1
|
Palomino SM, Gabriel KA, Mwirigi JM, Cervantes A, Horton P, Funk G, Moutal A, Martin LF, Khanna R, Price TJ, Patwardhan A. Genetic editing of primary human dorsal root ganglion neurons using CRISPR-Cas9. Sci Rep 2025; 15:11116. [PMID: 40169710 PMCID: PMC11961745 DOI: 10.1038/s41598-025-91153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025] Open
Abstract
CRISPR-Cas9 is now the leading method for genome editing and is advancing for the treatment of human disease. CRIPSR has promise in treating neurological diseases, but traditional viral-vector-delivery approaches have neurotoxicity limiting their use. Here we describe a simple method for non-viral transfection of primary human DRG (hDRG) neurons for CRISPR-Cas9 editing. We edited TRPV1, NTSR2, and CACNA1E using a lipofection method with CRISPR-Cas9 plasmids containing reporter tags (GFP or mCherry). Transfection was successfully demonstrated by the expression of the reporters two days post-administration. CRISPR-Cas9 editing was confirmed at the genome level with a T7-endonuclease-I assay; protein level with immunocytochemistry and Western blot; and functional level through capsaicin-induced Ca2+ accumulation in a high-throughput compatible fluorescent imaging plate reader (FLIPR) system. This work establishes a reliable, target specific, non-viral CRISPR-Cas9-mediated genetic editing in primary human neurons with potential for future clinical application for sensory diseases.
Collapse
Affiliation(s)
- Seph M Palomino
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, 6202 Harry Hines Blvd., 9th Floor, Dallas, 75235, TX, USA
| | - Katherin A Gabriel
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Anna Cervantes
- Southwest Transplant Alliance, Manderville Ln, Dallas, TX, 8190, 75231, USA
| | - Peter Horton
- Southwest Transplant Alliance, Manderville Ln, Dallas, TX, 8190, 75231, USA
| | - Geoffrey Funk
- Southwest Transplant Alliance, Manderville Ln, Dallas, TX, 8190, 75231, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd, St. Louis, Mo, 63104, USA
| | - Laurent F Martin
- Department of Pharmacology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ, 85721, USA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Drive, Gainesville, FL, ARB R5-234, 32610-0267, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| | - Amol Patwardhan
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, 6202 Harry Hines Blvd., 9th Floor, Dallas, 75235, TX, USA.
| |
Collapse
|
2
|
Gasparri F, Fraietta I, Gianellini L, Montemartini M, Raddrizzani L, Somaschini A, Ukmar G, Colombo R, Perrera C. A Robust siRNA Screening Approach with Optimized Conditions for Large-Scale Transfection in Multiple Human Cancer Cell Lines. Methods Mol Biol 2025; 2905:73-93. [PMID: 40163299 DOI: 10.1007/978-1-0716-4418-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
During the past decades, advances in RNA interference (RNAi) technology have paved the way for the systematic exploration of gene function, and phenotypic screening of small interfering RNA (siRNA) oligonucleotides is a strategy still commonly pursued for the identification and validation of targets, particularly in oncology drug discovery. Here we present a method for large-scale automated siRNA transfection and cell phenotypic screening using colony formation as a readout. Experimental conditions were optimized to achieve efficient and nontoxic transfection of siRNA oligonucleotides in different cell lines using liposomal reagents. For each gene, the most active and specific siRNA oligos were selected through a phenotypic prescreening in HeLa cells, selected as control cell line, and grouped in the same oligo pool. Cells were then transfected at low seeding density in 96-well plates, and after 7-14 days colony formation was analyzed. We have found this procedure to be more sensitive than standard 48-72 h proliferation assays for identifying genes essential for cell viability/proliferation, as it allows to reveal long-term consequences in slow growing cell lines, or phenotypes that occur after multiple cell divisions. This approach generated robust and reliable results through the limitation of siRNA off-target toxic effects by combining a pool of different siRNA oligos designed against the same target. Furthermore, a parallel evaluation of gene silencing phenotypes is performed against a large panel of cell lines, allowing the simultaneous identification of target related genetic dependencies in several cancer cell line models of different tumor origin.
Collapse
Affiliation(s)
| | - Ivan Fraietta
- Nerviano Medical Sciences Srl, Nerviano, Milan, Italy
| | | | | | | | | | - Giorgio Ukmar
- Nerviano Medical Sciences Srl, Nerviano, Milan, Italy
| | - Riccardo Colombo
- Nerviano Medical Sciences Srl, Nerviano, Milan, Italy
- Debiopharm International SA, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Omokungbe B, Centurión A, Stiehler S, Morr A, Vilcinskas A, Steinbrink A, Hardes K. Gene silencing in the aedine cell lines C6/36 and U4.4 using long double-stranded RNA. Parasit Vectors 2024; 17:255. [PMID: 38863029 PMCID: PMC11167938 DOI: 10.1186/s13071-024-06340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND RNA interference (RNAi) is a target-specific gene silencing method that can be used to determine gene functions and investigate host-pathogen interactions, as well as facilitating the development of ecofriendly pesticides. Commercially available transfection reagents (TRs) can improve the efficacy of RNAi. However, we currently lack a product and protocol for the transfection of insect cell lines with long double-stranded RNA (dsRNA). METHODS We used agarose gel electrophoresis to determine the capacity of eight TRs to form complexes with long dsRNA. A CellTiter-Glo assay was then used to assess the cytotoxicity of the resulting lipoplexes. We also measured the cellular uptake of dsRNA by fluorescence microscopy using the fluorophore Cy3 as a label. Finally, we analyzed the TRs based on their transfection efficacy and compared the RNAi responses of Aedes albopictus C6/36 and U4.4 cells by knocking down an mCherry reporter Semliki Forest virus in both cell lines. RESULTS The TRs from Biontex (K4, Metafectene Pro, and Metafectene SI+) showed the best complexing capacity and the lowest dsRNA:TR ratio needed for complete complex formation. Only HiPerFect was unable to complex the dsRNA completely, even at a ratio of 1:9. Most of the complexes containing mCherry-dsRNA were nontoxic at 2 ng/µL, but Lipofectamine 2000 was toxic at 1 ng/µL in U4.4 cells and at 2 ng/µL in C6/36 cells. The transfection of U4.4 cells with mCherry-dsRNA/TR complexes achieved significant knockdown of the virus reporter. Comparison of the RNAi response in C6/36 and U4.4 cells suggested that C6/36 cells lack the antiviral RNAi response because there was no significant knockdown of the virus reporter in any of the treatments. CONCLUSIONS C6/36 cells have an impaired RNAi response as previously reported. This investigation provides valuable information for future RNAi experiments by showing how to mitigate the adverse effects attributed to TRs. This will facilitate the judicious selection of TRs and transfection conditions conducive to RNAi research in mosquitoes.
Collapse
Affiliation(s)
- Bodunrin Omokungbe
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Alejandra Centurión
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Sabrina Stiehler
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Antonia Morr
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany.
