1
|
Sheen YS, Syu YJ, Chang YC, Hsieh PH, Liao YH, Lin MH, Chen CY, Chu CY, Chu CY. Insulin-like growth factor 2 mRNA-binding protein 3 enhanced melanoma migration through regulation of AKT1 and RELA expression. Exp Dermatol 2024; 33:e15015. [PMID: 38284203 DOI: 10.1111/exd.15015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
IMP-3 expression is a poor prognostic factor of melanomas and it promotes melanoma cell migration and invasion by a pathway modulating HMGA2 mRNA expression. We tried to identify other putative targets of IMP-3. We identified putative IMP-3-binding RNAs, including AKT1, MAPK3, RB1 and RELA, by RNA immunoprecipitation coupled with next-generation sequencing. IMP-3 overexpression increased AKT and RELA levels in MeWo cells. siRNAs against AKT1 and RELA inhibited MeWo/Full-length IMP-3 cell migration. IMP-3 knockdown of A2058 cells decreased AKT1 and RELA expression and lowered migration ability. Co-transfection of A2058 cells with AKT1- or RELA-expressing plasmids with IMP-3 siRNA restored the inhibitory effects of IMP-3 knockdown on migration. HMGA2 did not influence AKT1 and RELA expression in melanoma cells. Human melanoma samples with high IMP-3 levels also showed high HMGA2, AKT1 and RELA expression. Our results show that IMP-3 enhances melanoma cell migration through the regulation of the AKT1 and RELA axis.
Collapse
Affiliation(s)
- Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yan-Jie Syu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chuan Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ping-Han Hsieh
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Hsien Lin
- Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Wallis N, Oberman F, Shurrush K, Germain N, Greenwald G, Gershon T, Pearl T, Abis G, Singh V, Singh A, Sharma AK, Barr HM, Ramos A, Spiegelman VS, Yisraeli JK. Small molecule inhibitor of Igf2bp1 represses Kras and a pro-oncogenic phenotype in cancer cells. RNA Biol 2021; 19:26-43. [PMID: 34895045 PMCID: PMC8794255 DOI: 10.1080/15476286.2021.2010983] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Igf2bp1 is an oncofetal RNA binding protein whose expression in numerous types of cancers is associated with upregulation of key pro-oncogenic RNAs, poor prognosis, and reduced survival. Importantly, Igf2bp1 synergizes with mutations in Kras to enhance signalling and oncogenic activity, suggesting that molecules inhibiting Igf2bp1 could have therapeutic potential. Here, we isolate a small molecule that interacts with a hydrophobic surface at the boundary of Igf2bp1 KH3 and KH4 domains, and inhibits binding to Kras RNA. In cells, the compound reduces the level of Kras and other Igf2bp1 mRNA targets, lowers Kras protein, and inhibits downstream signalling, wound healing, and growth in soft agar, all in the absence of any toxicity. This work presents an avenue for improving the prognosis of Igf2bp1-expressing tumours in lung, and potentially other, cancer(s).
Collapse
Affiliation(s)
- Nadav Wallis
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Froma Oberman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Khriesto Shurrush
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Nicolas Germain
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Gila Greenwald
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tehila Gershon
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Talia Pearl
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Vikash Singh
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Haim M. Barr
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Andres Ramos
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Vladimir S. Spiegelman
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Joel K. Yisraeli
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Li M, Rong X, Lu L, Li Y, Yao K, Ge W, Duan C. IGF-2 mRNA binding protein 2 regulates primordial germ cell development in zebrafish. Gen Comp Endocrinol 2021; 313:113875. [PMID: 34352271 DOI: 10.1016/j.ygcen.2021.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor 2 mRNA binding protein-2 (IGF2BP2 or IMP2) is a member of a conserved family of RNA binding proteins. These proteins bind to and regulate target mRNA localization, stability, and translation. Their structure, expression and functions in bony fish are not well understood. Here, we characterized the zebrafish igf2bp2 gene and investigated its functional role in early development. Zebrafish igf2bp2 gives rise to 4 alternatively spliced transcripts. When expressed in cultured cells, all 4 proteins were detected in the cytoplasm. Igf2bp2-A, the longest isoform, has a domain structure similar to its mammalian counterpart. Igf2bp2-B lacks one of the C-terminal KH domains, while Igf2bp2-C lacks the two N-terminal RRM domains. Igf2bp2-D lacks both regions. In adult fish, these igf2bp2 isoforms were detected exclusively in the oocyte. After fertilization, they disappeared within 6 h post fertilization (hpf). At 20 ~ 24 hpf, igf2bp2-A mRNA, but not other mRNAs, was re-expressed in the embryos including in primordial germ cells. Targeted knockdown of Igf2bp2s reduced the numbers of primordial germ cells but did not affect global patterning or growth. The effect was rescued by overexpression of Igf2bp2-A. Likewise, dominant-negative inhibition of Igf2bp2 resulted in a similar reduction in primordial germ cell number. These results not only provide new information about the structure and expression of zebrafish Igf2bp2, but also reveal a critical role of this conserved RNA binding protein in primordial germ cell development.
