1
|
Hernández G, García A, Weingarten-Gabbay S, Mishra R, Hussain T, Amiri M, Moreno-Hagelsieb G, Montiel-Dávalos A, Lasko P, Sonenberg N. Functional analysis of the AUG initiator codon context reveals novel conserved sequences that disfavor mRNA translation in eukaryotes. Nucleic Acids Res 2024; 52:1064-1079. [PMID: 38038264 PMCID: PMC10853783 DOI: 10.1093/nar/gkad1152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
mRNA translation is a fundamental process for life. Selection of the translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for mRNA decoding. Studies in vertebrate mRNAs discovered that a purine at -3 and a G at +4 (where A of the AUG initiator codon is numbered + 1), promote TIS recognition. However, the TIS context in other eukaryotes has been poorly experimentally analyzed. We analyzed in vitro the influence of the -3, -2, -1 and + 4 positions of the TIS context in rabbit, Drosophila, wheat, and yeast. We observed that -3A conferred the best translational efficiency across these species. However, we found variability at the + 4 position for optimal translation. In addition, the Kozak motif that was defined from mammalian cells was only weakly predictive for wheat and essentially non-predictive for yeast. We discovered eight conserved sequences that significantly disfavored translation. Due to the big differences in translational efficiency observed among weak TIS context sequences, we define a novel category that we termed 'barren AUG context sequences (BACS)', which represent sequences disfavoring translation. Analysis of mRNA-ribosomal complexes structures provided insights into the function of BACS. The gene ontology of the BACS-containing mRNAs is presented.
Collapse
Affiliation(s)
- Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Alejandra García
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Rishi Kumar Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru-560012, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru-560012, India
| | - Mehdi Amiri
- Department of Biochemistry and Goodman Cancer Institute. McGill University., Montreal, QC H3A 1A3, Canada
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University. 75 University Ave. W, Waterloo, ON N2L 3C5, Canada
| | - Angélica Montiel-Dávalos
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Paul Lasko
- Department of Biology, McGill University. Montreal, QC H3G 0B1, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute. McGill University., Montreal, QC H3A 1A3, Canada
| |
Collapse
|
2
|
Hernández G, Vazquez-Pianzola P. eIF4E as a molecular wildcard in metazoans RNA metabolism. Biol Rev Camb Philos Soc 2023; 98:2284-2306. [PMID: 37553111 DOI: 10.1111/brv.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
The evolutionary origin of eukaryotes spurred the transition from prokaryotic-like translation to a more sophisticated, eukaryotic translation. During this process, successive gene duplication of a single, primordial eIF4E gene encoding the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) gave rise to a plethora of paralog genes across eukaryotes that underwent further functional diversification in RNA metabolism. The ability to take different roles is due to eIF4E promiscuity in binding many partner proteins, rendering eIF4E a highly versatile and multifunctional player that functions as a molecular wildcard. Thus, in metazoans, eIF4E paralogs are involved in various processes, including messenger RNA (mRNA) processing, export, translation, storage, and decay. Moreover, some paralogs display differential expression in tissues and developmental stages and show variable biochemical properties. In this review, we discuss recent advances shedding light on the functional diversification of eIF4E in metazoans. We emphasise humans and two phylogenetically distant species which have become paradigms for studies on development, namely the fruit fly Drosophila melanogaster and the roundworm Caenorhabditis elegans.
Collapse
Affiliation(s)
- Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Ave., Tlalpan, Mexico City, 14080, Mexico
| | - Paula Vazquez-Pianzola
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Berne, 3012, Switzerland
| |
Collapse
|
3
|
Thomas SE, Balcerowicz M, Chung BYW. RNA structure mediated thermoregulation: What can we learn from plants? FRONTIERS IN PLANT SCIENCE 2022; 13:938570. [PMID: 36092413 PMCID: PMC9450479 DOI: 10.3389/fpls.2022.938570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
RNA molecules have the capacity to form a multitude of distinct secondary and tertiary structures, but only the most energetically favorable conformations are adopted at any given time. Formation of such structures strongly depends on the environment and consequently, these structures are highly dynamic and may refold as their surroundings change. Temperature is one of the most direct physical parameters that influence RNA structure dynamics, and in turn, thermosensitive RNA structures can be harnessed by a cell to perceive and respond to its temperature environment. Indeed, many thermosensitive RNA structures with biological function have been identified in prokaryotic organisms, but for a long time such structures remained elusive in eukaryotes. Recent discoveries, however, reveal that thermosensitive RNA structures are also found in plants, where they affect RNA stability, pre-mRNA splicing and translation efficiency in a temperature-dependent manner. In this minireview, we provide a short overview of thermosensitive RNA structures in prokaryotes and eukaryotes, highlight recent advances made in identifying such structures in plants and discuss their similarities and differences to established prokaryotic RNA thermosensors.
Collapse
Affiliation(s)
- Sherine E. Thomas
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Martin Balcerowicz
- Division of Plant Sciences, The James Hutton Institute, University of Dundee, Dundee, United Kingdom
| | - Betty Y.-W. Chung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
High-risk human papillomavirus-18 uses an mRNA sequence to synthesize oncoprotein E6 in tumors. Proc Natl Acad Sci U S A 2021; 118:2108359118. [PMID: 34615711 DOI: 10.1073/pnas.2108359118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 01/20/2023] Open
Abstract
Cervical cancer is the fourth most common cause of cancer in women worldwide in terms of both incidence and mortality. Persistent infection with high-risk types of human papillomavirus (HPV), namely 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68, constitute a necessary cause for the development of cervical cancer. Viral oncoproteins E6 and E7 play central roles in the carcinogenic process by virtue of their interactions with cell master proteins such as p53, retinoblastoma (Rb), mammalian target of rapamycin (mTOR), and c-MYC. For the synthesis of E6 and E7, HPVs use a bicistronic messenger RNA (mRNA) that has been studied in cultured cells. Here, we report that in cervical tumors, HPV-18, -39, and -45 transcribe E6/E7 mRNAs with extremely short 5' untranslated regions (UTRs) or even lacking a 5' UTR (i.e., zero to three nucleotides long) to express E6. We show that the translation of HPV-18 E6 cistron is regulated by the motif ACCaugGCGCG(C/A)UUU surrounding the AUG start codon, which we term Translation Initiation of Leaderless mRNAs (TILM). This motif is conserved in all HPV types of the phylogenetically coherent group forming genus alpha, species 7, which infect mucosal epithelia. We further show that the translation of HPV-18 E6 largely relies on the cap structure and eIF4E and eIF4AI, two key translation initiation factors linking translation and cancer but does not involve scanning. Our results support the notion that E6 forms the center of the positive oncogenic feedback loop node involving eIF4E, the mTOR cascade, and p53.
Collapse
|
5
|
Abstract
![]()
The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore have been studied extensively. Despite their expected
general thiol reactivity, these compounds display considerable degrees
of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570,
RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these
compounds is their targeting of the ubiquitin–proteasome system
(UPS), known to be essential for the viability of tumor cells. Gene
expression profiling experiments have shown induction of responses
characteristic of UPS inhibition, and experiments using cellular reporter
proteins have shown that proteasome inhibition is associated with
cell death. Other mechanisms of action such as reactivation of mutant
p53, stimulation of steroid receptor coactivators, and induction of
protein cross-linking have also been described. Although unsuitable
as biological probes due to widespread reactivity, dienone compounds
are cytotoxic to apoptosis-resistant tumor cells and show activity
in animal tumor models.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-58183 Linköping, Sweden.,Department of Oncology and Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| |
Collapse
|
6
|
Tikhonov M, Utkina M, Maksimenko O, Georgiev P. Conserved sequences in the Drosophila mod(mdg4) intron promote poly(A)-independent transcription termination and trans-splicing. Nucleic Acids Res 2019; 46:10608-10618. [PMID: 30102331 PMCID: PMC6237743 DOI: 10.1093/nar/gky716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/26/2018] [Indexed: 11/15/2022] Open
Abstract
Alternative splicing (AS) is a regulatory mechanism of gene expression that greatly expands the coding capacities of genomes by allowing the generation of multiple mRNAs from a single gene. In Drosophila, the mod(mdg4) locus is an extreme example of AS that produces more than 30 different mRNAs via trans-splicing that joins together the common exons and the 3′ variable exons generated from alternative promoters. To map the regions required for trans-splicing, we have developed an assay for measuring trans-splicing events and identified a 73-bp region in the last common intron that is critical for trans-splicing of three pre-mRNAs synthesized from different DNA strands. We have also found that conserved sequences in the distal part of the last common intron induce polyadenylation-independent transcription termination and are enriched by paused RNA polymerase II (RNAP II). These results suggest that all mod(mdg4) mRNAs are formed by joining in trans the 5′ splice site in the last common exon with the 3′ splice site in one of the alternative exons.