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392, Giessen, Germany.
| |
Collapse
|
4
|
Bajwa KK, Punetha M, Kumar D, Yadav PS, Long CR, Selokar NL. Electroporation-based CRISPR gene editing in adult buffalo fibroblast cells. Anim Biotechnol 2023; 34:5055-5066. [PMID: 37870061 DOI: 10.1080/10495398.2023.2271030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Electroporation is a widely used method for delivering CRISPR components into cells; however, it presents challenges when applied to difficult-to-transfect cells like adult buffalo fibroblasts. In this study, the ITGB2 gene (encoding the CD18 protein), plays vital for cellular adhesion and immune responses, was selected for editing experiments. To optimize electroporation conditions, we investigated parameters such as electric field strength, pulse duration, plasmid DNA amount, cuvette type, and cell type. The best transfection rates were obtained in a 4 mm gap cuvette with a single 20-millisecond pulse of 300 V using a 10 μg of all-in-one CRISPR plasmid for 106 cells in 100 μL of electroporation buffer. Increasing DNA quantity enhanced transfection rates but compromised cell viability. The 4 mm cuvette gap had high transfection rates than the 2 mm gap, and newborn cells exhibited higher transfection rates than adult cells. We achieved transfection rates of 10-12% with a cell viability of 25-30% for adult fibroblast cells. Subsequently, successfully edited the ITGB2 gene with a 30% editing efficiency, confirmed through various analysis methods, including T7E1 assay, TIDE and ICE analysis, and TA cloning. In conclusion, electroporation conditions reported here can edit buffalo gene(s) for various biotechnological research applications.
Collapse
Affiliation(s)
- Kamlesh Kumari Bajwa
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Meeti Punetha
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Dharmendra Kumar
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Prem Singh Yadav
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Chares R Long
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Naresh L Selokar
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
5
|
Campelo SN, Huang PH, Buie CR, Davalos RV. Recent Advancements in Electroporation Technologies: From Bench to Clinic. Annu Rev Biomed Eng 2023; 25:77-100. [PMID: 36854260 PMCID: PMC11633374 DOI: 10.1146/annurev-bioeng-110220-023800] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Over the past decade, the increased adoption of electroporation-based technologies has led to an expansion of clinical research initiatives. Electroporation has been utilized in molecular biology for mammalian and bacterial transfection; for food sanitation; and in therapeutic settings to increase drug uptake, for gene therapy, and to eliminate cancerous tissues. We begin this article by discussing the biophysics required for understanding the concepts behind the cell permeation phenomenon that is electroporation. We then review nano- and microscale single-cell electroporation technologies before scaling up to emerging in vivo applications.
Collapse
Affiliation(s)
- Sabrina N Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA;
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA;
| |
Collapse
|
6
|
Zipperer A, Scheurer J, Kretschmer D. Cytotoxicity Assays as Predictors of the Safety and Efficacy of Antimicrobial Agents. Methods Mol Biol 2023; 2601:153-167. [PMID: 36445583 DOI: 10.1007/978-1-0716-2855-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of safe antimicrobial agents is important for the effective treatment of pathogens. From a multitude of discovered inhibitory compounds, only a few antimicrobial agents are able to enter the market. Many antimicrobials are, on the one hand, quite effective in killing pathogens but, on the other hand, cytotoxic to eukaryotic cells. Cell health can be monitored by various methods. Plasma membrane integrity, DNA synthesis, enzyme activity, and reducing conditions within the cell are known indicators of cell viability and cell death. For a comprehensive overview, methods to analyze cytotoxic and hemolytic effects, e.g., lactate dehydrogenase release, cell proliferation analysis, cell viability analysis based on the activity of different intracellular enzymes, and hemolysis assay of antimicrobial compounds on human cells, are described in this updated chapter.
Collapse
Affiliation(s)
- Alexander Zipperer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Jasmin Scheurer
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Dorothee Kretschmer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Kardani K, Milani A, Bolhassani A. Gene delivery in adherent and suspension cells using the combined physical methods. Cytotechnology 2022; 74:245-257. [PMID: 35464169 PMCID: PMC8975990 DOI: 10.1007/s10616-022-00524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED Physical methods are widely utilized to deliver nucleic acids into cells such as electro-transfection or heat shock. An efficient gene electro-transfection requires the best conditions including voltage, the pulse length or number, buffer, incubation time and DNA form. In this study, the delivery of pEGFP-N1 vector into two adherent cell lines (HEK-293 T and COS-7) with the same origin (epithelial cells), and also mouse bone marrow-derived dendritic cells (DCs) was evaluated using electroporation under different conditions alone and along with heat treatment. Our data showed that the highest green fluorescent protein (GFP) expression in HEK-293 T and COS-7 cells was observed in serum-free RPMI cell culture medium as electroporation buffer, voltage (200 V), the pulse number (2), the pulse length (15 ms), the circular form of DNA, and 48 h after electro-transfection. In addition, the highest GFP expression in DCs was detected in serum-free RPMI, voltage (300 V), the pulse number (1), the pulse length (5 ms), and 48 h after electro-transfection. The use of sucrose as electroporation buffer, the pulse number (2), and the pulse length (25 ms) led to further cytotoxicity and lower transfection in HEK293T and COS-7 cells than other conditions. Moreover, the high voltage (700 V) increased the cell cytotoxicity, and decreased electro-transfection efficiency in DCs. On the other hand, the best conditions of electroporation along with heat treatment could significantly augment the transfection efficiency in all the cells. These data will be useful for gene delivery in other cells with the same properties using physical methods. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-022-00524-4.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
9
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Roh E, Epps TH, Sullivan MO. Kinetic Modeling to Accelerate the Development of Nucleic Acid Formulations. ACS NANO 2021; 15:16055-16066. [PMID: 34636541 PMCID: PMC8860063 DOI: 10.1021/acsnano.1c04555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A critical hurdle in the clinical translation of nucleic acid drugs is the inefficiency in testing formulations for therapeutic potential. Specifically, the ability to quantitatively predict gene expression is lacking when transitioning between cell culture and animal studies. We address this challenge by developing a mathematical framework that can reliably predict short-interfering RNA (siRNA)-mediated gene silencing with as few as one experimental data point as an input, evaluate the efficacies of existing formulations in an expeditious manner, and ultimately guide the design of nanocarriers with optimized performances. The model herein consisted of only essential rate-limiting steps and parameters with easily characterizable values of the RNA interference process, enabling the easy identification of which parameters play dominant roles in determining the potencies of siRNA formulations. Predictions from our framework were in close agreement with in vitro and in vivo experimental results across a retrospective analysis using multiple published data sets. Notably, our findings suggested that siRNA dilution was the primary determinant of gene-silencing kinetics. Our framework shed light on the fact that this dilution rate is governed by different parameters, i.e., cell dilution (in vitro) versus clearance from target tissue (in vivo), highlighting a key reason why in vitro experiments do not always predict in vivo outcomes. Moreover, although our current effort focuses on siRNA, we anticipate that the framework can be modified and applied to other nucleic acids, such as mRNA, that rely on similar biological processes.