Collapse
Affiliation(s)
- Mingyu Li
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xiaozhi Rong
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Ling Lu
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yun Li
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kai Yao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Ghoshal A, Rodrigues LC, Gowda CP, Elcheva IA, Liu Z, Abraham T, Spiegelman VS. Extracellular vesicle-dependent effect of RNA-binding protein IGF2BP1 on melanoma metastasis. Oncogene 2019; 38:4182-4196. [PMID: 30936459 PMCID: PMC7727312 DOI: 10.1038/s41388-019-0797-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is a multifunctional RNA-binding protein with an oncofetal pattern of expression shown to be implicated in the development of a variety of malignancies. In this study, we explored the role and mechanisms of IGF2BP1 in melanoma development and progression. In two different in vivo models, we showed that while genetic deletion or shRNA-mediated suppression of IGF2BP1 did not affect primary tumor formation, it drastically suppressed lung metastasis. Here we demonstrated that extracellular vesicles (EVs) secreted by melanoma cells mediate the effects of IGF2BP1 on metastasis: EVs from the IGF2BP1 knockdown melanoma cells failed to promote metastasis whereas EVs isolated from IGF2BP1-overexpressed melanoma cells further accelerated EV-induced metastasis. Moreover, the EVs from IGF2BP1 knockdown melanoma cells inhibited fibronectin deposition and accumulation of CD45+ cells in the lungs compared to control EVs, thus blocking the pre-metastatic niche formation potential of EVs. IGF2BP1 knockdown did not affect size, number, or protein/RNA concentration of secreted EVs or their uptake by recipient cells in vitro or in vivo. However, RNA-sequencing and proteomics analysis of the EVs revealed differential expression in a number of mRNA, proteins and miRNAs. This suggested that IGF2BP1 is intimately involved in the regulation of the cargo of EVs, thereby affecting the pro-metastatic function of melanoma-derived EVs. To the best of our knowledge, this is the first study that demonstrates the role of RNA-binding protein IGF2BP1 in EV-mediated promotion of melanoma metastasis and may provide novel avenues for the development of metastatic inhibitors.
Collapse
Affiliation(s)
- Archita Ghoshal
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Lucas C Rodrigues
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Chethana P Gowda
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Irina A Elcheva
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Zhenqiu Liu
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Thomas Abraham
- Department of Neural and Behavioral Science, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Vladimir S Spiegelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
5
|
VICKZ1 enhances tumor progression and metastasis in lung adenocarcinomas in mice. Oncogene 2019; 38:4169-4181. [PMID: 30700831 DOI: 10.1038/s41388-019-0715-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
The VICKZ (Igf2bp) family of RNA binding proteins regulate RNA function at many levels, including intracellular RNA localization, RNA stability, and translational control. One or more of the three VICKZ paralogs are upregulated in many different types of cancers. Here, we show how VICKZ1 enhances, and dominant negative VICKZ1 inhibits, cell migration, growth in soft agar, and wound healing in a mouse lung adenocarcinoma cell line containing a constitutively active, mutant Kras. Similarly, modulation of VICKZ1 activity promotes or inhibits metastases upon implantation of these cells into syngeneic mice. To test these effects in a genetic model system, we generated a mouse with an inducible VICKZ1 transgene and found that isolated overexpression of VICKZ1 in the lungs had no noticeable effect on morphology. Although directed overexpression of mutant Kras in the lungs led to the formation of small adenomas, concurrent overexpression of VICKZ1 remarkably accelerated tumor growth and formation of pulmonary adenocarcinomas. VICKZ1-containing ribonucleoprotein complexes are highly enriched in Kras mRNA in lung adenocarcinoma cells, and Kras signaling is enhanced in these cells by overexpression of VICKZ1. Analysis of lung carcinoma patients reveals that elevated VICKZ1 expression correlates with lower overall survival; this reduction is dramatically enhanced in those patients bearing a mutant Kras gene. Our study reveals that RNA binding proteins of the VICKZ family can synergize with Kras to influence signaling and oncogenic activity.
Collapse
|
6
|
Wang G, Huang Z, Liu X, Huang W, Chen S, Zhou Y, Li D, Singer RH, Gu W. IMP1 suppresses breast tumor growth and metastasis through the regulation of its target mRNAs. Oncotarget 2016; 7:15690-702. [PMID: 26910917 PMCID: PMC4941270 DOI: 10.18632/oncotarget.7464] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/05/2016] [Indexed: 02/05/2023] Open
Abstract
We have previously reported the ability of IMP1 in inhibiting proliferation and invasiveness of breast carcinoma cells in vitro. In the current study, we utilized a mouse xenograft model to further investigate the function of IMP1 in breast tumor progression and its underlying mechanism. We demonstrated that IMP1 expression significantly suppressed the growth of MDA231 cell-derived xenograft tumors and subsequent lung metastasis. Microarray analyses and differential gene expression identified handful mRNAs, many of which were involved in breast tumor-growth and metastasis. Further studies revealed that these mRNAs were directly interacted with the KH34 domain of IMP1 and this interaction post-transcriptionally regulated their corresponding protein expression. Either deletion of the KH34 domain of IMP1 or alteration of the expression of IMP1-bound mRNAs affected cell proliferation and tumor growth, producing the same phenotypes as IMP1 knockdown. Correlation of increased IMP1 expression with the reduced levels of its bound mRNAs, such as PTGS2, GDF15 and IGF-2 transcripts, was also observed in human breast tumors. Our studies provide insights into a molecular mechanism that the positive function of IMP1 to inhibit breast tumor growth and metastasis could be through the regulation of its target mRNAs.
Collapse
Affiliation(s)
- Guangli Wang
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Zhenqiang Huang
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Xin Liu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Wenhe Huang
- Tumor Hospital, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Shaoying Chen
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Yanchun Zhou
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Deling Li
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Gu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| |
Collapse
|
7
|
Gaynes JA, Otsuna H, Campbell DS, Manfredi JP, Levine EM, Chien CB. The RNA Binding Protein Igf2bp1 Is Required for Zebrafish RGC Axon Outgrowth In Vivo. PLoS One 2015; 10:e0134751. [PMID: 26325373 PMCID: PMC4556669 DOI: 10.1371/journal.pone.0134751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/13/2015] [Indexed: 02/03/2023] Open
Abstract
Attractive growth cone turning requires Igf2bp1-dependent local translation of β-actin mRNA in response to external cues in vitro. While in vivo studies have shown that Igf2bp1 is required for cell migration and axon terminal branching, a requirement for Igf2bp1 function during axon outgrowth has not been demonstrated. Using a timelapse assay in the zebrafish retinotectal system, we demonstrate that the β-actin 3'UTR is sufficient to target local translation of the photoconvertible fluorescent protein Kaede in growth cones of pathfinding retinal ganglion cells (RGCs) in vivo. Igf2bp1 knockdown reduced RGC axonal outgrowth and tectal coverage and retinal cell survival. RGC-specific expression of a phosphomimetic Igf2bp1 reduced the density of axonal projections in the optic tract while sparing RGCs, demonstrating for the first time that Igf2bp1 is required during axon outgrowth in vivo. Therefore, regulation of local translation mediated by Igf2bp proteins may be required at all stages of axon development.
