site for subsequent modification of the transcript. The study also allows us to show the divergence of related PUS1 enzymes and their corresponding RNA target specificities, and to speculate on the basis by which PUS1 binds and modifies mRNA or tRNA substrates.
Collapse
Affiliation(s)
| | - Lindsey A. Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eric J. Wolf
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Nan Dai
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Ivan R. Corrêa
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Erbay Yigit
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Barry L. Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
10
|
Zhang Q, Fei S, Zhao Y, Liu S, Wu X, Lu L, Chen W. PUS7 promotes the proliferation of colorectal cancer cells by directly stabilizing SIRT1 to activate the Wnt/β-catenin pathway. Mol Carcinog 2023; 62:160-173. [PMID: 36222184 DOI: 10.1002/mc.23473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/25/2023]
Abstract
Pseudouridine synthase 7 (PUS7) may play key roles in cancer development. However, few studies have been conducted in this area. In the present study, we explored the function and potential mechanisms of PUS7 in colorectal cancer (CRC) progression. We found that PUS7 had higher expression in CRC tissues and cell lines. Clinically, high expression of PUS7 was associated with an unfavorable prognosis for CRC patients. Functionally, knockdown of PUS7 suppressed the proliferation of CRC cells in vitro and inhibited tumorigenicity in vivo. Mechanistically, RNA sequencing and coimmunoprecipitation (Co-IP) indicated that PUS7 exhibited oncogenic functions through the interaction of Sirtuin 1 (SIRT1) and activated the Wnt/β-catenin signaling pathway. Thus, our findings suggest that PUS7 promotes the proliferation of CRC cells by directly stabilizing SIRT1 to activate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sujuan Fei
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanchao Zhao
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shengnan Liu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoting Wu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lili Lu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Nagato Y, Tomikawa C, Yamaji H, Soma A, Takai K. Intron-Dependent or Independent Pseudouridylation of Precursor tRNA Containing Atypical Introns in Cyanidioschyzon merolae. Int J Mol Sci 2022; 23:ijms232012058. [PMID: 36292915 PMCID: PMC9602550 DOI: 10.3390/ijms232012058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic precursor tRNAs (pre-tRNAs) often have an intron between positions 37 and 38 of the anticodon loop. However, atypical introns are found in some eukaryotes and archaea. In an early-diverged red alga Cyanidioschyzon merolae, the tRNAIle(UAU) gene contains three intron coding regions, located in the D-, anticodon, and T-arms. In this study, we focused on the relationship between the intron removal and formation of pseudouridine (Ψ), one of the most universally modified nucleosides. It had been reported that yeast Pus1 is a multiple-site-specific enzyme that synthesizes Ψ34 and Ψ36 in tRNAIle(UAU) in an intron-dependent manner. Unexpectedly, our biochemical experiments showed that the C. merolae ortholog of Pus1 pseudouridylated an intronless tRNAIle(UAU) and that the modification position was determined to be 55 which is the target of Pus4 but not Pus1 in yeast. Furthermore, unlike yeast Pus1, cmPus1 mediates Ψ modification at positions 34, 36, and/or 55 only in some specific intron-containing pre-tRNAIle(UAU) variants. cmPus4 was confirmed to be a single-site-specific enzyme that only converts U55 to Ψ, in a similar manner to yeast Pus4. cmPus4 did not catalyze the pseudouridine formation in pre-tRNAs containing an intron in the T-arm.
Collapse
Affiliation(s)
- Yasuha Nagato
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
- Correspondence: ; Tel.: +81-89-927-9947
| | - Hideyuki Yamaji
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| | - Akiko Soma
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan
| | - Kazuyuki Takai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| |
Collapse
|
12
|
Lee AK, Aifantis I, Thandapani P. Emerging roles for tRNAs in hematopoiesis and hematological malignancies. Trends Immunol 2022; 43:466-477. [PMID: 35490133 DOI: 10.1016/j.it.2022.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
tRNAs are central players in decoding the genetic code linking codons in mRNAs with cognate amino acids during protein synthesis. Recent discoveries have placed tRNAs as key regulators of gene expression during hematopoiesis, especially in hematopoietic stem cell (HSC) maintenance and immune development. These functions have been shown to be influenced by dynamic changes in tRNA expression, post-transcriptional base modifications, tRNA-interacting proteins, and tRNA fragmentation; these events underlie the complexity of tRNA-mediated regulatory events in hematopoiesis. In this review, we discuss these recent findings and highlight how deregulation of tRNA biogenesis can contribute to hematological malignancies.
Collapse
Affiliation(s)
- Anna K Lee
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| | - Palaniraja Thandapani
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
13
|
Nishida Y, Ohmori S, Kakizono R, Kawai K, Namba M, Okada K, Yamagami R, Hirata A, Hori H. Required Elements in tRNA for Methylation by the Eukaryotic tRNA (Guanine- N2-) Methyltransferase (Trm11-Trm112 Complex). Int J Mol Sci 2022; 23:ijms23074046. [PMID: 35409407 PMCID: PMC8999500 DOI: 10.3390/ijms23074046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
The Saccharomyces cerevisiae Trm11 and Trm112 complex (Trm11-Trm112) methylates the 2-amino group of guanosine at position 10 in tRNA and forms N2-methylguanosine. To determine the elements required in tRNA for methylation by Trm11-Trm112, we prepared 60 tRNA transcript variants and tested them for methylation by Trm11-Trm112. The results show that the precursor tRNA is not a substrate for Trm11-Trm112. Furthermore, the CCA terminus is essential for methylation by Trm11-Trm112, and Trm11-Trm112 also only methylates tRNAs with a regular-size variable region. In addition, the G10-C25 base pair is required for methylation by Trm11-Trm112. The data also demonstrated that Trm11-Trm112 recognizes the anticodon-loop and that U38 in tRNAAla acts negatively in terms of methylation. Likewise, the U32-A38 base pair in tRNACys negatively affects methylation. The only exception in our in vitro study was tRNAValAAC1. Our experiments showed that the tRNAValAAC1 transcript was slowly methylated by Trm11-Trm112. However, position 10 in this tRNA was reported to be unmodified G. We purified tRNAValAAC1 from wild-type and trm11 gene deletion strains and confirmed that a portion of tRNAValAAC1 is methylated by Trm11-Trm112 in S. cerevisiae. Thus, our study explains the m2G10 modification pattern of all S. cerevisiae class I tRNAs and elucidates the Trm11-Trm112 binding sites.