Collapse
Affiliation(s)
- Esther
H. Roh
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center
for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United
States
| | - Millicent O. Sullivan
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19716, United
States
| |
Collapse
|
11
|
Panda K, Alagarasu K, Parashar D. Oligonucleotide-Based Approaches to Inhibit Dengue Virus Replication. Molecules 2021; 26:956. [PMID: 33670247 PMCID: PMC7918374 DOI: 10.3390/molecules26040956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Dengue fever is one of the most common viral infections affecting humans. It is an expanding public health problem, particularly in tropical and subtropical regions. No effective vaccine or antiviral therapies against Dengue virus (DENV) infection are available. Therefore, there is a strong need to develop safe and effective therapeutic strategies that can reduce the burden and duration of hospitalizations due to this life-threatening disease. Oligonucleotide-based strategies are considered as an attractive means of inhibiting viral replication since oligonucleotides can be designed to interact with any viral RNA, provided its sequence is known. The resultant targeted destruction of viral RNA interferes with viral replication without inducing any adverse effects on cellular processes. In this review, we elaborate the ribozymes, RNA interference, CRISPR, aptamer and morpholino strategies for the inhibition of DENV replication and discuss the challenges involved in utilizing such approaches.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| |
Collapse
|
12
|
Liu Z, Liang X, Liu H, Wang Z, Jiang T, Cheng Y, Wu M, Xiang D, Li Z, Wang ZL, Li L. High-Throughput and Self-Powered Electroporation System for Drug Delivery Assisted by Microfoam Electrode. ACS NANO 2020; 14:15458-15467. [PMID: 32991146 DOI: 10.1021/acsnano.0c06100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electroporation is an effective approach for drug and gene delivery, but it is still limited by its low-throughput and severe cell damage. Herein, with a self-powered triboelectric nanogenerator as the power source, we demonstrated a high-throughput electroporation system based on the design of biocompatible and flexible polypyrrole microfoam as the electrode within the flow channel. In particular, to lower the imposed voltage, one-dimensional (1D) Ag nanowires were modified on the microfoam electrode to build up a locally enhanced electric field and reduce cell damage. The self-powered electroporation system realized a successful delivery of small and large biomolecules into different cell lines with efficiency up to 86% and cell viability over 88%. The handle throughput achieved as high as 105 cells min-1 on continuously flowed cells. The high-throughput and self-powered electroporation system is expected to have potential applications in the fields of high-throughput drug and gene delivery for in vitro isolated cells.
Collapse
Affiliation(s)
- Zhirong Liu
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xi Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huanhuan Liu
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- Department of Biological Sciences, School of Life Science, Anhui University, Hefei 230601, P.R. China
| | - Zhuo Wang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tao Jiang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yuanyuan Cheng
- Department of Biological Sciences, School of Life Science, Anhui University, Hefei 230601, P.R. China
| | - Mengqi Wu
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Deli Xiang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
| | - Zhou Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhong Lin Wang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Linlin Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
13
|
Hiraiwa T, Yamada TG, Miki N, Funahashi A, Hiroi N. Activation of cell migration via morphological changes in focal adhesions depends on shear stress in MYCN-amplified neuroblastoma cells. J R Soc Interface 2020; 16:20180934. [PMID: 30836897 PMCID: PMC6451396 DOI: 10.1098/rsif.2018.0934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuroblastoma is the most common solid tumour of childhood, and it metastasizes to distant organs. However, the mechanism of metastasis, which generally depends on the cell motility of the neuroblastoma, remains unclear. In many solid tumours, it has been reported that shear stress promotes metastasis. Here, we investigated the relationship between shear stress and cell motility in the MYCN-amplified human neuroblastoma cell line IMR32, using a microfluidic device. We confirmed that most of the cells migrated downstream, and cell motility increased dramatically when the cells were exposed to a shear stress of 0.4 Pa, equivalent to that expected in vivo. We observed that the morphological features of focal adhesion were changed under a shear stress of 0.4 Pa. We also investigated the relationship between malignancy and the motility of IMR32 cells under shear stress. Decreasing the expression of MYCN in IMR32 cells via siRNA transfection inhibited cell motility by a shear stress of 0.4 Pa. These results suggest that MYCN-amplified neuroblastoma cells under high shear stress migrate to distant organs due to high cell motility, allowing cell migration to lymphatic vessels and venules.
Collapse
Affiliation(s)
- Takumi Hiraiwa
- 1 Department of Biosciences and Informatics, Keio University , Kanagawa , Japan
| | - Takahiro G Yamada
- 1 Department of Biosciences and Informatics, Keio University , Kanagawa , Japan
| | - Norihisa Miki
- 2 Department of Mechanical Engineering, Keio University , Kanagawa , Japan
| | - Akira Funahashi
- 1 Department of Biosciences and Informatics, Keio University , Kanagawa , Japan
| | - Noriko Hiroi
- 3 Department of Pharmacy, Sanyo-Onoda City University , Yamaguchi , Japan
| |
Collapse
|
14
|
Hyder I, Eghbalsaied S, Kues WA. Systematic optimization of square-wave electroporation conditions for bovine primary fibroblasts. BMC Mol Cell Biol 2020; 21:9. [PMID: 32111153 PMCID: PMC7049184 DOI: 10.1186/s12860-020-00254-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene transfer by electroporation is an established method for the non-viral mediated transfection of mammalian cells. Primary cells pose a particular challenge for electroporation-mediated gene transfer, since they are more vulnerable than immortalized cells, and have a limited proliferative capacity. Improving the gene transfer by using square wave electroporation in difficult to transfect cells, like bovine fetal fibroblasts, is a prerequisite for transgenic and further downstream experiments. RESULTS Here, bovine fetal fibroblasts were used for square-wave electroporation experiments in which the following parameters were systematically tested: electroporation buffer, electroporation temperature, pulse voltage, pulse duration, pulse number, cuvette type and plasmid DNA amount. For the experiments a commercially available square-wave generator was applied. Post electroporation, the bovine fetal fibroblasts were observed after 24 h for viability and reporter expression. The best results were obtained with a single 10 millisecond square-wave pulse of 400 V using 10 μg supercoiled plasmid DNA and 0.3 × 106 cells in 100 μl of Opti-MEM medium in 4 mm cuvettes. Importantly, the electroporation at room temperature was considerably better than with pre-cooled conditions. CONCLUSIONS The optimized electroporation conditions will be relevant for gene transfer experiments in bovine fetal fibroblasts to obtain genetically engineered donor cells for somatic cell nuclear transfer and for reprogramming experiments in this species.