Collapse
Affiliation(s)
- John A. Gaynes
- Program in Neuroscience, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Department of Ophthalmology/Visual Sciences, John A. Moran Center, University of Utah Medical Center, Salt Lake City, Utah, United States of America
| | - Hideo Otsuna
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah, United States of America
| | - Douglas S. Campbell
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - John P. Manfredi
- Sfida BioLogic, Inc., Salt Lake City, Utah, United States of America
| | - Edward M. Levine
- Program in Neuroscience, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Department of Ophthalmology/Visual Sciences, John A. Moran Center, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- * E-mail:
| | - Chi-Bin Chien
- Program in Neuroscience, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah, United States of America
| |
Collapse
|
8
|
Carmel MS, Kahane N, Oberman F, Miloslavski R, Sela-Donenfeld D, Kalcheim C, Yisraeli JK. A Novel Role for VICKZ Proteins in Maintaining Epithelial Integrity during Embryogenesis. PLoS One 2015; 10:e0136408. [PMID: 26317350 PMCID: PMC4552865 DOI: 10.1371/journal.pone.0136408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 08/04/2015] [Indexed: 12/31/2022] Open
Abstract
Background VICKZ (IGF2BP1,2,3/ZBP1/Vg1RBP/IMP1,2,3) proteins bind RNA and help regulate many RNA-mediated processes. In the midbrain region of early chick embryos, VICKZ is expressed in the neural folds and along the basal surface of the neural epithelium, but, upon neural tube closure, is down-regulated in prospective cranial neural crest (CNC) cells, concomitant with their emigration and epithelial-to-mesenchymal transition (EMT). Electroporation of constructs that modulate cVICKZ expression demonstrates that this down-regulation is both necessary and sufficient for CNC EMT. These results suggest that VICKZ down-regulation in CNC cell-autonomously promotes EMT and migration. Reduction of VICKZ throughout the embryo, however, inhibits CNC migration non-cell-autonomously, as judged by transplantation experiments in Xenopus embryos. Results and Conclusions Given the positive role reported for VICKZ proteins in promoting cell migration of chick embryo fibroblasts and many types of cancer cells, we have begun to look for specific mRNAs that could mediate context-specific differences. We report here that the laminin receptor, integrin alpha 6, is down-regulated in the dorsal neural tube when CNC cells emigrate, this process is mediated by cVICKZ, and integrin alpha 6 mRNA is found in VICKZ ribonucleoprotein complexes. Significantly, prolonged inhibition of cVICKZ in either the neural tube or the nascent dermomyotome sheet, which also dynamically expresses cVICKZ, induces disruption of these epithelia. These data point to a previously unreported role for VICKZ in maintaining epithelial integrity.
Collapse
Affiliation(s)
- Michal Shoshkes Carmel
- Department of Developmental Biology and Cancer Research, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitza Kahane
- Department of Medical Neurobiology, IMRIC, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Froma Oberman
- Department of Developmental Biology and Cancer Research, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Miloslavski
- Department of Developmental Biology and Cancer Research, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, 76100, Rehovot, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, IMRIC, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joel K. Yisraeli
- Department of Developmental Biology and Cancer Research, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
9
|
Hamilton KE, Chatterji P, Lundsmith ET, Andres SF, Giroux V, Hicks PD, Noubissi FK, Spiegelman VS, Rustgi AK. Loss of Stromal IMP1 Promotes a Tumorigenic Microenvironment in the Colon. Mol Cancer Res 2015; 13:1478-86. [PMID: 26194191 DOI: 10.1158/1541-7786.mcr-15-0224] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/08/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED The colon tumor microenvironment is becoming increasingly recognized as a complex but central player in the development of many cancers. Previously, we identified an oncogenic role for the mRNA-binding protein IMP1 (IGF2BP1) in the epithelium during colon tumorigenesis. In the current study, we reveal the contribution of stromal IMP1 in the context of colitis-associated colon tumorigenesis. Interestingly, stromal deletion of Imp1 (Dermo1Cre;Imp1(LoxP/LoxP), or Imp1(ΔMes)) in the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colitis-associated cancer resulted in increased tumor numbers of larger size and more advanced histologic grade than controls. In addition, Imp1(ΔMes) mice exhibited a global increase in protumorigenic microenvironment factors, including enhanced inflammation and stromal components. Evaluation of purified mesenchyme from AOM/DSS-treated Imp1(ΔMes) mice demonstrated an increase in hepatocyte growth factor (HGF), which has not been associated with regulation via IMP1. Genetic knockdown of Imp1 in human primary fibroblasts confirmed an increase in HGF with Imp1 loss, demonstrating a specific, cell-autonomous role for Imp1 loss to increase HGF expression. Taken together, these data demonstrate a novel tumor-suppressive role for IMP1 in colon stromal cells and underscore an exquisite, context-specific function for mRNA-binding proteins, such as IMP1, in disease states. IMPLICATIONS The tumor-suppressive role of stromal IMP1 and its ability to modulate protumorigenic factors suggest that IMP1 status is important for the initiation and growth of epithelial tumors.