Collapse
Affiliation(s)
- Maxim Tikhonov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Marina Utkina
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Oksana Maksimenko
- Group of Molecular Organization of Genome, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| |
Collapse
|
7
|
Alriquet M, Martínez-Limón A, Hanspach G, Hengesbach M, Tartaglia GG, Calloni G, Vabulas RM. Assembly of Proteins by Free RNA during the Early Phase of Proteostasis Stress. J Proteome Res 2019; 18:2835-2847. [PMID: 31244213 DOI: 10.1021/acs.jproteome.9b00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At any stage of their lifecycle, mRNAs are coated by specialized proteins. One of few circumstances when free mRNA appears in the cytosol is the disassembly of polysomes during the stress-induced shutdown of protein synthesis. Using quantitative mass spectrometry, we sought to identify the free RNA-interacting cellular machinery in heat-shocked mammalian cells. Free RNA-associated proteins displayed higher disorder and larger size, which supports the role of multivalent interactions during the initial phase of the association with RNAs during stress. Structural features of the free RNA interactors defined them as a subset of RNA-binding proteins. The interaction between these assembled proteins in vivo required RNA. Reconstitution of the association process in vitro indicated a multimolecular basis for increased binding to RNA upon heat shock in the cytosol. Our study represents a step toward understanding how free RNA is processed in the cytosol during proteostasis stress.
Collapse
Affiliation(s)
- Marion Alriquet
- Buchmann Institute for Molecular Life Sciences , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany.,Institute of Biophysical Chemistry , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| | - Adrían Martínez-Limón
- Buchmann Institute for Molecular Life Sciences , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany.,Institute of Biophysical Chemistry , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| | - Gerd Hanspach
- Institute for Organic Chemistry and Chemical Biology , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| | - Gian G Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology , Universitat Pompeu Fabra (UPF), Institucio Catalana de Recerca i Estudis Avançats (ICREA) , 08002 Barcelona , Spain
| | - Giulia Calloni
- Buchmann Institute for Molecular Life Sciences , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany.,Institute of Biophysical Chemistry , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| | - R Martin Vabulas
- Buchmann Institute for Molecular Life Sciences , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany.,Institute of Biophysical Chemistry , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| |
Collapse
|
8
|
Godet AC, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B, Prats AC. IRES Trans-Acting Factors, Key Actors of the Stress Response. Int J Mol Sci 2019; 20:ijms20040924. [PMID: 30791615 PMCID: PMC6412753 DOI: 10.3390/ijms20040924] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
The cellular stress response corresponds to the molecular changes that a cell undergoes in response to various environmental stimuli. It induces drastic changes in the regulation of gene expression at transcriptional and posttranscriptional levels. Actually, translation is strongly affected with a blockade of the classical cap-dependent mechanism, whereas alternative mechanisms are activated to support the translation of specific mRNAs. A major mechanism involved in stress-activated translation is the internal ribosome entry site (IRES)-driven initiation. IRESs, first discovered in viral mRNAs, are present in cellular mRNAs coding for master regulators of cell responses, whose expression must be tightly controlled. IRESs allow the translation of these mRNAs in response to different stresses, including DNA damage, amino-acid starvation, hypoxia or endoplasmic reticulum stress, as well as to physiological stimuli such as cell differentiation or synapse network formation. Most IRESs are regulated by IRES trans-acting factor (ITAFs), exerting their action by at least nine different mechanisms. This review presents the history of viral and cellular IRES discovery as well as an update of the reported ITAFs regulating cellular mRNA translation and of their different mechanisms of action. The impact of ITAFs on the coordinated expression of mRNA families and consequences in cell physiology and diseases are also highlighted.
Collapse
Affiliation(s)
- Anne-Claire Godet
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Florian David
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Fransky Hantelys
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Florence Tatin
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Eric Lacazette
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Barbara Garmy-Susini
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Anne-Catherine Prats
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| |
Collapse
|
9
|
Lozano G, Francisco-Velilla R, Martinez-Salas E. Deconstructing internal ribosome entry site elements: an update of structural motifs and functional divergences. Open Biol 2018; 8:rsob.180155. [PMID: 30487301 PMCID: PMC6282068 DOI: 10.1098/rsob.180155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Beyond the general cap-dependent translation initiation, eukaryotic organisms use alternative mechanisms to initiate protein synthesis. Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of translation using a cap-independent mechanism. However, their lack of primary sequence and secondary RNA structure conservation, as well as the diversity of host factor requirement to recruit the ribosomal subunits, suggest distinct types of IRES elements. In spite of this heterogeneity, conserved motifs preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES-driven translation. This conservation brings the question of whether IRES elements could consist of basic building blocks, which upon evolutionary selection result in functional elements with different properties. Although RNA-binding proteins (RBPs) perform a crucial role in the assembly of ribonucleoprotein complexes, the versatility and plasticity of RNA molecules, together with their high flexibility and dynamism, determines formation of macromolecular complexes in response to different signals. These properties rely on the presence of short RNA motifs, which operate as modular entities, and suggest that decomposition of IRES elements in short modules could help to understand the different mechanisms driven by these regulatory elements. Here we will review evidence suggesting that model IRES elements consist of the combination of short modules, providing sites of interaction for ribosome subunits, eIFs and RBPs, with implications for definition of criteria to identify novel IRES-like elements genome wide.
Collapse
Affiliation(s)
- Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
10
|
Bucio-Mendez A, Cruz-Becerra G, Valadez-Graham V, Dinkova TD, Zurita M. The Dmp8-Dmp18 bicistron messenger RNA enables unusual translation during cellular stress. J Cell Biochem 2018; 120:3887-3897. [PMID: 30270456 DOI: 10.1002/jcb.27670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/21/2018] [Indexed: 11/07/2022]
Abstract
Alternatives to the cap mechanism in translation are often used by viruses and cells to allow them to synthesize proteins in events of stress and viral infection. In Drosophila there are hundreds of polycistronic messenger RNA (mRNA), and various mechanisms are known to achieve this. However, proteins in a same mRNA often work in the same cellular mechanism, this is not the case for Drosophila's Swc6/p18Hamlet homolog Dmp18, part of the SWR1 chromatin remodeling complex, who is encoded in a bicistronic mRNA next to Dmp8 (Dmp8-Dmp18 transcript), a structural component of transcription factor TFIIH. The organization of these two genes as a bicistron is conserved in all arthropods, however the length of the intercistronic sequence varies from more than 90 to 2 bases, suggesting an unusual translation mechanism for the second open reading frame. We found that even though translation of Dmp18 occurs independently from that of Dmp8, it is necessary for Dmp18 to be in that conformation to allow its correct translation during cellular stress caused by damage via heat-shock and UV radiation.
Collapse
Affiliation(s)
- Alyeri Bucio-Mendez
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Grisel Cruz-Becerra
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Viviana Valadez-Graham
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Tzvetanka D Dinkova
- Department of Biochemistry and Molecular Biology, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mario Zurita
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
11
|
Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Rep 2018; 19:embr.201845947. [PMID: 30224410 DOI: 10.15252/embr.201845947] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Recent work has brought to light many different mechanisms of translation initiation that function in cells in parallel to canonical cap-dependent initiation. This has important implications for cancer. Canonical cap-dependent translation initiation is inhibited by many stresses such as hypoxia, nutrient limitation, proteotoxic stress, or genotoxic stress. Since cancer cells are often exposed to these stresses, they rely on alternate modes of translation initiation for protein synthesis and cell growth. Cancer mutations are now being identified in components of the translation machinery and in cis-regulatory elements of mRNAs, which both control translation of cancer-relevant genes. In this review, we provide an overview on the various modes of non-canonical translation initiation, such as leaky scanning, translation re-initiation, ribosome shunting, IRES-dependent translation, and m6A-dependent translation, and then discuss the influence of stress on these different modes of translation. Finally, we present examples of how these modes of translation are dysregulated in cancer cells, allowing them to grow, to proliferate, and to survive, thereby highlighting the importance of translational control in cancer.