Collapse
Affiliation(s)
- Iqbal Hyder
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, 31535, Neustadt, Germany.,Department of Veterinary Physiology, NTR College of Veterinary Science, Gannavaram, India
| | - Shahin Eghbalsaied
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, 31535, Neustadt, Germany.,Transgenesis Center of Excellence, Isfahan (Khorasgan) branch, Islamic Azad University, Isfahan, Iran
| | - Wilfried A Kues
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, 31535, Neustadt, Germany.
| |
Collapse
|
15
|
Acharya R. The recent progresses in shRNA-nanoparticle conjugate as a therapeutic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109928. [PMID: 31500065 DOI: 10.1016/j.msec.2019.109928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
The recent trend of gene therapy is using short hairpin RNA conjugated with different types of nanoparticles. shRNAs have a significant role in gene silencing and have a promising role in treating several genetic and infectious diseases. There are several drawbacks of delivering bare shRNA in the blood as they are fragile in nature and readily degradable. To overcome this problem shRNAs can be conjugated with nanoparticles for a safe deliver. In this article several nanoparticles are mentioned which play significant role in delivery of this payload. On one hand they protect the shRNA from degradation on the other they help to penetrate this large molecule in to the cell. Some of these nanoconjugates are in clinical trials and have a promising role in treatment of diseases.
Collapse
Affiliation(s)
- Rituparna Acharya
- School of Bio-science and Engineering, Jadavpur University, 188, Raja S.C.Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
16
|
Tanihara F, Hirata M, Morikawa S, Nguyen NT, LE QA, Hirano T, Fukumi Y, Abe T, Otoi T. The effects of electroporation on viability and quality of in vivo-derived bovine blastocysts. J Reprod Dev 2019; 65:475-479. [PMID: 31178553 PMCID: PMC6815737 DOI: 10.1262/jrd.2019-049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of exogenous molecules into embryos is required for analyses of molecular dynamics and specific gene functions during early embryonic development. Electroporation is an
effective method to transport exogenous molecules into cells, but is rarely used in bovine embryos. First, we evaluated the viability of in vivo-derived bovine blastocysts
after electroporation with fluorescein (FAM) labeled-oligonucleotides with varying pulse numbers (3, 5, 7, and 10), while keeping the pulse duration at 1 msec and the electric field of 20
V/mm. Next, we examined the effects of zona pellucida status on blastocyst quality after electroporation, by comparing the average diameter of blastocysts before and after electroporation
using blastocysts with intact zona pellucida and hatching/hatched blastocysts. Electroporation successfully introduced exogenous molecules into in vivo-derived bovine
blastocysts without loss of viability. Moreover, the status of the zona pellucida may be associated with the quality of blastocysts after electroporation.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Maki Hirata
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Shigeki Morikawa
- Tokushima Prefectural Livestock Research Institute, Tokushima 779-3233, Japan
| | - Nhien Thi Nguyen
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Quynh Anh LE
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Takayuki Hirano
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Yoshiyuki Fukumi
- Tokushima Prefectural Livestock Research Institute, Tokushima 779-3233, Japan
| | - Toshiaki Abe
- Tokushima Prefectural Livestock Research Institute, Tokushima 779-3233, Japan
| | - Takeshige Otoi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| |
Collapse
|
17
|
Zipperer A, Kretschmer D. Cytotoxicity Assays as Predictors of the Safety and Efficacy of Antimicrobial Agents. Methods Mol Biol 2017; 1520:107-118. [PMID: 27873248 DOI: 10.1007/978-1-4939-6634-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of safe antimicrobial agents is important for the effective treatment of pathogens. From a multitude of discovered inhibitory compounds only few antimicrobial agents are able to enter the market. Many antimicrobials are, on the one hand, quite effective in killing pathogens but, on the other hand, cytotoxic to eukaryotic cells. Cell health can be monitored by various methods. Plasma membrane integrity, DNA synthesis, enzyme activity, and reducing conditions within the cell are known indicators of cell viability and cell death. For a comprehensive overview, methods to analyze cytotoxic and hemolytic effects, e.g., lactate dehydrogenase release, cell proliferation analysis, cell viability analysis, and hemolysis assay of antimicrobial compounds on human cells, are described in this chapter.
Collapse
Affiliation(s)
- Alexander Zipperer
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen(IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Dorothee Kretschmer
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen(IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
18
|
Ishii T, Ueyama T, Shigyo M, Kohta M, Kondoh T, Kuboyama T, Uebi T, Hamada T, Gutmann DH, Aiba A, Kohmura E, Tohda C, Saito N. A Novel Rac1-GSPT1 Signaling Pathway Controls Astrogliosis Following Central Nervous System Injury. J Biol Chem 2016; 292:1240-1250. [PMID: 27941025 DOI: 10.1074/jbc.m116.748871] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/29/2016] [Indexed: 01/31/2023] Open
Abstract
Astrogliosis (i.e. glial scar), which is comprised primarily of proliferated astrocytes at the lesion site and migrated astrocytes from neighboring regions, is one of the key reactions in determining outcomes after CNS injury. In an effort to identify potential molecules/pathways that regulate astrogliosis, we sought to determine whether Rac/Rac-mediated signaling in astrocytes represents a novel candidate for therapeutic intervention following CNS injury. For these studies, we generated mice with Rac1 deletion under the control of the GFAP (glial fibrillary acidic protein) promoter (GFAP-Cre;Rac1flox/flox). GFAP-Cre;Rac1flox/flox (Rac1-KO) mice exhibited better recovery after spinal cord injury and exhibited reduced astrogliosis at the lesion site relative to control. Reduced astrogliosis was also observed in Rac1-KO mice following microbeam irradiation-induced injury. Moreover, knockdown (KD) or KO of Rac1 in astrocytes (LN229 cells, primary astrocytes, or primary astrocytes from Rac1-KO mice) led to delayed cell cycle progression and reduced cell migration. Rac1-KD or Rac1-KO astrocytes additionally had decreased levels of GSPT1 (G1 to S phase transition 1) expression and reduced responses of IL-1β and GSPT1 to LPS treatment, indicating that IL-1β and GSPT1 are downstream molecules of Rac1 associated with inflammatory condition. Furthermore, GSPT1-KD astrocytes had cell cycle delay, with no effect on cell migration. The cell cycle delay induced by Rac1-KD was rescued by overexpression of GSPT1. Based on these results, we propose that Rac1-GSPT1 represents a novel signaling axis in astrocytes that accelerates proliferation in response to inflammation, which is one important factor in the development of astrogliosis/glial scar following CNS injury.
Collapse
Affiliation(s)
- Taiji Ishii
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takehiko Ueyama
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan,
| | - Michiko Shigyo
- the Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masaaki Kohta
- the Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takeshi Kondoh
- the Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tomoharu Kuboyama
- the Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Tatsuya Uebi
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takeshi Hamada
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - David H Gutmann
- the Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Atsu Aiba
- the Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Eiji Kohmura
- the Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Chihiro Tohda
- the Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Naoaki Saito
- From the Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan,
| |
Collapse
|
19
|
High Throughput siRNA Screening Using Reverse Transfection. Methods Mol Biol 2016. [PMID: 27581282 DOI: 10.1007/978-1-4939-6337-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
RNA interference (RNAi) is a commonly used technique to knockdown gene function. Here, we describe a high throughput screening method for siRNA mediated gene silencing of the breast cancer cell line MDA-MB-231 using reverse transfection. Furthermore, we describe the setup for two separate methods for detecting viable and dead cells using either homogenous assays or image-based analysis.