Collapse
|
14
|
Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nat Cell Biol 2022; 24:299-306. [PMID: 35292784 PMCID: PMC8924001 DOI: 10.1038/s41556-022-00852-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Transfer RNA-derived fragments (tRFs) are emerging small noncoding RNAs that, although commonly altered in cancer, have poorly defined roles in tumorigenesis1. Here we show that pseudouridylation (Ψ) of a stem cell-enriched tRF subtype2, mini tRFs containing a 5′ terminal oligoguanine (mTOG), selectively inhibits aberrant protein synthesis programmes, thereby promoting engraftment and differentiation of haematopoietic stem and progenitor cells (HSPCs) in patients with myelodysplastic syndrome (MDS). Building on evidence that mTOG-Ψ targets polyadenylate-binding protein cytoplasmic 1 (PABPC1), we employed isotope exchange proteomics to reveal critical interactions between mTOG and functional RNA-recognition motif (RRM) domains of PABPC1. Mechanistically, this hinders the recruitment of translational co-activator PABPC1-interacting protein 1 (PAIP1)3 and strongly represses the translation of transcripts sharing pyrimidine-enriched sequences (PES) at the 5′ untranslated region (UTR), including 5′ terminal oligopyrimidine tracts (TOP) that encode protein machinery components and are frequently altered in cancer4. Significantly, mTOG dysregulation leads to aberrantly increased translation of 5′ PES messenger RNA (mRNA) in malignant MDS-HSPCs and is clinically associated with leukaemic transformation and reduced patient survival. These findings define a critical role for tRFs and Ψ in difficult-to-treat subsets of MDS characterized by high risk of progression to acute myeloid leukaemia (AML). Bellodi, Dimitriou and colleagues report that pseudouridine-modified transfer-RNA fragments modulate the translation of transcripts sharing pyrimidine-enriched sequences at their 5′ untranslated regions and their dysregulation impacts myelodysplastic syndrome pathogenesis.
Collapse
|
15
|
Han ST, Kim AC, Garcia K, Schimmenti LA, Macnamara E, Network UD, Gahl WA, Malicdan MC, Tifft CJ. PUS7 deficiency in human patients causes profound neurodevelopmental phenotype by dysregulating protein translation. Mol Genet Metab 2022; 135:221-229. [PMID: 35144859 PMCID: PMC8958514 DOI: 10.1016/j.ymgme.2022.01.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 01/28/2023]
Abstract
Protein translation is a highly regulated process involving the interaction of numerous genes on every component of the protein translation machinery. Upregulated protein translation is a hallmark of cancer and is implicated in autism spectrum disorder, but the risks of developing each disease do not appear to be correlated with one another. In this study we identified two siblings from the NIH Undiagnosed Diseases Program with loss of function variants in PUS7, a gene previously implicated in the regulation of total protein translation. These patients exhibited a neurodevelopmental phenotype including autism spectrum disorder in the proband. Both patients also had features of Lesch-Nyhan syndrome, including hyperuricemia and self-injurious behavior, but without pathogenic variants in HPRT1. Patient fibroblasts demonstrated upregulation of protein synthesis, including elevated MYC protein, but did not exhibit increased rates of cell proliferation. Interestingly, the dysregulation of protein translation also resulted in mildly decreased levels of HPRT1 protein suggesting an association between dysregulated protein translation and the LNS-like phenotypic findings. These findings strengthen the correlation between neurodevelopmental disease, particularly autism spectrum disorders, and the rate of protein translation.
Collapse
Affiliation(s)
- Sangwoo T Han
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, United States of America.
| | - Andrew C Kim
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, United States of America
| | - Karolyn Garcia
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, United States of America
| | - Lisa A Schimmenti
- Department of Clinical Genomics, Ophthalmology, Otorhinolaryngology, and Biochemistry and Molecular Biology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55902, United States of America
| | - Ellen Macnamara
- Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Undiagnosed Diseases Network
- Undiagnosed Diseases Network, Common Fund, Office of the Director, NIH, Bethesda, MD 20892, United States of America
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, United States of America; Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - May C Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, United States of America; Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Cynthia J Tifft
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, United States of America; Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD 20892, United States of America
| |
Collapse
|
16
|
Genome-Wide Identification and Expression Analysis of Pseudouridine Synthase Family in Arabidopsis and Maize. Int J Mol Sci 2022; 23:ijms23052680. [PMID: 35269820 PMCID: PMC8910892 DOI: 10.3390/ijms23052680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pseudouridine (Ψ), the isomer of uridine (U), is the most abundant type of RNA modification, which is crucial for gene regulation in various cellular processes. Pseudouridine synthases (PUSs) are the key enzymes for the U-to-Ψ conversion. However, little is known about the genome-wide features and biological function of plant PUSs. In this study, we identified 20 AtPUSs and 22 ZmPUSs from Arabidopsis and maize (Zea mays), respectively. Our phylogenetic analysis indicated that both AtPUSs and ZmPUSs could be clustered into six known subfamilies: RluA, RsuA, TruA, TruB, PUS10, and TruD. RluA subfamily is the largest subfamily in both Arabidopsis and maize. It's noteworthy that except the canonical XXHRLD-type RluAs, another three conserved RluA variants, including XXNRLD-, XXHQID-, and XXHRLG-type were also identified in those key nodes of vascular plants. Subcellular localization analysis of representative AtPUSs and ZmPUSs in each subfamily revealed that PUS proteins were localized in different organelles including nucleus, cytoplasm and chloroplasts. Transcriptional expression analysis indicated that AtPUSs and ZmPUSs were differentially expressed in various tissues and diversely responsive to abiotic stresses, especially suggesting their potential roles in response to heat and salt stresses. All these results would facilitate the functional identification of these pseudouridylation in the future.
Collapse
|
17
|
Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. NATURE CANCER 2022; 2:932-949. [PMID: 35121864 PMCID: PMC8809511 DOI: 10.1038/s43018-021-00238-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
Pseudouridine is the most frequent epitranscriptomic modification. However, its cellular functions remain largely unknown. Here we show that the pseudouridine synthase PUS7 is highly expressed in glioblastoma versus normal brain tissues, and high PUS7 expression levels are associated with worse survival in glioblastoma patients. The PUS7 expression and catalytic activity are required for glioblastoma stem cell (GSC) tumorigenesis. Mechanistically, we identified PUS7 targets in GSCs through small RNA pseudouridine sequencing, and showed that pseudouridylation of PUS7-regulated tRNA is critical for codon-specific translational control of key regulators of GSCs. Moreover, we identified chemical inhibitors for PUS7, and showed that these compounds prevented PUS7-mediated pseudouridine modification, suppressed tumorigenesis, and extended lifespan of tumor-bearing mice. Overall, we identified an epitranscriptomic regulatory mechanism in glioblastoma and provided preclinical evidence of a potential therapeutic strategy for glioblastoma.