Collapse
Affiliation(s)
- Ashwin Sriram
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany .,Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Differential Requirement for Translation Initiation Factor Pathways during Ecdysone-Dependent Neuronal Remodeling in Drosophila. Cell Rep 2018; 24:2287-2299.e4. [DOI: 10.1016/j.celrep.2018.07.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/22/2018] [Accepted: 07/23/2018] [Indexed: 11/23/2022] Open
|
13
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
14
|
Ryoo HD, Vasudevan D. Two distinct nodes of translational inhibition in the Integrated Stress Response. BMB Rep 2018; 50:539-545. [PMID: 28803610 PMCID: PMC5720466 DOI: 10.5483/bmbrep.2017.50.11.157] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Indexed: 12/21/2022] Open
Abstract
The Integrated Stress Response (ISR) refers to a signaling pathway initiated by stress-activated eIF2α kinases. Once activated, the pathway causes attenuation of global mRNA translation while also paradoxically inducing stress response gene expression. A detailed analysis of this pathway has helped us better understand how stressed cells coordinate gene expression at translational and transcriptional levels. The translational attenuation associated with this pathway has been largely attributed to the phosphorylation of the translational initiation factor eIF2α. However, independent studies are now pointing to a second translational regulation step involving a downstream ISR target, 4E-BP, in the inhibition of eIF4E and specifically cap-dependent translation. The activation of 4E-BP is consistent with previous reports implicating the roles of 4E-BP resistant, Internal Ribosome Entry Site (IRES) dependent translation in ISR active cells. In this review, we provide an overview of the translation inhibition mechanisms engaged by the ISR and how they impact the translation of stress response genes.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Deepika Vasudevan
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
15
|
|
16
|
Chen N, Wu M, Tang GP, Wang HJ, Huang CX, Wu XJ, He Y, Zhang B, Huang CH, Liu H, Wang WM, Wang HL. Effects of Acute Hypoxia and Reoxygenation on Physiological and Immune Responses and Redox Balance of Wuchang Bream ( Megalobrama amblycephala Yih, 1955). Front Physiol 2017. [PMID: 28642716 PMCID: PMC5462904 DOI: 10.3389/fphys.2017.00375] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To study Megalobrama amblycephala adaption to water hypoxia, the changes in physiological levels, innate immune responses, redox balance of M.amblycephala during hypoxia were investigated in the present study. When M. amblycephala were exposed to different dissolved oxygen (DO) including control (DO: 5.5 mg/L) and acute hypoxia (DO: 3.5 and 1.0 mg/L, respectively), hemoglobin (Hb), methemoglobin (MetHb), glucose, Na+, succinatedehydrogenase (SDH), lactate, interferon alpha (IFNα), and lysozyme (LYZ), except hepatic glycogen and albumin gradually increased with the decrease of DO level. When M. amblycephala were exposed to different hypoxia time including 0.5 and 6 h (DO: 3.5 mg/L), and then reoxygenation for 24 h after 6 h hypoxia, Hb, MetHb, glucose, lactate, and IFNα, except Na+, SDH, hepatic glycogen, albumin, and LYZ increased with the extension of hypoxia time, while the above investigated indexes (except albumin, IFNα, and LYZ) decreased after reoxygenation. On the other hand, the liver SOD, CAT, hydrogen peroxide (H2O2), and total ROS were all remained at lower levels under hypoxia stress. Finally, Hif-1α protein in the liver, spleen, and gill were increased with the decrease of oxygen concentration and prolongation of hypoxia time. Interestingly, one Hsp70 isoforms mediated by internal ribozyme entry site (IRES) named junior Hsp70 was only detected in liver, spleen and gill. Taken together, these results suggest that hypoxia affects M. amblycephala physiology and reduces liver oxidative stress. Hypoxia-reoxygenation stimulates M. amblycephala immune parameter expressions, while Hsp70 response to hypoxia is tissue-specific.
Collapse
Affiliation(s)
- Nan Chen
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Meng Wu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Guo-Pan Tang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China.,Laboratory of Freshwater Animal Breeding, College of Animal Science and Technology, Henan University of Animal Husbandry and EconomyZhengzhou, China
| | - Hui-Juan Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Chun-Xiao Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Xin-Jie Wu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Yan He
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Bao Zhang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Cui-Hong Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Wei-Min Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| |
Collapse
|
17
|
Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R, Finn SP. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front Mol Biosci 2017. [PMID: 28634583 PMCID: PMC5459888 DOI: 10.3389/fmolb.2017.00038] [Citation(s) in RCA: 415] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- John Greene
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Department of Medical Oncology, Tallaght HospitalDublin, Ireland
| | - Anne-Marie Baird
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Lauren Brady
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland
| | - Marvin Lim
- Department of Medical Oncology, St. Vincent's University HospitalDublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,HOPE Directorate, St. James's HospitalDublin, Ireland.,Labmed Directorate, St. James's HospitalDublin, Ireland
| | - Raymond McDermott
- Department of Medical Oncology, Tallaght HospitalDublin, Ireland.,Department of Medical Oncology, St. Vincent's University HospitalDublin, Ireland
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,Department of Histopathology, St. James's HospitalDublin, Ireland
| |
Collapse
|
18
|
Lacerda R, Menezes J, Romão L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 2017; 74:1659-1680. [PMID: 27913822 PMCID: PMC11107732 DOI: 10.1007/s00018-016-2428-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
The scanning model for eukaryotic mRNA translation initiation states that the small ribosomal subunit, along with initiation factors, binds at the cap structure at the 5' end of the mRNA and scans the 5' untranslated region (5'UTR) until an initiation codon is found. However, under conditions that impair canonical cap-dependent translation, the synthesis of some proteins is kept by alternative mechanisms that are required for cell survival and stress recovery. Alternative modes of translation initiation include cap- and/or scanning-independent mechanisms of ribosomal recruitment. In most cap-independent translation initiation events there is a direct recruitment of the 40S ribosome into a position upstream, or directly at, the initiation codon via a specific internal ribosome entry site (IRES) element in the 5'UTR. Yet, in some cellular mRNAs, a different translation initiation mechanism that is neither cap- nor IRES-dependent seems to occur through a special RNA structure called cap-independent translational enhancer (CITE). Recent evidence uncovered a distinct mechanism through which mRNAs containing N 6-methyladenosine (m6A) residues in their 5'UTR directly bind eukaryotic initiation factor 3 (eIF3) and the 40S ribosomal subunit in order to initiate translation in the absence of the cap-binding proteins. This review focuses on the important role of cap-independent translation mechanisms in human cells and how these alternative mechanisms can either act individually or cooperate with other cis-acting RNA regulons to orchestrate specific translational responses triggered upon several cellular stress states, and diseases such as cancer. Elucidation of these non-canonical mechanisms reveals the complexity of translational control and points out their potential as prospective novel therapeutic targets.
Collapse
Affiliation(s)
- Rafaela Lacerda
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Juliane Menezes
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
19
|
Kang MJ, Vasudevan D, Kang K, Kim K, Park JE, Zhang N, Zeng X, Neubert TA, Marr MT, Ryoo HD. 4E-BP is a target of the GCN2-ATF4 pathway during Drosophila development and aging. J Cell Biol 2017; 216:115-129. [PMID: 27979906 PMCID: PMC5223598 DOI: 10.1083/jcb.201511073] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/19/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022] Open
Abstract
Reduced amino acid availability attenuates mRNA translation in cells and helps to extend lifespan in model organisms. The amino acid deprivation-activated kinase GCN2 mediates this response in part by phosphorylating eIF2α. In addition, the cap-dependent translational inhibitor 4E-BP is transcriptionally induced to extend lifespan in Drosophila melanogaster, but through an unclear mechanism. Here, we show that GCN2 and its downstream transcription factor, ATF4, mediate 4E-BP induction, and GCN2 is required for lifespan extension in response to dietary restriction of amino acids. The 4E-BP intron contains ATF4-binding sites that not only respond to stress but also show inherent ATF4 activity during normal development. Analysis of the newly synthesized proteome through metabolic labeling combined with click chemistry shows that certain stress-responsive proteins are resistant to inhibition by 4E-BP, and gcn2 mutant flies have reduced levels of stress-responsive protein synthesis. These results indicate that GCN2 and ATF4 are important regulators of 4E-BP transcription during normal development and aging.