Collapse
Affiliation(s)
- Kathryn E Hamilton
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Priya Chatterji
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Emma T Lundsmith
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sarah F Andres
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Veronique Giroux
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Philip D Hicks
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Felicite K Noubissi
- Department of Pediatrics, Pennsylvaia State University, College of Medicine, Hershey, Pennsylvania. Division of Pediatric Hematology/Oncology, Pennsylvaia State University, College of Medicine, Hershey, Pennsylvania. Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota
| | - Vladimir S Spiegelman
- Department of Pediatrics, Pennsylvaia State University, College of Medicine, Hershey, Pennsylvania. Division of Pediatric Hematology/Oncology, Pennsylvaia State University, College of Medicine, Hershey, Pennsylvania
| | - Anil K Rustgi
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Maizels Y, Oberman F, Miloslavski R, Ginzach N, Berman M, Yisraeli JK. Localization of cofilin mRNA to the leading edge of migrating cells promotes directed cell migration. J Cell Sci 2015; 128:1922-33. [DOI: 10.1242/jcs.163972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
mRNA trafficking, which enables the localization of mRNAs to particular intracellular targets, occurs in a wide variety of cells. The importance of the resulting RNA distribution for cellular functions, however, has been difficult to assess. We have found that cofilin-1 mRNA is rapidly localized to the leading edge of human lung carcinoma cells and that VICKZ family RNA-binding proteins help mediate this localization through specific interactions with the 3′UTR of cofilin mRNA. Using a phagokinetic assay for cell motility, we have been able to quantify the effect of mRNA localization on the rescue of lung carcinoma cells in which cofilin was knocked down by using short hairpin RNA (shRNA). Although restoring cofilin protein to normal endogenous levels rescues general lamellipodia formation around the periphery of the cell, only when the rescuing cofilin mRNA can localize to the leading edge is it capable of also fully rescuing directed cell movement. These results demonstrate that localization of an mRNA can provide an additional level of regulation for the function of its protein product.
Collapse
Affiliation(s)
- Yael Maizels
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Froma Oberman
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Rachel Miloslavski
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Nava Ginzach
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Malka Berman
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Joel K. Yisraeli
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
11
|
Liao G, Mingle L, Van De Water L, Liu G. Control of cell migration through mRNA localization and local translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:1-15. [PMID: 25264217 DOI: 10.1002/wrna.1265] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/13/2014] [Accepted: 07/31/2014] [Indexed: 02/06/2023]
Abstract
Cell migration plays an important role in many normal and pathological functions such as development, wound healing, immune defense, and tumor metastasis. Polarized migrating cells exhibit asymmetric distribution of many cytoskeletal proteins, which is believed to be critical for establishing and maintaining cell polarity and directional cell migration. To target these proteins to the site of function, cells use a variety of mechanisms such as protein transport and messenger RNA (mRNA) localization-mediated local protein synthesis. In contrast to the former which is intensively investigated and relatively well understood, the latter has been understudied and relatively poorly understood. However, recent advances in the study of mRNA localization and local translation have demonstrated that mRNA localization and local translation are specific and effective ways for protein localization and are crucial for embryo development, neuronal function, and many other cellular processes. There are excellent reviews on mRNA localization, transport, and translation during development and other cellular processes. This review will focus on mRNA localization-mediated local protein biogenesis and its impact on somatic cell migration.
Collapse
Affiliation(s)
- Guoning Liao
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | | | | | | |
Collapse
|
12
|
Moens U, Kostenko S. Structure and function of MK5/PRAK: the loner among the mitogen-activated protein kinase-activated protein kinases. Biol Chem 2014; 394:1115-32. [PMID: 23729623 DOI: 10.1515/hsz-2013-0149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways that control pivotal cellular processes including proliferation, differentiation, survival, apoptosis, gene regulation, and motility. MAPK pathways consist of a relay of consecutive phosphorylation events exerted by MAPK kinase kinases, MAPK kinases, and MAPKs. Conventional MAPKs are characterized by a conserved Thr-X-Tyr motif in the activation loop of the kinase domain, while atypical MAPKs lack this motif and do not seem to be organized into the classical three-tiered kinase cascade. One functional group of conventional and atypical MAPK substrates consists of protein kinases known as MAPK-activated protein kinases. Eleven mammalian MAPK-activated protein kinases have been identified, and they are divided into five subgroups: the ribosomal-S6-kinases RSK1-4, the MAPK-interacting kinases MNK1 and 2, the mitogen- and stress-activated kinases MSK1 and 2, the MAPK-activated protein kinases MK2 and 3, and the MAPK-activated protein kinase MK5 (also referred to as PRAK). MK5/PRAK is the only MAPK-activated protein kinase that is a substrate for both conventional and atypical MAPK, while all other MAPKAPKs are exclusively phosphorylated by conventional MAPKs. This review focuses on the structure, activation, substrates, functions, and possible implications of MK5/PRAK in malignant and nonmalignant diseases.