Collapse
|
18
|
Purchal MK, Eyler DE, Tardu M, Franco MK, Korn MM, Khan T, McNassor R, Giles R, Lev K, Sharma H, Monroe J, Mallik L, Koutmos M, Koutmou KS. Pseudouridine synthase 7 is an opportunistic enzyme that binds and modifies substrates with diverse sequences and structures. Proc Natl Acad Sci U S A 2022; 119:e2109708119. [PMID: 35058356 PMCID: PMC8794802 DOI: 10.1073/pnas.2109708119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudouridine (Ψ) is a ubiquitous RNA modification incorporated by pseudouridine synthase (Pus) enzymes into hundreds of noncoding and protein-coding RNA substrates. Here, we determined the contributions of substrate structure and protein sequence to binding and catalysis by pseudouridine synthase 7 (Pus7), one of the principal messenger RNA (mRNA) modifying enzymes. Pus7 is distinct among the eukaryotic Pus proteins because it modifies a wider variety of substrates and shares limited homology with other Pus family members. We solved the crystal structure of Saccharomyces cerevisiae Pus7, detailing the architecture of the eukaryotic-specific insertions thought to be responsible for the expanded substrate scope of Pus7. Additionally, we identified an insertion domain in the protein that fine-tunes Pus7 activity both in vitro and in cells. These data demonstrate that Pus7 preferentially binds substrates possessing the previously identified UGUAR (R = purine) consensus sequence and that RNA secondary structure is not a strong requirement for Pus7-binding. In contrast, the rate constants and extent of Ψ incorporation are more influenced by RNA structure, with Pus7 modifying UGUAR sequences in less-structured contexts more efficiently both in vitro and in cells. Although less-structured substrates were preferred, Pus7 fully modified every transfer RNA, mRNA, and nonnatural RNA containing the consensus recognition sequence that we tested. Our findings suggest that Pus7 is a promiscuous enzyme and lead us to propose that factors beyond inherent enzyme properties (e.g., enzyme localization, RNA structure, and competition with other RNA-binding proteins) largely dictate Pus7 substrate selection.
Collapse
Affiliation(s)
- Meredith K Purchal
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Daniel E Eyler
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Mehmet Tardu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Monika K Franco
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Megan M Korn
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Taslima Khan
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ryan McNassor
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Rachel Giles
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Katherine Lev
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Hari Sharma
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Jeremy Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Leena Mallik
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Markos Koutmos
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109;
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Kristin S Koutmou
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109;
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
19
|
Guegueniat J, Halabelian L, Zeng H, Dong A, Li Y, Wu H, Arrowsmith CH, Kothe U. The human pseudouridine synthase PUS7 recognizes RNA with an extended multi-domain binding surface. Nucleic Acids Res 2021; 49:11810-11822. [PMID: 34718722 PMCID: PMC8599909 DOI: 10.1093/nar/gkab934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/14/2022] Open
Abstract
The human pseudouridine synthase PUS7 is a versatile RNA modification enzyme targeting many RNAs thereby playing a critical role in development and brain function. Whereas all target RNAs of PUS7 share a consensus sequence, additional recognition elements are likely required, and the structural basis for RNA binding by PUS7 is unknown. Here, we characterize the structure–function relationship of human PUS7 reporting its X-ray crystal structure at 2.26 Å resolution. Compared to its bacterial homolog, human PUS7 possesses two additional subdomains, and structural modeling studies suggest that these subdomains contribute to tRNA recognition through increased interactions along the tRNA substrate. Consistent with our modeling, we find that all structural elements of tRNA are required for productive interaction with PUS7 as the consensus sequence of target RNA alone is not sufficient for pseudouridylation by human PUS7. Moreover, PUS7 binds several, non-modifiable RNAs with medium affinity which likely enables PUS7 to screen for productive RNA substrates. Following tRNA modification, the product tRNA has a significantly lower affinity for PUS7 facilitating its dissociation. Taken together our studies suggest a combination of structure-specific and sequence-specific RNA recognition by PUS7 and provide mechanistic insight into its function.
Collapse
Affiliation(s)
- Julia Guegueniat
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, AB, T1K 3M4, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Hong Wu
- Protein Technologies Center, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, AB, T1K 3M4, Canada.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
20
|
Baudin-Baillieu A, Namy O. Saccharomyces cerevisiae, a Powerful Model for Studying rRNA Modifications and Their Effects on Translation Fidelity. Int J Mol Sci 2021; 22:ijms22147419. [PMID: 34299038 PMCID: PMC8307265 DOI: 10.3390/ijms22147419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
Ribosomal RNA is a major component of the ribosome. This RNA plays a crucial role in ribosome functioning by ensuring the formation of the peptide bond between amino acids and the accurate decoding of the genetic code. The rRNA carries many chemical modifications that participate in its maturation, the formation of the ribosome and its functioning. In this review, we present the different modifications and how they are deposited on the rRNA. We also describe the most recent results showing that the modified positions are not 100% modified, which creates a heterogeneous population of ribosomes. This gave rise to the concept of specialized ribosomes that we discuss. The knowledge accumulated in the yeast Saccharomyces cerevisiae is very helpful to better understand the role of rRNA modifications in humans, especially in ribosomopathies.
Collapse
|
21
|
Rajan KS, Adler K, Madmoni H, Peleg-Chen D, Cohen-Chalamish S, Doniger T, Galili B, Gerber D, Unger R, Tschudi C, Michaeli S. Pseudouridines on Trypanosoma brucei mRNAs are developmentally regulated: Implications to mRNA stability and protein binding. Mol Microbiol 2021; 116:808-826. [PMID: 34165831 DOI: 10.1111/mmi.14774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022]
Abstract
The parasite Trypanosoma brucei cycles between an insect and a mammalian host and is the causative agent of sleeping sickness. Here, we performed high-throughput mapping of pseudouridines (Ψs) on mRNA from two life stages of the parasite. The analysis revealed ~273 Ψs, including developmentally regulated Ψs that are guided by homologs of pseudouridine synthases (PUS1, 3, 5, and 7). Mutating the U that undergoes pseudouridylation in the 3' UTR of valyl-tRNA synthetase destabilized the mRNA level. To investigate the mechanism by which Ψ affects the stability of this mRNA, proteins that bind to the 3' UTR were identified, including the RNA binding protein RBSR1. The binding of RBSR1 protein to the 3' UTR was stronger when lacking Ψ compared to transcripts carrying the modification, suggesting that Ψ can inhibit the binding of proteins to their target and thus affect the stability of mRNAs. Consequently, Ψ modification on mRNA adds an additional level of regulation to the dominant post-transcriptional control in these parasites.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Katerina Adler
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Dana Peleg-Chen
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Beathrice Galili
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
22
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
23
|
Levi O, Arava YS. Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase. Nucleic Acids Res 2021; 49:432-443. [PMID: 33305314 PMCID: PMC7797078 DOI: 10.1093/nar/gkaa1178] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Modification of nucleotides within an mRNA emerges as a key path for gene expression regulation. Pseudouridine is one of the most common RNA modifications; however, only a few mRNA modifiers have been identified to date, and no one mRNA pseudouridine reader is known. Here, we applied a novel genome-wide approach to identify mRNA regions that are bound by yeast methionine aminoacyl tRNAMet synthetase (MetRS). We found a clear enrichment to regions that were previously described to contain pseudouridine (Ψ). Follow-up in vitro and in vivo analyses on a prime target (position 1074 within YEF3 mRNA) demonstrated the importance of pseudouridine for MetRS binding. Furthermore, polysomal and protein analyses revealed that Ψ1074 mediates translation. Modification of this site occurs presumably by Pus6, a pseudouridine synthetase known to modify MetRS cognate tRNA. Consistently, the deletion of Pus6 leads to a decrease in MetRS association with both tRNAMet and YEF3 mRNA. Furthermore, while global protein synthesis decreases in pus6Δ, translation of YEF3 increases. Together, our data imply that Pus6 ‘writes’ modifications on tRNA and mRNA, and both types of RNAs are ‘read’ by MetRS for translation regulation purposes. This represents a novel integrated path for writing and reading modifications on both tRNA and mRNA, which may lead to coordination between global and gene-specific translational responses.