Collapse
Affiliation(s)
- Min-Ji Kang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
- Department of Biomedical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Deepika Vasudevan
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Kwonyoon Kang
- Department of Biomedical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kyunggon Kim
- Proteomics Core Laboratory, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung-Eun Park
- Department of Biomedical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Nan Zhang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Xiaomei Zeng
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Thomas A Neubert
- Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Michael T Marr
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
20
|
Waldron JA, Jones CI, Towler BP, Pashler AL, Grima DP, Hebbes S, Crossman SH, Zabolotskaya MV, Newbury SF. Xrn1/Pacman affects apoptosis and regulates expression of hid and reaper. Biol Open 2015; 4:649-60. [PMID: 25836675 PMCID: PMC4434816 DOI: 10.1242/bio.201410199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death, or apoptosis, is a highly conserved cellular process that is crucial for tissue homeostasis under normal development as well as environmental stress. Misregulation of apoptosis is linked to many developmental defects and diseases such as tumour formation, autoimmune diseases and neurological disorders. In this paper, we show a novel role for the exoribonuclease Pacman/Xrn1 in regulating apoptosis. Using Drosophila wing imaginal discs as a model system, we demonstrate that a null mutation in pacman results in small imaginal discs as well as lethality during pupation. Mutant wing discs show an increase in the number of cells undergoing apoptosis, especially in the wing pouch area. Compensatory proliferation also occurs in these mutant discs, but this is insufficient to compensate for the concurrent increase in apoptosis. The phenotypic effects of the pacman null mutation are rescued by a deletion that removes one copy of each of the pro-apoptotic genes reaper, hid and grim, demonstrating that pacman acts through this pathway. The null pacman mutation also results in a significant increase in the expression of the pro-apoptotic mRNAs, hid and reaper, with this increase mostly occurring at the post-transcriptional level, suggesting that Pacman normally targets these mRNAs for degradation. Our results uncover a novel function for the conserved exoribonuclease Pacman and suggest that this exoribonuclease is important in the regulation of apoptosis in other organisms.
Collapse
Affiliation(s)
- Joseph A Waldron
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Christopher I Jones
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Amy L Pashler
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Dominic P Grima
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Stephen Hebbes
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Samuel H Crossman
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | | | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| |
Collapse
|
21
|
Mishra RC, Grover A. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter. PLANT PHYSIOLOGY 2014; 166:1646-58. [PMID: 25281707 PMCID: PMC4226371 DOI: 10.1104/pp.114.250787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling.
Collapse
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
22
|
Jiménez-González AS, Fernández N, Martínez-Salas E, Sánchez de Jiménez E. Functional and structural analysis of maize hsp101 IRES. PLoS One 2014; 9:e107459. [PMID: 25222534 PMCID: PMC4164631 DOI: 10.1371/journal.pone.0107459] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/17/2014] [Indexed: 11/18/2022] Open
Abstract
Maize heat shock protein of 101 KDa (HSP101) is essential for thermotolerance induction in this plant. The mRNA encoding this protein harbors an IRES element in the 5'UTR that mediates cap-independent translation initiation. In the current work it is demonstrated that hsp101 IRES comprises the entire 5'UTR sequence (150 nts), since deletion of 17 nucleotides from the 5' end decreased translation efficiency by 87% compared to the control sequence. RNA structure analysis of maize hsp101 IRES revealed the presence of three stem-loops toward its 5' end, whereas the remainder sequence contains a great proportion of unpaired nucleotides. Furthermore, HSP90 protein was identified by mass spectrometry as the protein preferentially associated with the maize hsp101 IRES. In addition, it has been found that eIFiso4G rather than eIF4G initiation factor mediates translation of the maize hsp101 mRNA.
Collapse
Affiliation(s)
| | - Noemí Fernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas –Universidad Autónoma de Madrid, Madrid, Spain
| | - Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas –Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (ESDJ); (EMS)
| | - Estela Sánchez de Jiménez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México DF, México
- * E-mail: (ESDJ); (EMS)
| |
Collapse
|
23
|
Paz-Gómez D, Villanueva-Chimal E, Navarro RE. The DEAD Box RNA helicase VBH-1 is a new player in the stress response in C. elegans. PLoS One 2014; 9:e97924. [PMID: 24844228 PMCID: PMC4028217 DOI: 10.1371/journal.pone.0097924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/25/2014] [Indexed: 12/29/2022] Open
Abstract
For several years, DEAD box RNA helicase Vasa (DDX4) has been used as a bona fide germline marker in different organisms. C. elegans VBH-1 is a close homolog of the Vasa protein, which plays an important role in gametogenesis, germ cell survival and embryonic development. Here, we show that VBH-1 protects nematodes from heat shock and oxidative stress. Using the germline-defective mutant glp-4(bn2) we found that a potential somatic expression of vbh-1 might be important for stress survival. We also show that the VBH-1 paralog LAF-1 is important for stress survival, although this protein is not redundant with its counterpart. Furthermore, we observed that the mRNAs of the heat shock proteins hsp-1 and sip-1 are downregulated when vbh-1 or laf-1 are silenced. Previously, we reported that in C. elegans, VBH-1 was primarily expressed in P granules of germ cells and in the cytoplasm of all blastomeres. Here we show that during stress, VBH-1 co-localizes with CGH-1 in large aggregates in the gonad core and oocytes; however, VBH-1 aggregates do not overlap with CGH-1 foci in early embryos under the same conditions. These data demonstrate that, in addition to the previously described role for this protein in the germline, VBH-1 plays an important role during the stress response in C. elegans through the potential direct or indirect regulation of stress response mRNAs.
Collapse
Affiliation(s)
- Daniel Paz-Gómez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Emmanuel Villanueva-Chimal
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- * E-mail:
| |
Collapse
|
24
|
Fragile X mental retardation protein regulates translation by binding directly to the ribosome. Mol Cell 2014; 54:407-417. [PMID: 24746697 DOI: 10.1016/j.molcel.2014.03.023] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 03/10/2014] [Indexed: 11/23/2022]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused by loss of function of the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is involved in the translational regulation of several neuronal mRNAs. However, the precise mechanism of translational inhibition by FMRP is unknown. Here, we show that FMRP inhibits translation by binding directly to the L5 protein on the 80S ribosome. Furthermore, cryoelectron microscopic reconstruction of the 80S ribosome⋅FMRP complex shows that FMRP binds within the intersubunit space of the ribosome such that it would preclude the binding of tRNA and translation elongation factors on the ribosome. These findings suggest that FMRP inhibits translation by blocking the essential components of the translational machinery from binding to the ribosome.
Collapse
|
25
|
Abstract
Basic research in Drosophila melanogaster has benefited from a plethora of powerful genetics tools. Detailed biochemical analysis, however, has often been difficult due to the lack of in vitro systems that faithfully recapitulate the observations made in vivo. In the field of posttranscriptional regulation, the recent establishment of robust in vitro systems from embryo and ovary material has fueled the mechanistic understanding of a variety of processes. Here we describe protocols to obtain and use extracts from Drosophila embryos that are competent for cytoplasmic polyadenylation and translation of exogenously added transcripts.
Collapse
Affiliation(s)
- Olga Coll
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | |
Collapse
|
26
|
Lehane C, Guelzow T, Zenker S, Erxleben A, Schwer CI, Heimrich B, Buerkle H, Humar M. Carbimazole is an inhibitor of protein synthesis and protects from neuronal hypoxic damage in vitro. J Pharmacol Exp Ther 2013; 347:781-93. [PMID: 24049063 DOI: 10.1124/jpet.113.205989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxygen deprivation during ischemic or hemorrhagic stroke results in ATP depletion, loss of ion homeostasis, membrane depolarization, and excitotoxicity. Pharmacologic restoration of cellular energy supply may offer a promising concept to reduce hypoxic cell injury. In this study, we investigated whether carbimazole, a thionamide used to treat hyperthyroidism, reduces neuronal cell damage in oxygen-deprived human SK-N-SH cells or primary cortical neurons. Our results revealed that carbimazole induces an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) that was associated with a marked inhibition of global protein synthesis. Translational inhibition resulted in significant bioenergetic savings, preserving intracellular ATP content in oxygen-deprived neuronal cells and diminishing hypoxic cellular damage. Phosphorylation of eEF2 was mediated by AMP-activated protein kinase and eEF2 kinase. Carbimazole also induced a moderate calcium influx and a transient cAMP increase. To test whether translational inhibition generally diminishes hypoxic cell damage when ATP availability is limiting, the translational repressors cycloheximide and anisomycin were used. Cycloheximide and anisomycin also preserved ATP content in hypoxic SK-N-SH cells and significantly reduced hypoxic neuronal cell damage. Taken together, these data support a causal relation between the pharmacologic inhibition of global protein synthesis and efficient protection of neurons from ischemic damage by preservation of high-energy metabolites in oxygen-deprived cells. Furthermore, our results indicate that carbimazole or other translational inhibitors may be interesting candidates for the development of new organ-protective compounds. Their chemical structure may be used for computer-assisted drug design or screening of compounds to find new agents with the potential to diminish neuronal damage under ATP-limited conditions.