Collapse
Affiliation(s)
- Ugo Moens
- University of Tromsø Faculty of Health Sciences, Department of Medical Biology, Molecular Inflammation Research Group, N-9037 Tromsø, Norway.
| | | |
Collapse
|
13
|
VICKZ2 protein expression in ovarian serous carcinoma effusions is associated with poor survival. Hum Pathol 2014; 45:1520-8. [PMID: 24814803 DOI: 10.1016/j.humpath.2014.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 01/10/2023]
Abstract
The involvement of VICKZ proteins has been implicated in a large number of cancers. The aim of the present study was to investigate the biological and clinical role of VICKZ proteins in ovarian carcinoma (OC). VICKZ1-3 protein expression was analyzed in 82 serous OC specimens (51 effusions, 14 primary carcinomas, 17 solid metastases) by immunoblotting. Protein localization was studied using immunohistochemistry in 101 tumors (40 effusions, 25 primary carcinomas, 36 solid metastases). The effect of VICKZ silencing using short hairpin RNA on collagenolytic activity and invasion was assessed in ES-2 OC cells. VICKZ2 was the most frequently expressed family member in serous carcinomas. VICKZ levels measured by pan-VICKZ antibody were significantly higher in primary carcinomas and solid metastases compared to effusions (P < .001). In contrast, VICKZ1 and VICKZ2 were overexpressed in effusions compared to primary carcinomas and solid metastases (P = .016 and P = .024, respectively), and higher VICKZ2 expression in effusions was associated with shorter overall survival in univariate analysis (P = .01). All 3 proteins were localized to OC cells by immunohistochemistry, with tumor-specific expression observed for VICKZ1 and VICKZ2. VICKZ silencing in ES-2 cells led to reduced matrix metalloproteinase 9 activity and reduced invasion. In conclusion, VICKZ2 is the most frequently expressed VICKZ family member in serous OCs. VICKZ1 and VICKZ2 are overexpressed in effusions compared to primary carcinomas and solid metastases, suggesting a biological role at this anatomical site, and appear to have a role in proteolysis and invasion. VICKZ2 may be a prognostic marker in ovarian serous carcinoma effusions.
Collapse
|
14
|
Zhou X, Zhang CZ, Lu SX, Chen GG, Li LZ, Liu LL, Yi C, Fu J, Hu W, Wen JM, Yun JP. miR-625 suppresses tumour migration and invasion by targeting IGF2BP1 in hepatocellular carcinoma. Oncogene 2014; 34:965-77. [PMID: 24632613 DOI: 10.1038/onc.2014.35] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 12/29/2013] [Accepted: 01/01/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies and the third leading cause of cancer-related deaths worldwide. Tumour metastasis is one of the major causes of high mortality. microRNAshave been implicated in HCC metastasis. In this study, we found that miR-625 was frequently downregulated in HCC samples. A decrease in miR-625 was significantly correlated with lymph node anddistance metastasis (P=0.013), the presence of portal venous invasion (P=0.036), tumor-node-metastasis (TNM) stage (P=0.027) and unfavourable overall survival (P=0.003). Compared with primary tumours, miR-625 expression was markedly reduced in portal venous metastatic tumours. Re-expression of miR-625 in HCC cells was remarkably effective in suppressing cell migration andinvasiveness in vitro and in vivo. Mechanistically, miR-625 was confirmed to downregulate IGF2 mRNA-binding protein 1(IGF2BP1) directly, the expression of which was inversely correlated with the level of miR-625 in HCC cell lines and tissues. High expression of IGF2BP1 was frequently found in HCC samples, and associated with poor prognosis. Knockdown of endogenous IGF2BP1 by siRNA exhibited similar effects as the overexpression of miR-625, whereas overexpression of IGF2BP1 (without the 3'-UTR) abrogated miR-625-mediated metastasis inhibition. Interference of the PTEN/HSP27 pathway contributed to miR-625-mediated metastasis inhibition. Taken together, our data suggest that miR-625 might function as an antimetastatic miRNA to have an important role in HCC progression by modulating the IGF2BP1/PTEN pathway. The newly identified miR-625/IGF2BP1 axis represents a new potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- X Zhou
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China [3] Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - C Z Zhang
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - S-X Lu
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - G G Chen
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - L-Z Li
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - L-L Liu
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - C Yi
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - J Fu
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - W Hu
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - J-M Wen
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - J-P Yun
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
15
|
Kalous A, Stake JI, Yisraeli JK, Holt CE. RNA-binding protein Vg1RBP regulates terminal arbor formation but not long-range axon navigation in the developing visual system. Dev Neurobiol 2013; 74:303-18. [PMID: 23853158 DOI: 10.1002/dneu.22110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/28/2013] [Accepted: 07/05/2013] [Indexed: 12/21/2022]
Abstract
Local synthesis of β-actin is required for attractive turning responses to guidance cues of growth cones in vitro but its functional role in axon guidance in vivo is poorly understood. The transport and translation of β-actin mRNA is regulated by the RNA-binding protein, Vg1RBP (zipcode-binding protein-1). To examine whether Vg1RBP plays a role in axon navigation in vivo, we disrupted Vg1RBP function in embryonic Xenopus laevis retinal ganglion cells by expressing a dominant-negative Vg1RBP and by antisense morpholino knockdown. We found that attractive turning to a netrin-1 gradient in vitro was abolished in Vg1RBP-deficient axons but, surprisingly, the long-range navigation from the retina to the optic tectum was unaffected. Within the tectum, however, the branching and complexity of axon terminals were significantly reduced. High-resolution time-lapse imaging of axon terminals in vivo revealed that Vg1RBP-GFP-positive granules accumulate locally in the axon shaft immediately preceding the emergence a filopodial-like protrusion. Comparative analysis of branch dynamics showed that Vg1RBP-deficient axons extend far fewer filopodial-like protrusions than control axons and indicate that Vg1RBP promotes filopodial formation, an essential step in branch initiation. Our findings show that Vg1RBP is required for terminal arborization but not long-range axon navigation and suggest that Vg1RBP-regulated mRNA translation promotes synaptic complexity.