Collapse
|
20
|
Zhang L, Erfle H, Harder N, Beneke J, Beil N, Bulkescher R, Rohr K, Keese M. High-Throughput RNAi Screening Identifies a Role for the Osteopontin Pathway in Proliferation and Migration of Human Aortic Smooth Muscle Cells. Cardiovasc Drugs Ther 2016; 30:281-95. [PMID: 27095116 DOI: 10.1007/s10557-016-6663-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Understanding of the mechanisms of vascular smooth muscle cells (VSMCs) phenotypic regulation is critically important to identify novel candidates for future therapeutic intervention. While HTS approaches have recently been used to identify novel regulators in many cell lines, such as cancer cells and hematopoietic stem cells, no studies have so far systematically investigated the effect of gene inactivation on VSMCs with respect to cell survival and growth response. METHODS AND RESULTS 257 out of 2000 genes tested resulted in an inhibition of cell proliferation in HaoSMCs. After pathway analysis, 38 significant genes were selected for further study. 23 genes were confirmed to inhibit proliferation, and 13 genes found to induce apoptosis in the synthetic phenotype. 11 genes led to an aberrant nuclear phenotype indicating a central role in cell mitosis. 4 genes affected the cell migration in synthetic HaoSMCs. Using computational biological network analysis, 11 genes were identified to have an indirect or direct interaction with the Osteopontin pathway. For 10 of those genes, levels of proteins downstream of the Osteopontin pathway were found to be down-regulated, using RNAi methodology. CONCLUSIONS A phenotypic high-throughput siRNA screen could be applied to identify genes relevant for the cell biology of HaoSMCs. Novel genes were identified which play a role in proliferation, apoptosis, mitosis and migration of HaoSMCs. These may represent potential drug candidates in the future.
Collapse
Affiliation(s)
- Lei Zhang
- BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany.,Clinic for Vascular and Endovascular Surgery, University Hospital, Frankfurt, Germany
| | - Holger Erfle
- BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Nathalie Harder
- BioQuant and IPMB, University of Heidelberg and DKFZ, Biomedical Computer Vision Group, Heidelberg, Germany
| | - Jürgen Beneke
- BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Nina Beil
- BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Ruben Bulkescher
- BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Karl Rohr
- BioQuant and IPMB, University of Heidelberg and DKFZ, Biomedical Computer Vision Group, Heidelberg, Germany
| | - Michael Keese
- Clinic for Vascular and Endovascular Surgery, University Hospital, Frankfurt, Germany. .,Clinic for Vascular and Endovascular Surgery, Johann Wolfgang Goethe University Hospital, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Luft C, Ketteler R. Electroporation Knows No Boundaries: The Use of Electrostimulation for siRNA Delivery in Cells and Tissues. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:932-42. [PMID: 25851034 PMCID: PMC4543902 DOI: 10.1177/1087057115579638] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/04/2014] [Accepted: 03/10/2015] [Indexed: 12/15/2022]
Abstract
The discovery of RNA interference (RNAi) has enabled several breakthrough discoveries in the area of functional genomics. The RNAi technology has emerged as one of the major tools for drug target identification and has been steadily improved to allow gene manipulation in cell lines, tissues, and whole organisms. One of the major hurdles for the use of RNAi in high-throughput screening has been delivery to cells and tissues. Some cell types are refractory to high-efficiency transfection with standard methods such as lipofection or calcium phosphate precipitation and require different means. Electroporation is a powerful and versatile method for delivery of RNA, DNA, peptides, and small molecules into cell lines and primary cells, as well as whole tissues and organisms. Of particular interest is the use of electroporation for delivery of small interfering RNA oligonucleotides and clustered regularly interspaced short palindromic repeats/Cas9 plasmid vectors in high-throughput screening and for therapeutic applications. Here, we will review the use of electroporation in high-throughput screening in cell lines and tissues.
Collapse
Affiliation(s)
- Christin Luft
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
22
|
Dennerlein S, Oeljeklaus S, Jans D, Hellwig C, Bareth B, Jakobs S, Deckers M, Warscheid B, Rehling P. MITRAC7 Acts as a COX1-Specific Chaperone and Reveals a Checkpoint during Cytochrome c Oxidase Assembly. Cell Rep 2015; 12:1644-55. [PMID: 26321642 DOI: 10.1016/j.celrep.2015.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/16/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022] Open
Abstract
Cytochrome c oxidase, the terminal enzyme of the respiratory chain, is assembled from mitochondria- and nuclear-encoded subunits. The MITRAC complex represents the central assembly intermediate during this process as it receives imported subunits and regulates mitochondrial translation of COX1 mRNA. The molecular processes that promote and regulate the progression of assembly downstream of MITRAC are still unknown. Here, we identify MITRAC7 as a constituent of a late form of MITRAC and as a COX1-specific chaperone. MITRAC7 is required for cytochrome c oxidase biogenesis. Surprisingly, loss of MITRAC7 or an increase in its amount causes selective cytochrome c oxidase deficiency in human cells. We demonstrate that increased MITRAC7 levels stabilize and trap COX1 in MITRAC, blocking progression in the assembly process. In contrast, MITRAC7 deficiency leads to turnover of newly synthesized COX1. Accordingly, MITRAC7 affects the biogenesis pathway by stabilizing newly synthesized COX1 in assembly intermediates, concomitantly preventing turnover.
Collapse
Affiliation(s)
- Sven Dennerlein
- Department of Cellular Biochemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel Jans
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Christin Hellwig
- Department of Cellular Biochemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Bettina Bareth
- Department of Cellular Biochemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Department of Neurology, University of Göttingen, 37073 Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University of Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
23
|
siRNA Delivery Impedes the Temporal Expression of Cytokine-Activated VCAM1 on Endothelial Cells. Ann Biomed Eng 2015; 44:895-902. [PMID: 26101035 DOI: 10.1007/s10439-015-1364-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/11/2015] [Indexed: 10/24/2022]
Abstract
Leukocyte recruitment plays a key role in chronic inflammatory diseases such as cardiovascular disease, rheumatoid arthritis, and cancer. Leukocyte rolling and arrest are mediated in part by the temporally-regulated surface expression of vascular cell adhesion molecule-1 (VCAM1) on endothelial cells (ECs). In this paper, we engineered a pH-responsive vehicle comprised of 30 mol% dimethylaminoethyl methacrylate (30D) and 70 mol% hydroxyethyl methacrylate (70H) to encapsulate, protect, and deliver VCAM1 small interfering RNA (siRNA). The ability of siRNA to reduce VCAM1 gene expression is in direct opposition to its activation by cytokines. At 12 h post-activation, VCAM1 gene knockdown was 90.1 ± 7.5% when delivered via 30D/70H nanoparticles, which was on par with a leading commercial transfection agent. This translated into a 68.8 ± 6.7% reduction in the surface density of VCAM1 on cytokine-activated ECs. The pH-responsive delivery of VCAM1 siRNA efficiently reduced temporal surface protein expression, which may be used to avert leukocyte recruitment.