Collapse
Affiliation(s)
- Cornelius Lehane
- Department of Anesthesiology and Critical Care Medicine (C.L., C.I.S., H.B., M.H.) and Department of General Neurosurgery, Cellular Neurophysiology (T.G.), University Medical Center Freiburg, Freiburg, Germany; and Department of Anatomy and Cell Biology (S.Z., B.H.) and Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences (A.E.), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Olson CM, Donovan MR, Spellberg MJ, Marr MT. The insulin receptor cellular IRES confers resistance to eIF4A inhibition. eLife 2013; 2:e00542. [PMID: 23878722 PMCID: PMC3713452 DOI: 10.7554/elife.00542] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/11/2013] [Indexed: 11/17/2022] Open
Abstract
Under conditions of stress, such as limited growth factor signaling, translation is inhibited by the action of 4E-BP and PDCD4. These proteins, through inhibition of eIF4E and eIF4A, respectively, impair cap-dependent translation. Under stress conditions FOXO transcription factors activate 4E-BP expression amplifying the repression. Here we show that Drosophila FOXO binds the PDCD4 promoter and stimulates the transcription of PDCD4 in response to stress. We have shown previously that the 5′ UTR of the Drosophila insulin-like receptor (dINR) supports cap-independent translation that is resistant to 4E-BP. Using hippuristanol, an eIF4A inhibitor, we find that translation of dINR UTR containing transcripts are also resistant to eIF4A inhibition. In addition, the murine insulin receptor and insulin-like growth factor receptor 5′ UTRs support cap-independent translation and have a similar resistance to hippuristanol. This resistance to inhibition of eIF4E and eIF4A indicates a conserved strategy to allow translation of growth factor receptors under stress conditions. DOI:http://dx.doi.org/10.7554/eLife.00542.001 Protein synthesis in eukaryotes occurs in two stages: transcription of DNA into messenger RNA (mRNA) in the nucleus, and then translation of that mRNA into a protein by ribosomes in the cytoplasm. These processes are regulated by a complex network of signaling pathways that enables cells to tailor protein synthesis to match current conditions. This involves regulating the expression of the genes that code for these proteins. When cells experience stressful events, such as a shortage of oxygen or nutrients, they reduce the synthesis of most proteins. This response is regulated, in part, by a signaling pathway known as the insulin and insulin-like receptor pathway. In particular, stressful events inhibit a protein complex called eIF4F, which normally initiates the translation of mRNA molecules by binding to a structure on one end of the mRNA called the 5′ cap. Despite this general inhibition, the production of certain other proteins—including the insulin receptor itself—is actually increased in response to stress. Olson et al. have carried out a series of experiments to explore how inhibition of the eIF4F protein complex influences the translation of the mRNA for the insulin receptor. The eIF4F complex is made up of three proteins, including one that binds to the 5′ cap and a helicase that unwinds the RNA. Previous work in the fruit fly Drosophila showed that translation of this mRNA can continue even if formation of the eIF4F complex is inhibited by targeting the cap binding protein. Olsen et al. now show that translation of this mRNA is also independent of the helicase. Instead, translation is maintained under these conditions because the insulin receptor mRNA contains a sequence called an internal ribosome entry site, which allows ribosomes to bind to the mRNA without the influence of the 5′ cap. Olson et al. reveal the details of this regulatory pathway in Drosophila and show that similar mechanisms are at work in mammalian cells, suggesting this pathway represents a crucial regulatory process that has been conserved during evolution. A key question for future research is whether other genes within the insulin and insulin-receptor like signaling pathway use this same trick to evade translational inhibitors. DOI:http://dx.doi.org/10.7554/eLife.00542.002
Collapse
Affiliation(s)
- Calla M Olson
- Department of Biology and the Rosenstiel Basic Medical Sciences Research Center , Brandeis University , Waltham , United States
| | | | | | | |
Collapse
|
28
|
Kyrchanova O, Leman D, Parshikov A, Fedotova A, Studitsky V, Maksimenko O, Georgiev P. New properties of Drosophila scs and scs' insulators. PLoS One 2013; 8:e62690. [PMID: 23638134 PMCID: PMC3634774 DOI: 10.1371/journal.pone.0062690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. The first insulators to be identified were scs and scs', which flank the domain including two heat shock 70 genes. Zw5 and BEAF bind to scs and scs', respectively, and are responsible for the interaction between these insulators. Using the regulatory regions of yellow and white reporter genes, we have found that the interaction between scs and scs' improves the enhancer-blocking activity of the weak scs' insulator. The sequences of scs and scs' insulators include the promoters of genes that are strongly active in S2 cells but not in the eyes, in which the enhancer-blocking activity of these insulators has been extensively examined. Only the promoter of the Cad87A gene located at the end of the scs insulator drives white expression in the eyes, and the white enhancer can slightly stimulate this promoter. The scs insulator contains polyadenylation signals that may be important for preventing transcription through the insulator. As shown previously, scs and scs' can insulate transcription of the white transgene from the enhancing effects of the surrounding genome, a phenomenon known as the chromosomal position effect (CPE). After analyzing many independent transgenic lines, we have concluded that transgenes carrying the scs insulator are rarely inserted into genomic regions that stimulate the white reporter expression in the eyes.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Group of Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Leman
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Parshikov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Fedotova
- Group of Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vasily Studitsky
- School of Biology, Moscow State University, Moscow, Russia
- Department of Pharmacology, UMDNJ–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Oksana Maksimenko
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
29
|
Fukaya T, Tomari Y. MicroRNAs mediate gene silencing via multiple different pathways in drosophila. Mol Cell 2012; 48:825-36. [PMID: 23123195 DOI: 10.1016/j.molcel.2012.09.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/15/2012] [Accepted: 09/27/2012] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) guide RNA-induced silencing complex (RISC) that contains an Argonaute family protein to complementary target messenger RNAs (mRNAs). Via RISC, miRNAs silence the expression of target mRNAs by shortening the poly(A) tail-which leads to mRNA decay-and by repressing translation. It has been suggested that GW182, an Argonaute-associating protein, plays the central role in such microRNA actions. Here we show that, although GW182 is obligatory for poly(A) shortening, translational repression by microRNAs occurs even in the absence of GW182. Yet, GW182 is also capable of inducing translational repression independently. Both of these translational repression mechanisms block formation of 48S and 80S ribosomal complexes. Thus microRNAs utilize at least three distinct silencing pathways: GW182-mediated deadenylation and GW182-dependent and -independent repression of early translation initiation. Differential contribution from these multiple pathways may explain previous, apparently contradictory observations of how microRNAs inhibit protein synthesis.
Collapse
Affiliation(s)
- Takashi Fukaya
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
30
|
ncRNAs and thermoregulation: a view in prokaryotes and eukaryotes. FEBS Lett 2012; 586:4061-9. [PMID: 23098758 DOI: 10.1016/j.febslet.2012.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/24/2022]
Abstract
During cellular stress response, a widespread inhibition of transcription and blockade of splicing and other post-transcriptional processing is detected, while certain specific genes are induced. In particular, free-living cells constantly monitor temperature. When the thermal condition changes, they activate a set of genes coding for proteins that participate in the response. Non-coding RNAs, ncRNAs, and conformational changes in specific regions of mRNAs seem also to be crucial regulators that enable the cell to adjust its physiology to environmental changes. They exert their effects following the same principles in all organisms and may affect all steps of gene expression. These ncRNAs and structural elements as related to thermal stress response in bacteria are reviewed. The resemblances to eukaryotic ncRNAs are highlighted.