Collapse
Affiliation(s)
- Adrianna Kalous
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY, United Kingdom
| | | | | | | |
Collapse
|
16
|
Hamilton KE, Noubissi FK, Katti PS, Hahn CM, Davey SR, Lundsmith ET, Klein-Szanto AJ, Rhim AD, Spiegelman VS, Rustgi AK. IMP1 promotes tumor growth, dissemination and a tumor-initiating cell phenotype in colorectal cancer cell xenografts. Carcinogenesis 2013; 34:2647-54. [PMID: 23764754 DOI: 10.1093/carcin/bgt217] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Igf2 mRNA binding protein 1 (IMP1, CRD-BP, ZBP-1) is a messenger RNA binding protein that we have shown previously to regulate colorectal cancer (CRC) cell growth in vitro. Furthermore, increased IMP1 expression correlates with enhanced metastasis and poor prognosis in CRC patients. In the current study, we sought to elucidate IMP1-mediated functions in CRC pathogenesis in vivo. Using CRC cell xenografts, we demonstrate that IMP1 overexpression promotes xenograft tumor growth and dissemination into the blood. Furthermore, intestine-specific knockdown of Imp1 dramatically reduces tumor number in the Apc (Min/+) mouse model of intestinal tumorigenesis. In addition, IMP1 knockdown xenografts exhibit a reduced number of tumor cells entering the circulation, suggesting that IMP1 may directly modulate this early metastatic event. We further demonstrate that IMP1 overexpression decreases E-cadherin expression, promotes survival of single tumor cell-derived colonospheres and promotes enrichment and maintenance of a population of CD24+CD44+ cells, signifying that IMP1 overexpressing cells display evidence of loss of epithelial identity and enhancement of a tumor-initiating cell phenotype. Taken together, these findings implicate IMP1 as a modulator of tumor growth and provide evidence for a novel role of IMP1 in early events in CRC metastasis.
Collapse
Affiliation(s)
- Kathryn E Hamilton
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 2012; 70:2657-75. [PMID: 23069990 PMCID: PMC3708292 DOI: 10.1007/s00018-012-1186-z] [Citation(s) in RCA: 543] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/21/2022]
Abstract
The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, IGF2BP3) belong to a conserved family of RNA-binding, oncofetal proteins. Several studies have shown that these proteins act in various important aspects of cell function, such as cell polarization, migration, morphology, metabolism, proliferation and differentiation. In this review, we discuss the IGF2BP family’s role in cancer biology and how this correlates with their proposed functions during embryogenesis. IGF2BPs are mainly expressed in the embryo, in contrast with comparatively lower or negotiable levels in adult tissues. IGF2BP1 and IGF2BP3 have been found to be re-expressed in several aggressive cancer types. Control of IGF2BPs’ expression is not well understood; however, let-7 microRNAs, β-catenin (CTNNB1) and MYC have been proposed to be involved in their regulation. In contrast to many other RNA-binding proteins, IGF2BPs are almost exclusively observed in the cytoplasm where they associate with target mRNAs in cytoplasmic ribonucleoprotein complexes (mRNPs). During development, IGF2BPs are required for proper nerve cell migration and morphological development, presumably involving the control of cytoskeletal remodeling and dynamics, respectively. Likewise, IGF2BPs modulate cell polarization, adhesion and migration in tumor-derived cells. Moreover, they are highly associated with cancer metastasis and the expression of oncogenic factors (KRAS, MYC and MDR1). However, a pro-metastatic role of IGF2BPs remains controversial due to the lack of ‘classical’ in vivo studies. Nonetheless, IGF2BPs could provide valuable targets in cancer treatment with many of their in vivo roles to be fully elucidated.
Collapse
|
18
|
Kostenko S, Dumitriu G, Moens U. Tumour promoting and suppressing roles of the atypical MAP kinase signalling pathway ERK3/4-MK5. J Mol Signal 2012; 7:9. [PMID: 22800433 PMCID: PMC3419095 DOI: 10.1186/1750-2187-7-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/20/2012] [Indexed: 12/28/2022] Open
Abstract
Perturbed action of signal transduction pathways, including the mitogen-activated protein (MAP) kinase pathways, is one of the hallmarks of many cancers. While the implication of the typical MAP kinase pathways ERK1/2-MEK1/2, p38MAPK and JNK is well established, recent findings illustrate that the atypical MAP kinase ERK3/4-MK5 may also be involved in tumorigenic processes. Remarkably, the ERK3/4-MK5 pathway seems to possess anti-oncogenic as well as pro-oncogenic properties in cell culture and aninal models. This review summarizes the mutations in the genes encoding ERK3, ERK4 and MK5 that have been detected in different cancers, reports aberrant expression levels of these proteins in human tumours, and discusses the mechanisms by which this pathway can induce senescence, stimulate angiogenesis and invasiveness.
Collapse
Affiliation(s)
- Sergiy Kostenko
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, NO-9037, Norway
| | - Gianina Dumitriu
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, NO-9037, Norway
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, NO-9037, Norway
| |
Collapse
|
19
|
Abstract
The oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA binding protein 1) controls the cytoplasmic fate of specific target mRNAs including ACTB and CD44. During neural development, IGF2BPs promote neurite protrusion and the migration of neuronal crest cells. In tumor-derived cells, IGF2BP1 enhances the formation of lamellipodia and invadopodia. Accordingly, the de novo synthesis of IGF2BP1 observed in primary malignancies was reported to correlate with increased metastasis and an overall poor prognosis. However, if and how the protein enhances metastasis remains controversial. In recent studies, we reveal that IGF2BP1 promotes the directed migration of tumor-derived cells in vitro by controlling the expression of MAPK4 and PTEN. The IGF2BP1-facilitated inhibition of MAPK4 mRNA translation interferes with MK5-directed phosphorylation of the heat shock protein 27 (HSP27). This limits G-actin sequestering by phosphorylated HSP27, enhances cell adhesion and elevates the velocity of tumor cell migration. Concomitantly, IGF2BP1 promotes the expression of PTEN by interfering with PTEN mRNA turnover. This results in a shift of cellular PtdIns(3,4,5)P3/PtdIns(4,5)P2 ratios and enhances RAC1-dependent cell polarization which finally promotes the directionality of tumor cell migration. These findings identify IGF2BP1 as a potent oncogenic factor that regulates the adhesion, migration and invasiveness of tumor cells by modulating intracellular signaling.