Collapse
|
24
|
Steinway SN, Dang H, You H, Rountree CB, Ding W. The EGFR/ErbB3 Pathway Acts as a Compensatory Survival Mechanism upon c-Met Inhibition in Human c-Met+ Hepatocellular Carcinoma. PLoS One 2015; 10:e0128159. [PMID: 26000702 PMCID: PMC4441360 DOI: 10.1371/journal.pone.0128159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
Abstract
Background c-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF), plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC) patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance. Methods We utilized the human MHCC97-H c-Met positive (c-Met+) HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells) were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses. Results We have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate that combination therapy with PHA665752 and Gefitinib (an EGFR inhibitor) significantly reduced cell viability and increased apoptosis compared with either PHA665752 or Gefitinib treatment alone. Conclusion c-Met inhibition monotherapy is not sufficient to eliminate c-Met+ HCC tumor growth. Inhibition of both c-Met and EGFR oncogenic pathways provides superior suppression of HCC tumor growth. Thus, combination of c-Met and EGFR inhibition may represent a superior therapeutic regimen for c-Met+ HCC.
Collapse
Affiliation(s)
- Steven N. Steinway
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Hien Dang
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Hanning You
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - C. Bart Rountree
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Wei Ding
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Li J, Crowley ST, Duskey J, Khargharia S, Wu M, Rice KG. Miniaturization of gene transfection assays in 384- and 1536-well microplates. Anal Biochem 2015; 470:14-21. [PMID: 25448623 PMCID: PMC4601643 DOI: 10.1016/j.ab.2014.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 11/20/2022]
Abstract
The miniaturization of gene transfer assays to either 384- or 1536-well plates greatly economizes the expense and allows much higher throughput when transfecting immortalized and primary cells compared with more conventional 96-well assays. To validate the approach, luciferase and green fluorescent protein (GFP) reporter gene transfer assays were developed to determine the influence of cell seeding number, transfection reagent to DNA ratios, transfection time, DNA dose, and luciferin dose on linearity and sensitivity. HepG2, CHO, and NIH 3T3 cells were transfected with polyethylenimine (PEI)-DNA in both 384- and 1536-well plates. The results established optimal transfection parameters in 384-well plates in a total assay volume of 35μl and in 1536-well plates in a total assay volume of 8μl. A luciferase assay performed in 384-well plates produced a Z' score of 0.53, making it acceptable for high-throughput screening. Primary hepatocytes were harvested from mouse liver and transfected with PEI DNA and calcium phosphate DNA nanoparticles in 384-well plates. Optimal transfection of primary hepatocytes was achieved on as few as 250cellsperwell in 384-well plates, with CaPO4 proving to be 10-fold more potent than PEI.
Collapse
Affiliation(s)
- Jing Li
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason Duskey
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sanjib Khargharia
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Meng Wu
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; University of Iowa High Throughput Screening Facility, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
26
|
Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives. BIOMED RESEARCH INTERNATIONAL 2014; 2014:161794. [PMID: 25184135 PMCID: PMC4145386 DOI: 10.1155/2014/161794] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
The efforts made to develop RNAi-based therapies have led to productive research in the field of infections in humans, such as hepatitis C virus (HCV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), herpetic keratitis, human papillomavirus, or influenza virus. Naked RNAi molecules are rapidly digested by nucleases in the serum, and due to their negative surface charge, entry into the cell cytoplasm is also hampered, which makes necessary the use of delivery systems to exploit the full potential of RNAi therapeutics. Lipid nanoparticles (LNP) represent one of the most widely used delivery systems for in vivo application of RNAi due to their relative safety and simplicity of production, joint with the enhanced payload and protection of encapsulated RNAs. Moreover, LNP may be functionalized to reach target cells, and they may be used to combine RNAi molecules with conventional drug substances to reduce resistance or improve efficiency. This review features the current application of LNP in RNAi mediated therapy against viral infections and aims to explore possible future lines of action in this field.
Collapse
|
27
|
Hong SW, Jiang Y, Kim S, Li CJ, Lee DK. Target gene abundance contributes to the efficiency of siRNA-mediated gene silencing. Nucleic Acid Ther 2014; 24:192-8. [PMID: 24527979 DOI: 10.1089/nat.2013.0466] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The gene-silencing activity of a small interfering RNA (siRNA) is determined by various factors. Considering that RNA interference (RNAi) is an unparalleled technology in both basic research and therapeutic applications, thorough understanding of the factors determining RNAi activity is critical. This report presents observations that siRNAs targeting KRT7 show cell-line-dependent activity, which correlates with the expression level of KRT7 mRNA. By modulating the target mRNA level, it was confirmed that highly expressed genes are more susceptible to siRNA-mediated gene silencing. Finally, several genes that show different expression levels in a cell-line dependent manner were tested, which verified the expression-level-dependent siRNA activities. These results strongly suggest that the abundance of target mRNA is a critical factor that determines the efficiency of the siRNA-mediated gene silencing in a given cellular context. This report should provide practical guidelines for designing RNAi experiments and for selecting targetable genes in RNAi therapeutics studies.
Collapse
Affiliation(s)
- Sun Woo Hong
- 1 Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University , Suwon, Korea
| | | | | | | | | |
Collapse
|
28
|
Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 2013; 455:133-47. [DOI: 10.1042/bj20130950] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The specificity of RNAi and its ability to silence ‘undruggable’ targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.
Collapse
|
29
|
Cheng CI, Hsiao CC, Wu SC, Peng SY, Yip HK, Fu M, Wang FS. Valsartan impairs angiogenesis of mesenchymal stem cells through Akt pathway. Int J Cardiol 2013; 167:2765-74. [DOI: 10.1016/j.ijcard.2012.06.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 06/24/2012] [Accepted: 06/30/2012] [Indexed: 01/07/2023]
|
30
|
Solaimani P, Damoiseaux R, Hankinson O. Genome-wide RNAi high-throughput screen identifies proteins necessary for the AHR-dependent induction of CYP1A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2013; 136:107-19. [PMID: 23997114 DOI: 10.1093/toxsci/kft191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes.
Collapse
Affiliation(s)
- Parrisa Solaimani
- * Molecular Toxicology Interdepartmental Program, Department of Pathology and Laboratory Medicine, and the Jonsson Comprehensive Cancer Center and
| | | | | |
Collapse
|
31
|
Obermoser G, Presnell S, Domico K, Xu H, Wang Y, Anguiano E, Thompson-Snipes L, Ranganathan R, Zeitner B, Bjork A, Anderson D, Speake C, Ruchaud E, Skinner J, Alsina L, Sharma M, Dutartre H, Cepika A, Israelsson E, Nguyen P, Nguyen QA, Harrod AC, Zurawski SM, Pascual V, Ueno H, Nepom GT, Quinn C, Blankenship D, Palucka K, Banchereau J, Chaussabel D. Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines. Immunity 2013; 38:831-44. [PMID: 23601689 DOI: 10.1016/j.immuni.2012.12.008] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/21/2012] [Indexed: 10/26/2022]
Abstract
Systems immunology approaches were employed to investigate innate and adaptive immune responses to influenza and pneumococcal vaccines. These two non-live vaccines show different magnitudes of transcriptional responses at different time points after vaccination. Software solutions were developed to explore correlates of vaccine efficacy measured as antibody titers at day 28. These enabled a further dissection of transcriptional responses. Thus, the innate response, measured within hours in the peripheral blood, was dominated by an interferon transcriptional signature after influenza vaccination and by an inflammation signature after pneumococcal vaccination. Day 7 plasmablast responses induced by both vaccines was more pronounced after pneumococcal vaccination. Together, these results suggest that comparing global immune responses elicited by different vaccines will be critical to our understanding of the immune mechanisms underpinning successful vaccination.