Collapse
|
31
|
Hernández G, Han H, Gandin V, Fabian L, Ferreira T, Zuberek J, Sonenberg N, Brill JA, Lasko P. Eukaryotic initiation factor 4E-3 is essential for meiotic chromosome segregation, cytokinesis and male fertility in Drosophila. Development 2012; 139:3211-20. [PMID: 22833128 DOI: 10.1242/dev.073122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene expression is translationally regulated during many cellular and developmental processes. Translation can be modulated by affecting the recruitment of mRNAs to the ribosome, which involves recognition of the 5' cap structure by the cap-binding protein eIF4E. Drosophila has several genes encoding eIF4E-related proteins, but the biological role of most of them remains unknown. Here, we report that Drosophila eIF4E-3 is required specifically during spermatogenesis. Males lacking eIF4E-3 are sterile, showing defects in meiotic chromosome segregation, cytokinesis, nuclear shaping and individualization. We show that eIF4E-3 physically interacts with both eIF4G and eIF4G-2, the latter being a factor crucial for spermatocyte meiosis. In eIF4E-3 mutant testes, many proteins are present at different levels than in wild type, suggesting widespread effects on translation. Our results imply that eIF4E-3 forms specific eIF4F complexes that are essential for spermatogenesis.
Collapse
Affiliation(s)
- Greco Hernández
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, H3G 0B1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tettweiler G, Kowanda M, Lasko P, Sonenberg N, Hernández G. The Distribution of eIF4E-Family Members across Insecta. Comp Funct Genomics 2012; 2012:960420. [PMID: 22745595 PMCID: PMC3382400 DOI: 10.1155/2012/960420] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/14/2012] [Indexed: 11/20/2022] Open
Abstract
Insects are part of the earliest faunas that invaded terrestrial environments and are the first organisms that evolved controlled flight. Nowadays, insects are the most diverse animal group on the planet and comprise the majority of extant animal species described. Moreover, they have a huge impact in the biosphere as well as in all aspects of human life and economy; therefore understanding all aspects of insect biology is of great importance. In insects, as in all cells, translation is a fundamental process for gene expression. However, translation in insects has been mostly studied only in the model organism Drosophila melanogaster. We used all publicly available genomic sequences to investigate in insects the distribution of the genes encoding the cap-binding protein eIF4E, a protein that plays a crucial role in eukaryotic translation. We found that there is a diversity of multiple ortholog genes encoding eIF4E isoforms within the genus Drosophila. In striking contrast, insects outside this genus contain only a single eIF4E gene, related to D. melanogaster eIF4E-1. We also found that all insect species here analyzed contain only one Class II gene, termed 4E-HP. We discuss the possible evolutionary causes originating the multiplicity of eIF4E genes within the genus Drosophila.
Collapse
Affiliation(s)
- Gritta Tettweiler
- Department of Biology, McGill University, 1205 Dr. Penfield, Montreal, QC, Canada H3A 1B1
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC, Canada H3A 1A3
| | - Michelle Kowanda
- Department of Biology, McGill University, 1205 Dr. Penfield, Montreal, QC, Canada H3A 1B1
| | - Paul Lasko
- Department of Biology, McGill University, 1205 Dr. Penfield, Montreal, QC, Canada H3A 1B1
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC, Canada H3A 1A3
| | - Greco Hernández
- Division of Basic Research, National Institute for Cancer (INCan), Avenida San Fernando No. 22, Tlalpan, 14080 Mexico City, DF, Mexico
| |
Collapse
|
33
|
Hanson PJ, Zhang HM, Hemida MG, Ye X, Qiu Y, Yang D. IRES-Dependent Translational Control during Virus-Induced Endoplasmic Reticulum Stress and Apoptosis. Front Microbiol 2012; 3:92. [PMID: 22461781 PMCID: PMC3307021 DOI: 10.3389/fmicb.2012.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/23/2012] [Indexed: 12/11/2022] Open
Abstract
Many virus infections and stresses can induce endoplasmic reticulum (ER) stress response, a host self-defense mechanism against viral invasion and stress. During this event, viral and cellular gene expression is actively regulated and often encounters a switching of the translation initiation from cap-dependent to internal ribosome-entry sites (IRES)-dependent. This switching is largely dependent on the mRNA structure of the 5′ untranslated region (5′ UTR) and on the particular stress stimuli. Picornaviruses and some other viruses contain IRESs within their 5′ UTR of viral genome and employ an IRES-driven mechanism for translation initiation. Recently, a growing number of cellular genes involved in growth control, cell cycle progression and apoptosis were also found to contain one or more IRES within their long highly structured 5′ UTRs. These genes initiate translation usually by a cap-dependent mechanism under normal physiological conditions; however, in certain environments, such as infection, starvation, and heat shock they shift translation initiation to an IRES-dependent modality. Although the molecular mechanism is not entirely understood, a number of studies have revealed that several cellular biochemical processes are responsible for the switching of translation initiation to IRES-dependent. These include the cleavage of translation initiation factors by viral and/or host proteases, phosphorylation (inactivation) of host factors for translation initiation, overproduction of homologous proteins of cap-binding protein eukaryotic initiation factors (eIF)4E, suppression of cap-binding protein eIF4E expression by specific microRNA, activation of enzymes for mRNA decapping, as well as others. Here, we summarize the recent advances in our understanding of the molecular mechanisms for the switching of translation initiation, particularly for the proteins involved in cell survival and apoptosis in the ER stress pathways during viral infections.
Collapse
Affiliation(s)
- Paul J Hanson
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Alternative Mechanisms to Initiate Translation in Eukaryotic mRNAs. Comp Funct Genomics 2012; 2012:391546. [PMID: 22536116 PMCID: PMC3321441 DOI: 10.1155/2012/391546] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/20/2012] [Indexed: 12/13/2022] Open
Abstract
The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. The majority of eukaryotic cellular mRNAs initiates translation by the cap-dependent or scanning mode of translation initiation, a mechanism that depends on the recognition of the m(7)G(5')ppp(5')N, known as the cap. However, mRNAs encoding proteins required for cell survival under stress bypass conditions inhibitory to cap-dependent translation; these mRNAs often harbor internal ribosome entry site (IRES) elements in their 5'UTRs that mediate internal initiation of translation. This mechanism is also exploited by mRNAs expressed from the genome of viruses infecting eukaryotic cells. In this paper we discuss recent advances in understanding alternative ways to initiate translation across eukaryotic organisms.
Collapse
|
35
|
Silver JT, Noble EG. Regulation of survival gene hsp70. Cell Stress Chaperones 2012; 17:1-9. [PMID: 21874533 PMCID: PMC3227850 DOI: 10.1007/s12192-011-0290-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 12/31/2022] Open
Abstract
Rapid expression of the survival gene, inducible heat shock protein 70 (hsp70), is critical for mounting cytoprotection against severe cellular stress, like elevated temperature. Hsp70 protein chaperones the refolding of heat-denatured peptides to minimize proteolytic degradation as a part of an eukaryotically conserved phenomenon referred to as the heat shock response. The physiologic stress associated with exercise, which can include elevated temperature, mechanical damage, hypoxia, lowered pH, and reactive oxygen species generation, may promote protein unfolding, leading to hsp70 gene expression in skeletal myofibers. Although the pre-transcriptional activation of hsp70 gene expression has been thoroughly reviewed, discussion of downstream hsp70 gene regulation is less extensive. The purpose of this brief review was to examine all levels of hsp70 gene regulation in response to heat stress and exercise with a special focus on skeletal myofibers where data are available. In general, while heat stress represses bulk gene expression, hsp70 mRNA expression is enhanced. Post-transcriptionally, intronless hsp70 mRNA circumvents a host of decay pathways, as well as heat stress-repressed pre-mRNA splicing and nuclear export. Pre-translationally, hsp70 mRNA is excluded from stress granules and preferentially translated during heat stress-repressed global cap-dependent translation. Post-translationally, nascent Hsp70 protein is thermodynamically stable at elevated temperatures, allowing for the commencement of chaperoning activity early after synthesis to attenuate the heat shock response and protect against subsequent injury. This review demonstrates that hsp70 mRNA expression is closely coupled with functional protein translation.