Collapse
Affiliation(s)
- Ofri Levi
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav S Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
24
|
Funk HM, Zhao R, Thomas M, Spigelmyer SM, Sebree NJ, Bales RO, Burchett JB, Mamaril JB, Limbach PA, Guy MP. Identification of the enzymes responsible for m2,2G and acp3U formation on cytosolic tRNA from insects and plants. PLoS One 2020; 15:e0242737. [PMID: 33253256 PMCID: PMC7704012 DOI: 10.1371/journal.pone.0242737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/06/2020] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional modification of tRNA is critical for efficient protein translation and proper cell growth, and defects in tRNA modifications are often associated with human disease. Although most of the enzymes required for eukaryotic tRNA modifications are known, many of these enzymes have not been identified and characterized in several model multicellular eukaryotes. Here, we present two related approaches to identify the genes required for tRNA modifications in multicellular organisms using primer extension assays with fluorescent oligonucleotides. To demonstrate the utility of these approaches we first use expression of exogenous genes in yeast to experimentally identify two TRM1 orthologs capable of forming N2,N2-dimethylguanosine (m2,2G) on residue 26 of cytosolic tRNA in the model plant Arabidopsis thaliana. We also show that a predicted catalytic aspartate residue is required for function in each of the proteins. We next use RNA interference in cultured Drosophila melanogaster cells to identify the gene required for m2,2G26 formation on cytosolic tRNA. Additionally, using these approaches we experimentally identify D. melanogaster gene CG10050 as the corresponding ortholog of human DTWD2, which encodes the protein required for formation of 3-amino-3-propylcarboxyuridine (acp3U) on residue 20a of cytosolic tRNA. We further show that A. thaliana gene AT2G41750 can form acp3U20b on an A. thaliana tRNA expressed in yeast cells, and that the aspartate and tryptophan residues in the DXTW motif of this protein are required for modification activity. These results demonstrate that these approaches can be used to study tRNA modification enzymes.
Collapse
Affiliation(s)
- Holly M. Funk
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Maggie Thomas
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Sarah M. Spigelmyer
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Nichlas J. Sebree
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Regan O. Bales
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Jamison B. Burchett
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Justen B. Mamaril
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Michael P. Guy
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| |
Collapse
|
25
|
Abstract
Following its transcription, RNA can be modified by >170 chemically distinct types of modifications - the epitranscriptome. In recent years, there have been substantial efforts to uncover and characterize the modifications present on mRNA, motivated by the potential of such modifications to regulate mRNA fate and by discoveries and advances in our understanding of N 6-methyladenosine (m6A). Here, we review our knowledge regarding the detection, distribution, abundance, biogenesis, functions and possible mechanisms of action of six of these modifications - pseudouridine (Ψ), 5-methylcytidine (m5C), N 1-methyladenosine (m1A), N 4-acetylcytidine (ac4C), ribose methylations (Nm) and N 7-methylguanosine (m7G). We discuss the technical and analytical aspects that have led to inconsistent conclusions and controversies regarding the abundance and distribution of some of these modifications. We further highlight shared commonalities and important ways in which these modifications differ with respect to m6A, based on which we speculate on their origin and their ability to acquire functions over evolutionary timescales.
Collapse
|
26
|
Marchand V, Pichot F, Neybecker P, Ayadi L, Bourguignon-Igel V, Wacheul L, Lafontaine DLJ, Pinzano A, Helm M, Motorin Y. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res 2020; 48:e110. [PMID: 32976574 PMCID: PMC7641733 DOI: 10.1093/nar/gkaa769] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022] Open
Abstract
Developing methods for accurate detection of RNA modifications remains a major challenge in epitranscriptomics. Next-generation sequencing-based mapping approaches have recently emerged but, often, they are not quantitative and lack specificity. Pseudouridine (ψ), produced by uridine isomerization, is one of the most abundant RNA modification. ψ mapping classically involves derivatization with soluble carbodiimide (CMCT), which is prone to variation making this approach only semi-quantitative. Here, we developed 'HydraPsiSeq', a novel quantitative ψ mapping technique relying on specific protection from hydrazine/aniline cleavage. HydraPsiSeq is quantitative because the obtained signal directly reflects pseudouridine level. Furthermore, normalization to natural unmodified RNA and/or to synthetic in vitro transcripts allows absolute measurements of modification levels. HydraPsiSeq requires minute amounts of RNA (as low as 10-50 ng), making it compatible with high-throughput profiling of diverse biological and clinical samples. Exploring the potential of HydraPsiSeq, we profiled human rRNAs, revealing strong variations in pseudouridylation levels at ∼20-25 positions out of total 104 sites. We also observed the dynamics of rRNA pseudouridylation throughout chondrogenic differentiation of human bone marrow stem cells. In conclusion, HydraPsiSeq is a robust approach for the systematic mapping and accurate quantification of pseudouridines in RNAs with applications in disease, aging, development, differentiation and/or stress response.