Collapse
Affiliation(s)
- Gerlinde Obermoser
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The Escherichia coli oligoribonuclease, ORN, has a 3′ to 5′ exonuclease activity specific for small oligomers that is essential for cell viability. The human homologue, REXO2, has hitherto been incompletely characterized, with only its in vitro ability to degrade small single-stranded RNA and DNA fragments documented. Here we show that the human enzyme has clear dual cellular localization being present both in cytosolic and mitochondrial fractions. Interestingly, the mitochondrial form localizes to both the intermembrane space and the matrix. Depletion of REXO2 by RNA interference causes a strong morphological phenotype in human cells, which show a disorganized network of punctate and granular mitochondria. Lack of REXO2 protein also causes a substantial decrease of mitochondrial nucleic acid content and impaired de novo mitochondrial protein synthesis. Our data constitute the first in vivo evidence for an oligoribonuclease activity in human mitochondria.
Collapse
|
33
|
Voltage Preconditioning Allows Modulated Gene Expression in Neurons Using PEI-complexed siRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e82. [PMID: 23531602 PMCID: PMC3615821 DOI: 10.1038/mtna.2013.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present here a high efficiency, high viability siRNA-delivery method using a voltage-controlled chemical transfection strategy to achieve modulated delivery of polyethylenimine (PEI) complexed with siRNA in an in vitro culture of neuro2A cells and neurons. Low voltage pulses were applied to adherent cells before the administration of PEI-siRNA complexes. Live assays of neuro2a cells transfected with fluorescently tagged siRNA showed an increase in transfection efficiency from 62 ± 14% to 98 ± 3.8% (after −1 V). In primary hippocampal neurons, transfection efficiencies were increased from 30 ± 18% to 76 ± 18% (after −1 V). Negligible or low-level transfection was observed after preconditioning at higher voltages, suggesting an inverse relationship with applied voltage. Experiments with propidium iodide ruled out the role of electroporation in the transfection of siRNAs suggesting an alternate electro-endocytotic mechanism. In addition, image analysis of preconditioned and transfected cells demonstrates siRNA uptake and loading that is tuned to preconditioning voltage levels. There is approximately a fourfold increase in siRNA loading after preconditioning at −1 V compared with the same at ±2–3 V. Modulated gene expression is demonstrated in a functional knockdown of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in neuro2A cells using siRNA. Cell density and dendritic morphological changes are also demonstrated in modulated knockdown of brain derived neurotrophic factor (BDNF) in primary hippocampal neurons. The method reported here has potential applications in the development of high-throughput screening systems for large libraries of siRNA molecules involving difficult-to-transfect cells like neurons.
Collapse
|
34
|
Mick D, Dennerlein S, Wiese H, Reinhold R, Pacheu-Grau D, Lorenzi I, Sasarman F, Weraarpachai W, Shoubridge E, Warscheid B, Rehling P. MITRAC Links Mitochondrial Protein Translocation to Respiratory-Chain Assembly and Translational Regulation. Cell 2012; 151:1528-41. [DOI: 10.1016/j.cell.2012.11.053] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/10/2012] [Accepted: 11/30/2012] [Indexed: 11/25/2022]
|
35
|
Arabsolghar R, Rasti M. Optimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line. IRANIAN JOURNAL OF MEDICAL SCIENCES 2012; 37:187-93. [PMID: 23115451 PMCID: PMC3470088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 10/27/2011] [Accepted: 12/12/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. METHODS To identify the best condition, the cells were firstly electroporated without siRNA and cell viability was determined by trypan blue and MTT assays. Then siRNA transfection in the best condition was performed. Western blot analysis was used for monitoring successful siRNA transfection. RESULTS The best condition for electroporation of this cell line was 220 volt and 975 µF in exponential decay using the Gene Pulser X cell electroporation system. Our data demonstrated that by using proper electroporation condition, DNA methyl transferase mRNA was silenced by 10 nmol DNMT1 siRNA in MDA-MB 468 cells when compared with negative control siRNA electroporation. Analysis of cell viability demonstrated that optimal electroporation condition resulted in 74% and 78% cell viability by trypan blue staining and MTT assay, respectively. CONCLUSION Transfection of the MDA-MB-468 breast cancer cell line with siRNA in the obtained electroporation condition was successful and resulted in effective gene silencing and high cellular viability.
Collapse
|
36
|
Chang HH, Soderberg K, Skinner JA, Banchereau J, Chaussabel D, Haynes BF, Ramoni M, Letvin NL. Transcriptional network predicts viral set point during acute HIV-1 infection. J Am Med Inform Assoc 2012; 19:1103-9. [PMID: 22700869 DOI: 10.1136/amiajnl-2012-000867] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND HIV-1-infected individuals with higher viral set points progress to AIDS more rapidly than those with lower set points. Predicting viral set point early following infection can contribute to our understanding of early control of HIV-1 replication, to predicting long-term clinical outcomes, and to the choice of optimal therapeutic regimens. METHODS In a longitudinal study of 10 untreated HIV-1-infected patients, we used gene expression profiling of peripheral blood mononuclear cells to identify transcriptional networks for viral set point prediction. At each sampling time, a statistical analysis inferred the optimal transcriptional network that best predicted viral set point. We then assessed the accuracy of this transcriptional model by predicting viral set point in an independent cohort of 10 untreated HIV-1-infected patients from Malawi. RESULTS The gene network inferred at time of enrollment predicted viral set point 24 weeks later in the independent Malawian cohort with an accuracy of 87.5%. As expected, the predictive accuracy of the networks inferred at later time points was even greater, exceeding 90% after week 4. The composition of the inferred networks was largely conserved between time points. The 12 genes comprising this dynamic signature of viral set point implicated the involvement of two major canonical pathways: interferon signaling (p<0.0003) and membrane fraction (p<0.02). A silico knockout study showed that HLA-DRB1 and C4BPA may contribute to restricting HIV-1 replication. CONCLUSIONS Longitudinal gene expression profiling of peripheral blood mononuclear cells from patients with acute HIV-1 infection can be used to create transcriptional network models to early predict viral set point with a high degree of accuracy.