Collapse
Affiliation(s)
- Nadine Stöhr
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University of Halle, Halle, Germany
| | | |
Collapse
|
20
|
Abstract
In primary neurons, the oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA-binding protein 1) controls spatially restricted β-actin (ACTB) mRNA translation and modulates growth cone guidance. In cultured tumor-derived cells, IGF2BP1 was shown to regulate the formation of lamellipodia and invadopodia. However, how and via which target mRNAs IGF2BP1 controls the motility of tumor-derived cells has remained elusive. In this study, we reveal that IGF2BP1 promotes the velocity and directionality of tumor-derived cell migration by determining the cytoplasmic fate of two novel target mRNAs: MAPK4 and PTEN. Inhibition of MAPK4 mRNA translation by IGF2BP1 antagonizes MK5 activation and prevents phosphorylation of HSP27, which sequesters actin monomers available for F-actin polymerization. Consequently, HSP27-ACTB association is reduced, mobilizing cellular G-actin for polymerization in order to promote the velocity of cell migration. At the same time, stabilization of the PTEN mRNA by IGF2BP1 enhances PTEN expression and antagonizes PIP(3)-directed signaling. This enforces the directionality of cell migration in a RAC1-dependent manner by preventing additional lamellipodia from forming and sustaining cell polarization intrinsically. IGF2BP1 thus promotes the velocity and persistence of tumor cell migration by controlling the expression of signaling proteins. This fine-tunes and connects intracellular signaling networks in order to enhance actin dynamics and cell polarization.
Collapse
|
21
|
Chao JA, Patskovsky Y, Patel V, Levy M, Almo SC, Singer RH. ZBP1 recognition of beta-actin zipcode induces RNA looping. Genes Dev 2010; 24:148-58. [PMID: 20080952 DOI: 10.1101/gad.1862910] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ZBP1 (zipcode-binding protein 1) was originally discovered as a trans-acting factor for the "zipcode" in the 3' untranslated region (UTR) of the beta-actin mRNA that is important for its localization and translational regulation. Subsequently, ZBP1 has been found to be a multifunctional regulator of RNA metabolism that controls aspects of localization, stability, and translation for many mRNAs. To reveal how ZBP1 recognizes its RNA targets, we biochemically characterized the interaction between ZBP1 and the beta-actin zipcode. The third and fourth KH (hnRNP K homology) domains of ZBP1 specifically recognize a bipartite RNA element located within the first 28 nucleotides of the zipcode. The spacing between the RNA sequences is consistent with the structure of IMP1 KH34, the human ortholog of ZBP1, that we solved by X-ray crystallography. The tandem KH domains are arranged in an intramolecular anti-parallel pseudodimer conformation with the canonical RNA-binding surfaces at opposite ends of the molecule. This orientation of the KH domains requires that the RNA backbone must undergo an approximately 180 degrees change in direction in order for both KH domains to contact the RNA simultaneously. The RNA looping induced by ZBP1 binding provides a mechanism for specific recognition and may facilitate the assembly of post-transcriptional regulatory complexes by remodeling the bound transcript.
Collapse
Affiliation(s)
- Jeffrey A Chao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
22
|
Gu W, Pan F, Singer RH. Blocking beta-catenin binding to the ZBP1 promoter represses ZBP1 expression, leading to increased proliferation and migration of metastatic breast-cancer cells. J Cell Sci 2009; 122:1895-905. [PMID: 19461076 DOI: 10.1242/jcs.045278] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ZBP1 (zipcode-binding protein 1, also known as IMP-1) is an mRNA regulator, functioning in mRNA localization, stability and translational control. ZBP1 is actively expressed during embryogenesis and tumorigenesis, but its expression is repressed in metastatic breast-cancer cell lines and tumors. In this article, we show that downregulation of ZBP1 expression results from its promoter methylation, an epigenetic process that remodels the chromatin structure and frequently represses gene activity. Demethylation of the ZBP1 promoter in metastatic cells reactivated ZBP1 expression, owing to restoration of the interaction of the ZBP1 promoter with beta-catenin. Loss of ZBP1 function not only increased growth ability of metastatic cells, but also promoted cell migration. We identified a number of mRNAs that were selectively associated with ZBP1 in breast-cancer cells. Many of these are involved in cell motility and in cell-cycle regulation, and displayed altered expression patterns in the absence of ZBP1. These data suggest that repression of ZBP1 deregulates its associated mRNAs, leading to the phenotypic changes of breast cancers.
Collapse
Affiliation(s)
- Wei Gu
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
23
|
Zhou Y, Rong L, Zhang J, Aloysius C, Pan Q, Liang C. Insulin-like growth factor II mRNA binding protein 1 modulates Rev-dependent human immunodeficiency virus type 1 RNA expression. Virology 2009; 393:210-20. [PMID: 19726068 DOI: 10.1016/j.virol.2009.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/02/2009] [Accepted: 08/04/2009] [Indexed: 01/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) needs to overcome cellular counter mechanisms such as to successfully propagate itself. Results of our recent studies show that overexpression of insulin-like growth factor II mRNA binding protein 1 (IMP1) inhibits production of infectious HIV-1 particles through adversely affecting virus maturation. Here, we report that IMP1 interacts with HIV-1 Rev protein and its ectopic expression causes relocation of Rev from the nucleus to the cytoplasm. In accordance with this observation, ectopic expression of IMP1 severely diminishes Rev-dependent expression of CAT enzyme and disturbs HIV-1 RNA expression by causing accumulation of the multiple spliced viral RNA. Results of mutagenesis analysis further reveal that the KH4 domain represents the key element of IMP1 in modulating HIV-1 RNA expression. Taken together, these data suggest, in addition to hampering virus assembly, that IMP1 also has an effect on Rev-dependent viral RNA expression.