Collapse
Affiliation(s)
- Virginie Marchand
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Florian Pichot
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Paul Neybecker
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Lilia Ayadi
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Valérie Bourguignon-Igel
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Ludivine Wacheul
- RNA Molecular Biology, ULB-Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Fonds de la Recherche Scientifique (F.R.S./FNRS), and Université Libre de Bruxelles (ULB), BioPark campus, B-6041 Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, ULB-Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Fonds de la Recherche Scientifique (F.R.S./FNRS), and Université Libre de Bruxelles (ULB), BioPark campus, B-6041 Gosselies, Belgium
| | - Astrid Pinzano
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| |
Collapse
|
27
|
Naseer MI, Abdulkareem AA, Jan MM, Chaudhary AG, Alharazy S, AlQahtani MH. Next generation sequencing reveals novel homozygous frameshift in PUS7 and splice acceptor variants in AASS gene leading to intellectual disability, developmental delay, dysmorphic feature and microcephaly. Saudi J Biol Sci 2020; 27:3125-3131. [PMID: 33100873 PMCID: PMC7569139 DOI: 10.1016/j.sjbs.2020.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Intellectual developmental disorder with abnormal behavior, microcephaly and short stature (IDDABS), (OMIM# 618342) is an autosomal recessive condition described as developmental delay, poor or absent speech, intellectual disability, short stature, mild to progressive microcephaly, delayed psychomotor development, hyperactivity, seizure, along with mild to swear aggressive behavior. Homozygous frameshift mutation in Pseudouridine Synthase 7, Putative; (PUS7) OMIM# 616,261 NM_019042.3 and splice acceptor variants in Alpha-Aminoadipic Semialdehyde Synthase; (AASS) OMIM# 605,113 NM_005763.3 was funded. Whole exome sequencing (WES) technique was used as tool to identify the molecular diagnostic test. Different bioinformatics analysis done for WES data and we identified two novel mutations one as frameshift mutation c.606_607delGA, p.Ser282CysfsTer9 in the PUS7 gene and splice acceptor variants c.1767–1 G > A in the AASS gene has been reported. The pattern of family segregation maintained the pathogenicity of this variation associated with abnormal behavior, intellectual developmental disorder, microcephaly along with short stature IDDABS. Further, the WES data was validated in the family having other affected individuals and healthy controls (n = 100) was done using Sanger sequencing. Finally, our results further explained the role of WES in the disease diagnosis and elucidated that the mutation in PUS7 and AASS genes may lead an important role for the development of IDDABS in Saudi family.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | | | - Mohammed M Jan
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Box 80215, Jeddah 21589, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Genetics, King Fahad General Hospital, 21589 Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Shatha Alharazy
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad H AlQahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Suzuki T, Yashiro Y, Kikuchi I, Ishigami Y, Saito H, Matsuzawa I, Okada S, Mito M, Iwasaki S, Ma D, Zhao X, Asano K, Lin H, Kirino Y, Sakaguchi Y, Suzuki T. Complete chemical structures of human mitochondrial tRNAs. Nat Commun 2020; 11:4269. [PMID: 32859890 PMCID: PMC7455718 DOI: 10.1038/s41467-020-18068-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022] Open
Abstract
Mitochondria generate most cellular energy via oxidative phosphorylation. Twenty-two species of mitochondrial (mt-)tRNAs encoded in mtDNA translate essential subunits of the respiratory chain complexes. mt-tRNAs contain post-transcriptional modifications introduced by nuclear-encoded tRNA-modifying enzymes. They are required for deciphering genetic code accurately, as well as stabilizing tRNA. Loss of tRNA modifications frequently results in severe pathological consequences. Here, we perform a comprehensive analysis of post-transcriptional modifications of all human mt-tRNAs, including 14 previously-uncharacterized species. In total, we find 18 kinds of RNA modifications at 137 positions (8.7% in 1575 nucleobases) in 22 species of human mt-tRNAs. An up-to-date list of 34 genes responsible for mt-tRNA modifications are provided. We identify two genes required for queuosine (Q) formation in mt-tRNAs. Our results provide insight into the molecular mechanisms underlying the decoding system and could help to elucidate the molecular pathogenesis of human mitochondrial diseases caused by aberrant tRNA modifications.
Collapse
Affiliation(s)
- Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuka Yashiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ittoku Kikuchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuma Ishigami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hironori Saito
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Ikuya Matsuzawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba, 278-0022, Japan
| | - Mari Mito
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA System Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Ding Ma
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Xuewei Zhao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kana Asano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Huan Lin
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 570228, Haikou, Hainan, P.R. China
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
29
|
Impact of Pus1 Pseudouridine Synthase on Specific Decoding Events in Saccharomyces cerevisiae. Biomolecules 2020; 10:biom10050729. [PMID: 32392804 PMCID: PMC7277083 DOI: 10.3390/biom10050729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Pus1-dependent pseudouridylation occurs in many tRNAs and at multiple positions, yet the functional impact of this modification is incompletely understood. We analyzed the consequences of PUS1 deletion on the essential decoding of CAG (Gln) codons by tRNAGlnCUG in yeast. Synthetic lethality was observed upon combining the modification defect with destabilized variants of tRNAGlnCUG, pointing to a severe CAG-decoding defect of the hypomodified tRNA. In addition, we demonstrated that misreading of UAG stop codons by a tRNAGlnCUG variant is positively affected by Pus1. Genetic approaches further indicated that mildly elevated temperature decreases the decoding efficiency of CAG and UAG via destabilized tRNAGlnCAG variants. We also determined the misreading of CGC (Arg) codons by tRNAHisGUG, where the CGC decoder tRNAArgICG contains Pus1-dependent pseudouridine, but not the mistranslating tRNAHis. We found that the absence of Pus1 increased CGC misreading by tRNAHis, demonstrating a positive role of the modification in the competition against non-synonymous near-cognate tRNA. Part of the in vivo decoding defects and phenotypes in pus1 mutants and strains carrying destabilized tRNAGlnCAG were suppressible by additional deletion of the rapid tRNA decay (RTD)-relevant MET22, suggesting the involvement of RTD-mediated tRNA destabilization.
Collapse
|
30
|
Pickerill ES, Kurtz RP, Tharp A, Guerrero Sanz P, Begum M, Bernstein DA. Pseudouridine synthase 7 impacts Candida albicans rRNA processing and morphological plasticity. Yeast 2019; 36:669-677. [PMID: 31364194 PMCID: PMC6899575 DOI: 10.1002/yea.3436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/30/2019] [Accepted: 07/20/2019] [Indexed: 12/27/2022] Open
Abstract
RNA can be modified in over 100 distinct ways, and these modifications are critical for function. Pseudouridine synthases catalyse pseudouridylation, one of the most prevalent RNA modifications. Pseudouridine synthase 7 modifies a variety of substrates in Saccharomyces cerevisiae including tRNA, rRNA, snRNA, and mRNA, but the substrates for other budding yeast Pus7 homologues are not known. We used CRISPR‐mediated genome editing to disrupt Candida albicansPUS7 and find absence leads to defects in rRNA processing and a decrease in cell surface hydrophobicity. Furthermore, C. albicans Pus7 absence causes temperature sensitivity, defects in filamentation, altered sensitivity to antifungal drugs, and decreased virulence in a wax moth model. In addition, we find C. albicans Pus7 modifies tRNA residues, but does not modify a number of other S. cerevisiae Pus7 substrates. Our data suggests C. albicans Pus7 is important for fungal vigour and may play distinct biological roles than those ascribed to S. cerevisiae Pus7.
Collapse
Affiliation(s)
- Ethan S Pickerill
- Department of Biology, Ball State University, Muncie, IN, 47306, USA
| | - Rebecca P Kurtz
- Department of Mathematics, Ball State University, Muncie, IN, 47306, USA
| | - Aaron Tharp
- Department of Biology, Ball State University, Muncie, IN, 47306, USA
| | | | - Munni Begum
- Department of Mathematics, Ball State University, Muncie, IN, 47306, USA
| | | |
Collapse
|
31
|
Shaheen R, Tasak M, Maddirevula S, Abdel-Salam GMH, Sayed ISM, Alazami AM, Al-Sheddi T, Alobeid E, Phizicky EM, Alkuraya FS. PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. Hum Genet 2019; 138:231-239. [PMID: 30778726 DOI: 10.1007/s00439-019-01980-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Pseudouridylation is the most common post-transcriptional modification, wherein uridine is isomerized into 5-ribosyluracil (pseudouridine, Ψ). The resulting increase in base stacking and creation of additional hydrogen bonds are thought to enhance RNA stability. Pseudouridine synthases are encoded in humans by 13 genes, two of which are linked to Mendelian diseases: PUS1 and PUS3. Very recently, PUS7 mutations were reported to cause intellectual disability with growth retardation. We describe two families in which two different homozygous PUS7 mutations (missense and frameshift deletion) segregate with a phenotype comprising intellectual disability and progressive microcephaly. Short stature and hearing loss were variable in these patients. Functional characterization of the two mutations confirmed that both result in decreased levels of Ψ13 in tRNAs. Furthermore, the missense variant of the S. cerevisiae ortholog failed to complement the growth defect of S. cerevisiae pus7Δ trm8Δ mutants. Our results confirm that PUS7 is a bona fide Mendelian disease gene and expand the list of human diseases caused by impaired pseudouridylation.