Collapse
Affiliation(s)
- Jordan Thomas Silver
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
| | - Earl G. Noble
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
- Lawson Health Research Institute, The University of Western Ontario, London, ON Canada N6A 3K7
| |
Collapse
|
36
|
Ribosome binding to a 5' translational enhancer is altered in the presence of the 3' untranslated region in cap-independent translation of turnip crinkle virus. J Virol 2011; 85:4638-53. [PMID: 21389125 DOI: 10.1128/jvi.00005-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plus-strand RNA viruses without 5' caps require noncanonical mechanisms for ribosome recruitment. A translational enhancer in the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) contains an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. We now report that the 63-nucleotide (nt) 5' UTR of TCV contains a 19-nt pyrimidine-rich element near the initiation codon that supports translation of an internal open reading frame (ORF) independent of upstream 5' UTR sequences. Addition of 80S ribosomes to the 5' UTR reduced the flexibility of the polypyrimidine residues and generated a toeprint consistent with binding to this region. Binding of salt-washed 40S ribosomal subunits was reduced 6-fold when the pyrimidine-rich sequence was mutated. 40S subunit binding generated the same toeprint as 80S ribosomes but also additional ones near the 5' end. Generation of out-of-frame AUGs upstream of the polypyrimidine region reduced translation, which suggests that 5'-terminal entry of 40S subunits is followed by scanning and that the polypyrimidine region is needed for an alternative function that requires ribosome binding. No evidence for RNA-RNA interactions between 5' and 3' sequences was found, suggesting that TCV utilizes an alternative means for circularizing its genome. Combining 5' and 3' UTR fragments in vitro had no discernible effect on the structures of the RNAs. In contrast, when 80S ribosomes were added to both fragments, structural changes were found in the 5' UTR polypyrimidine tract that were not evident when ribosomes interacted with the individual fragments. This suggests that ribosomes can promote an interaction between the 5' and 3' UTRs of TCV.
Collapse
|
37
|
David M, Gabdank I, Ben-David M, Zilka A, Orr I, Barash D, Shapira M. Preferential translation of Hsp83 in Leishmania requires a thermosensitive polypyrimidine-rich element in the 3' UTR and involves scanning of the 5' UTR. RNA (NEW YORK, N.Y.) 2010; 16:364-374. [PMID: 20040590 PMCID: PMC2811665 DOI: 10.1261/rna.1874710] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
Heat shock proteins (HSPs) provide a useful system for studying developmental patterns in the digenetic Leishmania parasites, since their expression is induced in the mammalian life form. Translation regulation plays a key role in control of protein coding genes in trypanosomatids, and is directed exclusively by elements in the 3' untranslated region (UTR). Using sequential deletions of the Leishmania Hsp83 3' UTR (888 nucleotides [nt]), we mapped a region of 150 nt that was required, but not sufficient for preferential translation of a reporter gene at mammalian-like temperatures, suggesting that changes in RNA structure could be involved. An advanced bioinformatics package for prediction of RNA folding (UNAfold) marked the regulatory region on a highly probable structural arm that includes a polypyrimidine tract (PPT). Mutagenesis of this PPT abrogated completely preferential translation of the fused reporter gene. Furthermore, temperature elevation caused the regulatory region to melt more extensively than the same region that lacked the PPT. We propose that at elevated temperatures the regulatory element in the 3' UTR is more accessible to mediators that promote its interaction with the basal translation components at the 5' end during mRNA circularization. Translation initiation of Hsp83 at all temperatures appears to proceed via scanning of the 5' UTR, since a hairpin structure abolishes expression of a fused reporter gene.
Collapse
Affiliation(s)
- Maya David
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
38
|
Rach EA, Yuan HY, Majoros WH, Tomancak P, Ohler U. Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome. Genome Biol 2009; 10:R73. [PMID: 19589141 PMCID: PMC2728527 DOI: 10.1186/gb-2009-10-7-r73] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/21/2009] [Accepted: 07/09/2009] [Indexed: 01/05/2023] Open
Abstract
A map of transcription start sites across the Drosophila genome, providing insights into initiation patterns and spatiotemporal conditions. Background Transcription initiation is a key component in the regulation of gene expression. mRNA 5' full-length sequencing techniques have enhanced our understanding of mammalian transcription start sites (TSSs), revealing different initiation patterns on a genomic scale. Results To identify TSSs in Drosophila melanogaster, we applied a hierarchical clustering strategy on available 5' expressed sequence tags (ESTs) and identified a high quality set of 5,665 TSSs for approximately 4,000 genes. We distinguished two initiation patterns: 'peaked' TSSs, and 'broad' TSS cluster groups. Peaked promoters were found to contain location-specific sequence elements; conversely, broad promoters were associated with non-location-specific elements. In alignments across other Drosophila genomes, conservation levels of sequence elements exceeded 90% within the melanogaster subgroup, but dropped considerably for distal species. Elements in broad promoters had lower levels of conservation than those in peaked promoters. When characterizing the distributions of ESTs, 64% of TSSs showed distinct associations to one out of eight different spatiotemporal conditions. Available whole-genome tiling array time series data revealed different temporal patterns of embryonic activity across the majority of genes with distinct alternative promoters. Many genes with maternally inherited transcripts were found to have alternative promoters utilized later in development. Core promoters of maternally inherited transcripts showed differences in motif composition compared to zygotically active promoters. Conclusions Our study provides a comprehensive map of Drosophila TSSs and the conditions under which they are utilized. Distinct differences in motif associations with initiation pattern and spatiotemporal utilization illustrate the complex regulatory code of transcription initiation.
Collapse
Affiliation(s)
- Elizabeth A Rach
- Program in Computational Biology and Bioinformatics, Duke University, Science Drive, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
39
|
Iwasaki S, Kawamata T, Tomari Y. Drosophila Argonaute1 and Argonaute2 Employ Distinct Mechanisms for Translational Repression. Mol Cell 2009; 34:58-67. [DOI: 10.1016/j.molcel.2009.02.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/21/2008] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
|
40
|
The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. Mol Cell Biol 2009; 29:2899-912. [PMID: 19273590 DOI: 10.1128/mcb.01774-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5' untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.
Collapse
|
41
|
Adaptor Aly and co-adaptor Thoc5 function in the Tap-p15-mediated nuclear export of HSP70 mRNA. EMBO J 2009; 28:556-67. [PMID: 19165146 DOI: 10.1038/emboj.2009.5] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 01/05/2009] [Indexed: 11/08/2022] Open
Abstract
In metazoans, nuclear export of bulk mRNA is mediated by Tap-p15, a conserved heterodimeric export receptor that cooperates with adaptor RNA-binding proteins. In this article, we show that Thoc5, a subunit of the mammalian TREX complex, binds to a distinct surface on the middle (Ntf2-like) domain of Tap. Notably, adaptor protein Aly and Thoc5 can simultaneously bind to non-overlapping binding sites on Tap-p15. In vivo, Thoc5 was not required for bulk mRNA export. However, nuclear export of HSP70 mRNA depends on both Thoc5 and Aly. Consistent with a function as a specific export adaptor, Thoc5 exhibits in vitro RNA-binding activity and is associated with HSP70 mRNPs in vivo as a component of the stable THO complex. Thus, through the combinatorial use of an adaptor (e.g., Aly) and co-adapter (e.g., Thoc5), Tap-p15 could function as an export receptor for different classes of mRNAs.
Collapse
|
42
|
Xia X, Holcik M. Strong eukaryotic IRESs have weak secondary structure. PLoS One 2009; 4:e4136. [PMID: 19125192 PMCID: PMC2607549 DOI: 10.1371/journal.pone.0004136] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/03/2008] [Indexed: 12/13/2022] Open
Abstract
Background The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES) lack secondary structure and to examine the generality of the hypothesis. Methodology/Principal Findings IRESs of the yeast and the fruit fly are located in the 5′UTR immediately upstream of the initiation codon. The minimum folding energy (MFE) of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. Conclusions We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5′-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Martin Holcik
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
43
|
Reyes R, Izquierdo JM. Half pint couples transcription and splicing of eIF4E-1,2 gene during fly development. Biochem Biophys Res Commun 2008; 374:758-62. [DOI: 10.1016/j.bbrc.2008.07.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 11/24/2022]
|
44
|
Kaiser C, Dobrikova EY, Bradrick SS, Shveygert M, Herbert JT, Gromeier M. Activation of cap-independent translation by variant eukaryotic initiation factor 4G in vivo. RNA (NEW YORK, N.Y.) 2008; 14:2170-82. [PMID: 18755839 PMCID: PMC2553731 DOI: 10.1261/rna.1171808] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Protein synthesis is tightly controlled by assembly of an intricate ribonucleoprotein complex at the m(7)GTP-cap on eukaryotic mRNAs. Ensuing linear scanning of the 5' untranslated region (UTR) is believed to transfer the preinitiation complex to the initiation codon. Eukaryotic mRNAs are characterized by significant 5' UTR heterogeneity, raising the possibility of differential control of translation initiation rate at individual mRNAs. Curiously, many mRNAs with unconventional, highly structured 5' UTRs encode proteins with central biological roles in growth control, metabolism, or stress response. The 5' UTRs of such mRNAs may influence protein synthesis rate in multiple ways, but most significantly they have been implicated in mediating alternative means of translation initiation. Cap-independent initiation bypasses strict control over the formation of initiation intermediates at the m(7)GTP cap. However, the molecular mechanisms that favor alternative means of ribosome recruitment are not understood. Here we provide evidence that eukaryotic initiation factor (eIF) 4G controls cap-independent translation initiation at the c-myc and vascular endothelial growth factor (VEGF) 5' UTRs in vivo. Cap-independent translation was investigated in tetracycline-inducible cell lines expressing either full-length eIF4G or a C-terminal fragment (Ct) lacking interaction with eIF4E and poly(A) binding protein. Expression of Ct, but not intact eIF4G, potently stimulated cap-independent initiation at the c-myc/VEGF 5' UTRs. In vitro RNA-binding assays suggest that stimulation of cap-independent translation initiation by Ct is due to direct association with the c-myc/VEGF 5' UTR, enabling 43S preinitiation complex recruitment. Our work demonstrates that variant translation initiation factors enable unconventional translation initiation at mRNA subsets with distinct structural features.