Collapse
Affiliation(s)
- Yongdong Zhou
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
24
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Vainer G, Vainer-Mosse E, Pikarsky A, Shenoy SM, Oberman F, Yeffet A, Singer RH, Pikarsky E, Yisraeli JK. A role for VICKZ proteins in the progression of colorectal carcinomas: regulating lamellipodia formation. J Pathol 2008; 215:445-56. [PMID: 18535985 DOI: 10.1002/path.2376] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
VICKZ proteins are a highly conserved family of RNA binding proteins, implicated in RNA regulatory processes such as intracellular RNA localization, RNA stability, and translational control. During embryogenesis, VICKZ proteins are required for neural crest migration and in adults, the proteins are overexpressed primarily in different cancers. We hypothesized that VICKZ proteins may play a role in cancer cell migration. In patients, VICKZ expression varies with tumour type, with over 60% of colon, lung, and ovarian tumours showing strong expression. In colorectal carcinomas (CRCs), expression is detected at early stages, and the frequency and intensity of staining increase with progression of the disease to lymph node metastases, of which 97% express the protein at high levels. Indeed, in stage II CRC, the level of VICKZ expression in the primary lesion correlates with the degree of lymph node metastasis. In culture, VICKZ proteins rapidly accumulate in processes at the leading edge of PMA-stimulated SW480 CRC cells, where they co-localize with beta-actin mRNA. Two distinct cocktails of shRNAs, each targeting all three VICKZ paralogues, cause a dramatic drop in lamellipodia and ruffle formation in stimulated cells. Thus, VICKZ proteins help to facilitate the dynamic cell surface morphology required for cell motility. We propose that these proteins play an important role in CRC metastasis by shuttling requisite RNAs to the lamellipodia of migrating cells.
Collapse
Affiliation(s)
- G Vainer
- Department of Anatomy and Cell Biology, Institute for Medical Research, Hebrew University, POB 12272, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Boylan KLM, Mische S, Li M, Marqués G, Morin X, Chia W, Hays TS. Motility screen identifies Drosophila IGF-II mRNA-binding protein--zipcode-binding protein acting in oogenesis and synaptogenesis. PLoS Genet 2008; 4:e36. [PMID: 18282112 PMCID: PMC2242817 DOI: 10.1371/journal.pgen.0040036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/26/2007] [Indexed: 01/27/2023] Open
Abstract
The localization of specific mRNAs can establish local protein gradients that generate and control the development of cellular asymmetries. While all evidence underscores the importance of the cytoskeleton in the transport and localization of RNAs, we have limited knowledge of how these events are regulated. Using a visual screen for motile proteins in a collection of GFP protein trap lines, we identified the Drosophila IGF-II mRNA-binding protein (Imp), an ortholog of Xenopus Vg1 RNA binding protein and chicken zipcode-binding protein. In Drosophila, Imp is part of a large, RNase-sensitive complex that is enriched in two polarized cell types, the developing oocyte and the neuron. Using time-lapse confocal microscopy, we establish that both dynein and kinesin contribute to the transport of GFP-Imp particles, and that regulation of transport in egg chambers appears to differ from that in neurons. In Drosophila, loss-of-function Imp mutations are zygotic lethal, and mutants die late as pharate adults. Imp has a function in Drosophila oogenesis that is not essential, as well as functions that are essential during embryogenesis and later development. Germline clones of Imp mutations do not block maternal mRNA localization or oocyte development, but overexpression of a specific Imp isoform disrupts dorsal/ventral polarity. We report here that loss-of-function Imp mutations, as well as Imp overexpression, can alter synaptic terminal growth. Our data show that Imp is transported to the neuromuscular junction, where it may modulate the translation of mRNA targets. In oocytes, where Imp function is not essential, we implicate a specific Imp domain in the establishment of dorsoventral polarity.
Collapse
Affiliation(s)
- Kristin L. M Boylan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sarah Mische
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mingang Li
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Guillermo Marqués
- Department of Cell Biology, The University of Alabama at Birmingham, Alabama, United States of America
| | - Xavier Morin
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), CNRS UMR6216 INSERM-Université de la Méditerrannée, Marseilles, France
| | - William Chia
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Thomas S Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Abstract
Vg 1 RNA becomes localized at the vegetal cortex of Xenopus oocytes in a process requiring both intact microtubules (MT) and microfilaments. This localization occurs during a narrow window of oogenesis, when a number of RNA-binding proteins associate with the RNA. xVICKZ3 (Vg1 RBP/Vera), the first Vg1 RNA-binding protein identified, helps mediate the association of Vg1 RNA with MT and is co-localized with the RNA at the vegetal cortex. Given the complexity of the Vg1 RNA ribonucleoprotein (RNP) complex, it has remained unclear how xVICKZ3 functions in Vg1 RNA localization. Here, we have taken a closer look at the process of xVICKZ3 localization in oocytes. We have made use of deletion constructs to perform a structure-function analysis of xVICKZ3. The ability of xVICKZ3-GFP constructs to vegetally localize correlates with their association to MT but not with Vg1 RNA-binding ability. We find that when the ability of xVICKZ3 to bind Vg1 RNA is inhibited by the injection of a construct that dominantly inhibits RNA binding, both the construct and Vg1 RNA still localize, apparently through their continued association with a Vg1 RNA-containing RNP complex. These results emphasize the importance of protein-protein interactions in both xVICKZ3 and Vg1 RNA localization.
Collapse
Affiliation(s)
- Kinneret Rand
- Hebrew University, Hadassah Medical School, Institute for Medical Research, Department of Anatomy and Cell Biology, Jerusalem, Israel
| | | |
Collapse
|