Collapse
Affiliation(s)
- Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Monika Tasak
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Inas S M Sayed
- Oro-dental Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Al-Sheddi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
32
|
de Brouwer AP, Abou Jamra R, Körtel N, Soyris C, Polla DL, Safra M, Zisso A, Powell CA, Rebelo-Guiomar P, Dinges N, Morin V, Stock M, Hussain M, Shahzad M, Riazuddin S, Ahmed ZM, Pfundt R, Schwarz F, de Boer L, Reis A, Grozeva D, Raymond FL, Riazuddin S, Koolen DA, Minczuk M, Roignant JY, van Bokhoven H, Schwartz S. Variants in PUS7 Cause Intellectual Disability with Speech Delay, Microcephaly, Short Stature, and Aggressive Behavior. Am J Hum Genet 2018; 103:1045-1052. [PMID: 30526862 DOI: 10.1016/j.ajhg.2018.10.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
We describe six persons from three families with three homozygous protein truncating variants in PUS7: c.89_90del (p.Thr30Lysfs∗20), c.1348C>T (p.Arg450∗), and a deletion of the penultimate exon 15. All these individuals have intellectual disability with speech delay, short stature, microcephaly, and aggressive behavior. PUS7 encodes the RNA-independent pseudouridylate synthase 7. Pseudouridylation is the most abundant post-transcriptional modification in RNA, which is primarily thought to stabilize secondary structures of RNA. We show that the disease-related variants lead to abolishment of PUS7 activity on both tRNA and mRNA substrates. Moreover, pus7 knockout in Drosophila melanogaster results in a number of behavioral defects, including increased activity, disorientation, and aggressiveness supporting that neurological defects are caused by PUS7 variants. Our findings demonstrate that RNA pseudouridylation by PUS7 is essential for proper neuronal development and function.
Collapse
|
33
|
He J, Fang T, Zhang Z, Huang B, Zhu X, Xiong Y. PseUI: Pseudouridine sites identification based on RNA sequence information. BMC Bioinformatics 2018; 19:306. [PMID: 30157750 PMCID: PMC6114832 DOI: 10.1186/s12859-018-2321-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023] Open
Abstract
Background Pseudouridylation is the most prevalent type of posttranscriptional modification in various stable RNAs of all organisms, which significantly affects many cellular processes that are regulated by RNA. Thus, accurate identification of pseudouridine (Ψ) sites in RNA will be of great benefit for understanding these cellular processes. Due to the low efficiency and high cost of current available experimental methods, it is highly desirable to develop computational methods for accurately and efficiently detecting Ψ sites in RNA sequences. However, the predictive accuracy of existing computational methods is not satisfactory and still needs improvement. Results In this study, we developed a new model, PseUI, for Ψ sites identification in three species, which are H. sapiens, S. cerevisiae, and M. musculus. Firstly, five different kinds of features including nucleotide composition (NC), dinucleotide composition (DC), pseudo dinucleotide composition (pseDNC), position-specific nucleotide propensity (PSNP), and position-specific dinucleotide propensity (PSDP) were generated based on RNA segments. Then, a sequential forward feature selection strategy was used to gain an effective feature subset with a compact representation but discriminative prediction power. Based on the selected feature subsets, we built our model by using a support vector machine (SVM). Finally, the generalization of our model was validated by both the jackknife test and independent validation tests on the benchmark datasets. The experimental results showed that our model is more accurate and stable than the previously published models. We have also provided a user-friendly web server for our model at http://zhulab.ahu.edu.cn/PseUI, and a brief instruction for the web server is provided in this paper. By using this instruction, the academic users can conveniently get their desired results without complicated calculations. Conclusion In this study, we proposed a new predictor, PseUI, to detect Ψ sites in RNA sequences. It is shown that our model outperformed the existing state-of-art models. It is expected that our model, PseUI, will become a useful tool for accurate identification of RNA Ψ sites. Electronic supplementary material The online version of this article (10.1186/s12859-018-2321-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingjing He
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Ting Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Zizheng Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Bei Huang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Xiaolei Zhu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
| | - Yi Xiong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
34
|
Collaboration of tRNA modifications and elongation factor eEF1A in decoding and nonsense suppression. Sci Rep 2018; 8:12749. [PMID: 30143741 PMCID: PMC6109124 DOI: 10.1038/s41598-018-31158-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 01/27/2023] Open
Abstract
Transfer RNA (tRNA) from all domains of life contains multiple modified nucleosides, the functions of which remain incompletely understood. Genetic interactions between tRNA modification genes in Saccharomyces cerevisiae suggest that different tRNA modifications collaborate to maintain translational efficiency. Here we characterize such collaborative functions in the ochre suppressor tRNA SUP4. We quantified ochre read-through efficiency in mutants lacking either of the 7 known modifications in the extended anticodon stem loop (G26-C48). Absence of U34, U35, A37, U47 and C48 modifications partially impaired SUP4 function. We systematically combined modification defects and scored additive or synergistic negative effects on SUP4 performance. Our data reveal different degrees of functional redundancy between specific modifications, the strongest of which was demonstrated for those occurring at positions U34 and A37. SUP4 activity in the absence of critical modifications, however, can be rescued in a gene dosage dependent fashion by TEF1 which encodes elongation factor eEF1A required for tRNA delivery to the ribosome. Strikingly, the rescue ability of higher-than-normal eEF1A levels extends to tRNA modification defects in natural non-suppressor tRNAs suggesting that elevated eEF1A abundance can partially compensate for functional defects induced by loss of tRNA modifications.
Collapse
|
35
|
Guzzi N, Cieśla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, Pimková K, Sommarin MNE, Munita R, Lubas M, Lim Y, Okuyama K, Soneji S, Karlsson G, Hansson J, Jönsson G, Lund AH, Sigvardsson M, Hellström-Lindberg E, Hsieh AC, Bellodi C. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells. Cell 2018; 173:1204-1216.e26. [PMID: 29628141 DOI: 10.1016/j.cell.2018.03.008] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/19/2018] [Accepted: 03/01/2018] [Indexed: 12/27/2022]
Abstract
Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease.