Collapse
Affiliation(s)
- Constanze Kaiser
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
45
|
Kopytova DV, Nikolenko YV, Lebedeva LA, Nabirochkina EN, Shidlovskii YV, Georgieva SG, Krasnov AN. Study of the Drosophila melanogaster trf2 gene and its protein product. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408020026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Hernández G. Was the initiation of translation in early eukaryotes IRES-driven? Trends Biochem Sci 2008; 33:58-64. [PMID: 18242094 DOI: 10.1016/j.tibs.2007.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/02/2007] [Accepted: 11/10/2007] [Indexed: 11/17/2022]
Abstract
The initiation of translation in eukaryotes generally involves the recognition of a 'cap' structure at the 5' end of the mRNA. However, for some viral and cellular mRNAs, a cap-independent mechanism occurs through an mRNA structure known as the internal ribosome entry site (IRES). Here, I postulate that the first eukaryotic mRNAs were translated in a cap-independent, IRES-driven manner that was then superseded in evolution by the cap-dependent mechanism, rather than vice versa. This hypothesis is supported by the following observations: (i) IRES-dependent, but not cap-dependent, translation can take place in the absence of not only a cap, but also many initiation factors; (ii) eukaryotic initiation factor 4E (eIF4E) and eIF4G, molecules absolutely required for cap-dependent translation, are among the most recently evolved translation factors; and (iii) functional similarities suggest the evolution of IRESs from spliceosomal introns. Thus, the contemporary cellular IRESs might be relics of the past.
Collapse
Affiliation(s)
- Greco Hernández
- Institut für Biochemie und Molekulare Medizin, Universität Bern, Bühlstrasse 28, 3012-Bern, Switzerland.
| |
Collapse
|
47
|
Abstract
Classically, Drosophila cell-free translation systems have been used to study the response of the translational machinery to heat shock treatment. We and others have developed optimized Drosophila embryo and ovary extracts, and their use has expanded to the study of a variety of translational control events. These extracts recapitulate many of the aspects of mRNA translation observed in vivo and retain critical regulatory features of several translational control processes. Indeed, their use is rapidly improving our knowledge of molecular mechanisms of translational control. In this chapter we provide general guidelines and detailed protocols to obtain and use translation extracts derived from Drosophila embryos and ovaries.
Collapse
Affiliation(s)
- Fátima Gebauer
- Centre de Regulació Genómica (CRG-UPF), Barcelona, Spain
| | | |
Collapse
|
48
|
Morales J, Mulner-Lorillon O, Cosson B, Morin E, Bellé R, Bradham CA, Beane WS, Cormier P. Translational control genes in the sea urchin genome. Dev Biol 2006; 300:293-307. [PMID: 16959243 DOI: 10.1016/j.ydbio.2006.07.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/25/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
Sea urchin eggs and early cleavage stage embryos provide an example of regulated gene expression at the level of translation. The availability of the sea urchin genome offers the opportunity to investigate the "translational control" toolkit of this model system. The annotation of the genome reveals that most of the factors implicated in translational control are encoded by nonredundant genes in echinoderm, an advantage for future functional studies. In this paper, we focus on translation factors that have been shown or suggested to play crucial role in cell cycle and development of sea urchin embryos. Addressing the cap-binding translational control, three closely related eIF4E genes (class I, II, III) are present, whereas its repressor 4E-BP and its activator eIF4G are both encoded by one gene. Analysis of the class III eIF4E proteins in various phyla shows an echinoderm-specific amino acid substitution. Furthermore, an interaction site between eIF4G and poly(A)-binding protein is uncovered in the sea urchin eIF4G proteins and is conserved in metazoan evolution. In silico screening of the sea urchin genome has uncovered potential new regulators of eIF4E sharing the common eIF4E recognition motif. Taking together, these data provide new insights regarding the strong requirement of cap-dependent translation following fertilization. The genome analysis gives insights on the complexity of eEF1B structure and motifs of functional relevance, involved in the translational control of gene expression at the level of elongation. Finally, because deregulation of translation process can lead to diseases and tumor formation in humans, the sea urchin orthologs of human genes implicated in human diseases and signaling pathways regulating translation were also discussed.
Collapse
Affiliation(s)
- Julia Morales
- Equipe Cycle Cellulaire et Développement, UMR 7150 CNRS/UPMC, Station Biologique 29680 Roscoff, France.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kopytova DV, Krasnov AN, Kopantceva MR, Nabirochkina EN, Nikolenko JV, Maksimenko O, Kurshakova MM, Lebedeva LA, Yerokhin MM, Simonova OB, Korochkin LI, Tora L, Georgiev PG, Georgieva SG. Two isoforms of Drosophila TRF2 are involved in embryonic development, premeiotic chromatin condensation, and proper differentiation of germ cells of both sexes. Mol Cell Biol 2006; 26:7492-505. [PMID: 17015475 PMCID: PMC1636870 DOI: 10.1128/mcb.00349-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila TATA box-binding protein (TBP)-related factor 2 (TRF2 or TLF) was shown to control a subset of genes different from that controlled by TBP. Here, we have investigated the structure and functions of the trf2 gene. We demonstrate that it encodes two protein isoforms: the previously described 75-kDa TRF2 and a newly identified 175-kDa version in which the same sequence is preceded by a long N-terminal domain with coiled-coil motifs. Chromatography of Drosophila embryo extracts revealed that the long TRF2 is part of a multiprotein complex also containing ISWI. Both TRF2 forms are detected at the same sites on polytene chromosomes and have the same expression patterns, suggesting that they fulfill similar functions. A study of the manifestations of the trf2 mutation suggests an essential role of TRF2 during embryonic Drosophila development. The trf2 gene is strongly expressed in germ line cells of adult flies. High levels of TRF2 are found in nuclei of primary spermatocytes and trophocytes with intense transcription. In ovaries, TRF2 is present both in actively transcribing nurse cells and in the transcriptionally inactive oocyte nuclei. Moreover, TRF2 is essential for premeiotic chromatin condensation and proper differentiation of germ cells of both sexes.
Collapse
Affiliation(s)
- Daria V Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov St. 34/5, Moscow 119334, Russian Federation
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The cell has many ways to regulate the production of proteins. One mechanism is through the changes to the machinery of translation initiation. These alterations favor the translation of one subset of mRNAs over another. It was first shown that internal ribosome entry sites (IRESes) within viral RNA genomes allowed the production of viral proteins more efficiently than most of the host proteins. The RNA secondary structure of viral IRESes has sometimes been conserved between viral species even though the primary sequences differ. These structures are important for IRES function, but no similar structure conservation has yet to be shown in cellular IRES. With the advances in mathematical modeling and computational approaches to complex biological problems, is there a way to predict an IRES in a data set of unknown sequences? This review examines what is known about cellular IRES structures, as well as the data sets and tools available to examine this question. We find that the lengths, number of upstream AUGs, and %GC content of 5'-UTRs of the human transcriptome have a similar distribution to those of published IRES-containing UTRs. Although the UTRs containing IRESes are on the average longer, almost half of all 5'-UTRs are long enough to contain an IRES. Examination of the available RNA structure prediction software and RNA motif searching programs indicates that while these programs are useful tools to fine tune the empirically determined RNA secondary structure, the accuracy of de novo secondary structure prediction of large RNA molecules and subsequent identification of new IRES elements by computational approaches, is still not possible.
Collapse
Affiliation(s)
- Stephen D Baird
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|