Collapse
Affiliation(s)
- Nicola Guzzi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maciej Cieśla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Stefan Lang
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Marios Dimitriou
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kristyna Pimková
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Mikael N E Sommarin
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Michal Lubas
- Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Yiting Lim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kazuki Okuyama
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anders H Lund
- Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
36
|
Abstract
Protein translation is a key cellular process in which each codon of mRNAs has to be accurately and efficiently recognized by cognate tRNAs of a large repertoire of noncognate tRNAs. A successful decoding process is largely dependent on the presence of modified nucleotides within the anticodon loop, especially of tRNAs having to read A/U-rich codons. In this latter case, their roles appear to stabilize the codon–anticodon interaction, allowing them to reach an optimal energetic value close to that of other interacting tRNAs involving G/C-rich anticodons. In this work we demonstrate that, while helping an efficient translation of A/U-rich codons, modified nucleotides also allow certain unconventional base pairing to occur, as evidenced in the case of stop codon suppression. Some codons of the genetic code can be read not only by cognate, but also by near-cognate tRNAs. This flexibility is thought to be conferred mainly by a mismatch between the third base of the codon and the first of the anticodon (the so-called “wobble” position). However, this simplistic explanation underestimates the importance of nucleotide modifications in the decoding process. Using a system in which only near-cognate tRNAs can decode a specific codon, we investigated the role of six modifications of the anticodon, or adjacent nucleotides, of the tRNAs specific for Tyr, Gln, Lys, Trp, Cys, and Arg in Saccharomyces cerevisiae. Modifications almost systematically rendered these tRNAs able to act as near-cognate tRNAs at stop codons, even though they involve noncanonical base pairs, without markedly affecting their ability to decode cognate or near-cognate sense codons. These findings reveal an important effect of modifications to tRNA decoding with implications for understanding the flexibility of the genetic code.
Collapse
|
37
|
Lei Z, Yi C. A Radiolabeling-Free, qPCR-Based Method for Locus-Specific Pseudouridine Detection. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhixin Lei
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences; Peking-Tsinghua Center for Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
38
|
RNA Pseudouridylation in Physiology and Medicine: For Better and for Worse. Genes (Basel) 2017; 8:genes8110301. [PMID: 29104216 PMCID: PMC5704214 DOI: 10.3390/genes8110301] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
Pseudouridine is the most abundant modification found in RNA. Today, thanks to next-generation sequencing techniques used in the detection of RNA modifications, pseudouridylation sites have been described in most eukaryotic RNA classes. In the present review, we will first consider the available information on the functional roles of pseudouridine(s) in different RNA species. We will then focus on how alterations in the pseudouridylation process may be connected with a series of human pathologies, including inherited disorders, cancer, diabetes, and viral infections. Finally, we will discuss how the availability of novel technical approaches are likely to increase the knowledge in this field.
Collapse
|
39
|
Lei Z, Yi C. A Radiolabeling-Free, qPCR-Based Method for Locus-Specific Pseudouridine Detection. Angew Chem Int Ed Engl 2017; 56:14878-14882. [DOI: 10.1002/anie.201708276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zhixin Lei
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences; Peking-Tsinghua Center for Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
40
|
Rintala-Dempsey AC, Kothe U. Eukaryotic stand-alone pseudouridine synthases - RNA modifying enzymes and emerging regulators of gene expression? RNA Biol 2017; 14:1185-1196. [PMID: 28045575 PMCID: PMC5699540 DOI: 10.1080/15476286.2016.1276150] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
For a long time, eukaryotic stand-alone pseudouridine synthases (Pus enzymes) were neglected as non-essential enzymes adding seemingly simple modifications to tRNAs and small nuclear RNAs. Most studies were limited to the identification and initial characterization of the yeast Pus enzymes. However, recent transcriptome-wide mapping of pseudouridines in yeast and humans revealed pervasive modification of mRNAs and other non-coding RNAs by Pus enzymes which is dynamically regulated in response to cellular stress. Moreover, mutations in at least 2 genes encoding human Pus enzymes cause inherited diseases affecting muscle and brain function. Together, the recent findings suggest a broader-than-anticipated role of the Pus enzymes which are emerging as potential regulators of gene expression. In this review, we summarize the current knowledge on Pus enzymes, generate hypotheses regarding their cellular function and outline future areas of research of pseudouridine synthases.
Collapse
Affiliation(s)
- Anne C Rintala-Dempsey
- a Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry , University of Lethbridge , Lethbridge , AB , Canada
| | - Ute Kothe
- a Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry , University of Lethbridge , Lethbridge , AB , Canada
| |
Collapse
|
41
|
|
42
|
Zaringhalam M, Papavasiliou FN. Pseudouridylation meets next-generation sequencing. Methods 2016; 107:63-72. [DOI: 10.1016/j.ymeth.2016.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 11/15/2022] Open
|
43
|
Wu G, Adachi H, Ge J, Stephenson D, Query CC, Yu YT. Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. EMBO J 2016; 35:654-67. [PMID: 26873591 DOI: 10.15252/embj.201593113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Pseudouridine (Ψ) is the most abundant internal modification identified in RNA, and yet little is understood of its effects on downstream reactions. Yeast U2 snRNA contains three conserved Ψs (Ψ35, Ψ42, and Ψ44) in the branch site recognition region (BSRR), which base pairs with the pre-mRNA branch site during splicing. Here, we show that blocks to pseudouridylation at these positions reduce the efficiency of pre-mRNA splicing, leading to growth-deficient phenotypes. Restoration of pseudouridylation at these positions using designer snoRNAs results in near complete rescue of splicing and cell growth. These Ψs interact genetically with Prp5, an RNA-dependent ATPase involved in monitoring the U2 BSRR-branch site base-pairing interaction. Biochemical analysis indicates that Prp5 has reduced affinity for U2 snRNA that lacks Ψ42 and Ψ44 and that Prp5 ATPase activity is reduced when stimulated by U2 lacking Ψ42 or Ψ44 relative to wild type, resulting in inefficient spliceosome assembly. Furthermore, in vivo DMS probing analysis reveals that pseudouridylated U2, compared to U2 lacking Ψ42 and Ψ44, adopts a slightly different structure in the branch site recognition region. Taken together, our results indicate that the Ψs in U2 snRNA contribute to pre-mRNA splicing by directly altering the binding/ATPase activity of Prp5.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Junhui Ge
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - David Stephenson
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
44
|
Abstract
tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some 2-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.
Collapse
Affiliation(s)
- Michael P Guy
- a Department of Biochemistry and Biophysics; Center for RNA Biology ; University of Rochester School of Medicine ; Rochester , NY USA
| | | |
Collapse
|
45
|
Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 2015; 11:592-7. [DOI: 10.1038/nchembio.1836] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/29/2015] [Indexed: 01/10/2023]
|
46
|
Boschi-Muller S, Motorin Y. Chemistry enters nucleic acids biology: enzymatic mechanisms of RNA modification. BIOCHEMISTRY (MOSCOW) 2014; 78:1392-404. [PMID: 24490730 DOI: 10.1134/s0006297913130026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modified nucleotides are universally conserved in all living kingdoms and are present in almost all types of cellular RNAs, including tRNA, rRNA, sn(sno)RNA, and mRNA and in recently discovered regulatory RNAs. Altogether, over 110 chemically distinct RNA modifications have been characterized and localized in RNA by various analytical methods. However, this impressive list of known modified nucleotides is certainly incomplete, mainly due to difficulties in identification and characterization of these particular residues in low abundance cellular RNAs. In DNA, modified residues are formed by both enzymatic reactions (like DNA methylations, for example) and by spontaneous chemical reactions resulting from oxidative damage. In contrast, all modified residues characterized in cellular RNA molecules are formed by specific action of dedicated RNA-modification enzymes, which recognize their RNA substrate with high specificity. These RNA-modification enzymes display a great diversity in terms of the chemical reaction and use various low molecular weight cofactors (or co-substrates) in enzymatic catalysis. Depending on the nature of the target base and of the co-substrate, precise chemical mechanisms are used for appropriate activation of the base and the co-substrate in the enzyme active site. In this review, we give an extended summary of the enzymatic mechanisms involved in formation of different methylated nucleotides in RNA, as well as pseudouridine residues, which are almost universally conserved in all living organisms. Other interesting mechanisms include thiolation of uridine residues by ThiI and the reaction of guanine exchange catalyzed by TGT. The latter implies the reversible cleavage of the N-glycosidic bond in order to replace the initially encoded guanine by an aza-guanosine base. Despite the extensive studies of RNA modification and RNA-modification machinery during the last 20 years, our knowledge on the exact chemical steps involved in catalysis of RNA modification remains very limited. Recent discoveries of radical mechanisms involved in base methylation clearly demonstrate that numerous possibilities are used in Nature for these difficult reactions. Future studies are certainly required for better understanding of the enzymatic mechanisms of RNA modification, and this knowledge is crucial not only for basic research, but also for development of new therapeutic molecules.
Collapse
Affiliation(s)
- S Boschi-Muller
- Université de Lorraine, Laboratoire IMoPA, UMR 7365 CNRS-UL, Faculté de Médecine de Nancy, BP 184, Vandoeuvre les Nancy, 54505, France.
| | | |
Collapse
|
47
|
Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, León-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 2014; 159:148-162. [PMID: 25219674 DOI: 10.1016/j.cell.2014.08.028] [Citation(s) in RCA: 717] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 01/14/2023]
Abstract
Pseudouridine is the most abundant RNA modification, yet except for a few well-studied cases, little is known about the modified positions and their function(s). Here, we develop Ψ-seq for transcriptome-wide quantitative mapping of pseudouridine. We validate Ψ-seq with spike-ins and de novo identification of previously reported positions and discover hundreds of unique sites in human and yeast mRNAs and snoRNAs. Perturbing pseudouridine synthases (PUS) uncovers which pseudouridine synthase modifies each site and their target sequence features. mRNA pseudouridinylation depends on both site-specific and snoRNA-guided pseudouridine synthases. Upon heat shock in yeast, Pus7p-mediated pseudouridylation is induced at >200 sites, and PUS7 deletion decreases the levels of otherwise pseudouridylated mRNA, suggesting a role in enhancing transcript stability. rRNA pseudouridine stoichiometries are conserved but reduced in cells from dyskeratosis congenita patients, where the PUS DKC1 is mutated. Our work identifies an enhanced, transcriptome-wide scope for pseudouridine and methods to dissect its underlying mechanisms and function.
Collapse
Affiliation(s)
| | | | | | - Marko Jovanovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rebecca H Herbst
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA
| | - Brian X León-Ricardo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00931, Puerto Rico
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rahul Satija
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Gerald Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA.
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA.
| |
Collapse
|
48
|
Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 2014; 515:143-6. [PMID: 25192136 PMCID: PMC4224642 DOI: 10.1038/nature13802] [Citation(s) in RCA: 721] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/27/2014] [Indexed: 01/14/2023]
Abstract
Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs1, enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure2–8. mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center9,10. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease11–13.
Collapse
Affiliation(s)
- Thomas M Carlile
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria F Rojas-Duran
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Boris Zinshteyn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hakyung Shin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kristen M Bartoli
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
49
|
Friedt J, Leavens FMV, Mercier E, Wieden HJ, Kothe U. An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation. Nucleic Acids Res 2014; 42:3857-70. [PMID: 24371284 PMCID: PMC3973310 DOI: 10.1093/nar/gkt1331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 11/12/2022] Open
Abstract
Pseudouridine synthases introduce the most common RNA modification and likely use the same catalytic mechanism. Besides a catalytic aspartate residue, the contributions of other residues for catalysis of pseudouridine formation are poorly understood. Here, we have tested the role of a conserved basic residue in the active site for catalysis using the bacterial pseudouridine synthase TruB targeting U55 in tRNAs. Substitution of arginine 181 with lysine results in a 2500-fold reduction of TruB's catalytic rate without affecting tRNA binding. Furthermore, we analyzed the function of a second-shell aspartate residue (D90) that is conserved in all TruB enzymes and interacts with C56 of tRNA. Site-directed mutagenesis, biochemical and kinetic studies reveal that this residue is not critical for substrate binding but influences catalysis significantly as replacement of D90 with glutamate or asparagine reduces the catalytic rate 30- and 50-fold, respectively. In agreement with molecular dynamics simulations of TruB wild type and TruB D90N, we propose an electrostatic network composed of the catalytic aspartate (D48), R181 and D90 that is important for catalysis by fine-tuning the D48-R181 interaction. Conserved, negatively charged residues similar to D90 are found in a number of pseudouridine synthases, suggesting that this might be a general mechanism.
Collapse
Affiliation(s)
- Jenna Friedt
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Fern M. V. Leavens
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Evan Mercier
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| |
Collapse
|
50
|
Spenkuch F, Motorin Y, Helm M. Pseudouridine: still mysterious, but never a fake (uridine)! RNA Biol 2014; 11:1540-54. [PMID: 25616362 PMCID: PMC4615568 DOI: 10.4161/15476286.2014.992278] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/23/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023] Open
Abstract
Pseudouridine (Ψ) is the most abundant of >150 nucleoside modifications in RNA. Although Ψ was discovered as the first modified nucleoside more than half a century ago, neither the enzymatic mechanism of its formation, nor the function of this modification are fully elucidated. We present the consistent picture of Ψ synthases, their substrates and their substrate positions in model organisms of all domains of life as it has emerged to date and point out the challenges that remain concerning higher eukaryotes and the elucidation of the enzymatic mechanism.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Humans
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Nucleic Acid Conformation
- Pseudouridine/metabolism
- RNA/genetics
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Mitochondrial
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Felix Spenkuch
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz; Mainz, Germany
| | - Yuri Motorin
- Laboratoire IMoPA; Ingénierie Moléculaire et Physiopathologie Articulaire; BioPôle de l'Université de Lorraine; Campus Biologie-Santé; Faculté de Médecine; Vandoeuvre-les-Nancy Cedex, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz; Mainz, Germany
| |
Collapse
|