Collapse
Affiliation(s)
- Hsun-Hsien Chang
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Marine S, Freeman J, Riccio A, Axenborg ML, Pihl J, Ketteler R, Aspengren S. High-throughput transfection of differentiated primary neurons from rat forebrain. ACTA ACUST UNITED AC 2012; 17:692-6. [PMID: 22403411 DOI: 10.1177/1087057112439233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary neurons in culture are considered to be a highly relevant model in the study of neuronal development and activity. They can be cultivated and differentiated in vitro but are difficult to transfect using conventional methods. To address this problem, a capillary electroporation system called Cellaxess Elektra was developed for efficient and reproducible transfection of primary cortical and hippocampal neurons without significant impact on cell morphology and viability. The cells are transfected in any stage of differentiation and development, directly in cell culture plates. Genetic material is delivered in situ to as many as 384 samples at a time, which enables both high-throughput and high-quality screening for hard-to-transfect primary cells, meaning that gene function can be studied on a genome-wide scale in cells previously inaccessible to genetic manipulation.
Collapse
Affiliation(s)
- Shane Marine
- Department of Automated Biotechnology, Merck & Co., Inc., North Wales, PA, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Zou T, Liu WJ, Li SD, Zhou W, Yang JF, Zou CG. TRB3 mediates homocysteine-induced inhibition of endothelial cell proliferation. J Cell Physiol 2011; 226:2782-9. [PMID: 21935927 DOI: 10.1002/jcp.22554] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hyperhomocysteinemia (HHcy) has been shown to induce endothelial dysfunction, an early event in the progression of atherosclerosis. However, the underlying mechanism of endothelial cell injury in HHcy has not been clearly elucidated. In this study, we examined the effect of homocysteine on tribbles-related protein 3 (TRB3)-mediated cell-cycle arrest in human umbilical vein endothelial cells (HUVECs). Treatment of HUVECs with homocysteine (0-250 µmol/L) resulted in inhibition of cell proliferation assessed by [(3)H]-thymidine incorporation into DNA. Homocysteine induced cell-cycle arrest in the G1 phase by up-regulating the protein levels of p27(kip1). Under these conditions, homocysteine did not induce endoplasmic reticulum stress. However, homocysteine up-regulated the expression of TRB3, thus leading to the dephosphorylation of Akt (Thr308). Knock-down of endogenous TRB3 using siRNA significantly suppressed the inhibitory effect of homocysteine on the proliferation of HUVECs. Homocysteine-induced TRB3 expression was mediated by the cAMP/cAMP response element-binding protein (CREB) pathway. These results demonstrate that TRB3 is a critical molecule in the homocysteine-mediated cell-cycle arrest in endothelial cells.
Collapse
Affiliation(s)
- Tong Zou
- Department of Cardiology, Beijing Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
39
|
Aspengren S, Tokarz M, Pihl J. Cellaxess®HT cell-based assay and transfection lab. Nat Methods 2011. [DOI: 10.1038/nmeth.f.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Tuzmen S, Tuzmen P, Arora S, Mousses S, Azorsa D. RNAi-based functional pharmacogenomics. Methods Mol Biol 2011; 700:271-90. [PMID: 21204040 DOI: 10.1007/978-1-61737-954-3_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experimental alteration of gene expression is a powerful technique for functional characterization of disease genes. RNA interference (RNAi) is a naturally occurring mechanism of gene regulation, which is triggered by the introduction of double-stranded RNA into a cell. This phenomenon can be synthetically exploited to down-regulate expression of specific genes by transfecting mammalian cells with synthetic short interfering RNAs (siRNAs). These siRNAs can be designed to silence the expression of specific genes bearing a particular target sequence in high-throughput (HT) siRNA experimental systems and may potentially be presented as a therapeutic strategy for inhibiting transcriptional regulation of genes. This can constitute a strategy that can inhibit targets that are not tractable by small molecules such as chemical compounds. Large-scale experiments using low-dose drug exposure combined with siRNA also represent a promising discovery strategy for the purpose of identifying synergistic targets that facilitate synthetic lethal combination phenotypes. In light of such advantageous applications, siRNA technology has become an ideal research tool for studying gene function. In this chapter, we focus on the application of RNAi, with particular focus on HT siRNA phenotype profiling, to support cellular pharmacogenomics.
Collapse
Affiliation(s)
- Sukru Tuzmen
- Pharmaceutical Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | | | | | | | | |
Collapse
|
41
|
Endogenous BMPR-IB signaling is required for early osteoblast differentiation of human bone cells. In Vitro Cell Dev Biol Anim 2010; 47:251-9. [DOI: 10.1007/s11626-010-9378-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/19/2010] [Indexed: 01/01/2023]
|
42
|
Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit. Biochem J 2010; 430:551-8. [PMID: 20604745 PMCID: PMC2995420 DOI: 10.1042/bj20100757] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial Ras-like protein Era has been reported previously to bind 16S rRNA within the 30S ribosomal subunit and to play a crucial role in ribosome assembly. An orthologue of this essential GTPase ERAL1 (Era G-protein-like 1) exists in higher eukaryotes and although its exact molecular function and cellular localization is unknown, its absence has been linked to apoptosis. In the present study we show that human ERAL1 is a mitochondrial protein important for the formation of the 28S small mitoribosomal subunit. We also show that ERAL1 binds in vivo to the rRNA component of the small subunit [12S mt (mitochondrial)-rRNA]. Bacterial Era associates with a 3′ unstructured nonanucleotide immediately downstream of the terminal stem–loop (helix 45) of 16S rRNA. This site contains an AUCA sequence highly conserved across all domains of life, immediately upstream of the anti-Shine–Dalgarno sequence, which is conserved in bacteria. Strikingly, this entire region is absent from 12S mt-rRNA. We have mapped the ERAL1-binding site to a 33 nucleotide section delineating the 3′ terminal stem–loop region of 12S mt-rRNA. This loop contains two adenine residues that are reported to be dimethylated on mitoribosome maturation. Furthermore, and also in contrast with the bacterial orthologue, loss of ERAL1 leads to rapid decay of nascent 12S mt-rRNA, consistent with a role as a mitochondrial RNA chaperone. Finally, whereas depletion of ERAL1 leads to apoptosis, cell death occurs prior to any appreciable loss of mitochondrial protein synthesis or reduction in the stability of mitochondrial mRNA.
Collapse
|
43
|
Mechanisms for the intracellular manipulation of organelles by conventional electroporation. Biophys J 2010; 98:2506-14. [PMID: 20513394 DOI: 10.1016/j.bpj.2010.02.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/22/2010] [Accepted: 02/12/2010] [Indexed: 01/04/2023] Open
Abstract
Conventional electroporation (EP) changes both the conductance and molecular permeability of the plasma membrane (PM) of cells and is a standard method for delivering both biologically active and probe molecules of a wide range of sizes into cells. However, the underlying mechanisms at the molecular and cellular levels remain controversial. Here we introduce a mathematical cell model that contains representative organelles (nucleus, endoplasmic reticulum, mitochondria) and includes a dynamic EP model, which describes formation, expansion, contraction, and destruction for the plasma and all organelle membranes. We show that conventional EP provides transient electrical pathways into the cell, sufficient to create significant intracellular fields. This emerging intracellular electrical field is a secondary effect due to EP and can cause transmembrane voltages at the organelles, which are large enough and long enough to gate organelle channels, and even sufficient, at some field strengths, for the poration of organelle membranes. This suggests an alternative to nanosecond pulsed electric fields for intracellular manipulations.
Collapse
|
44
|
Santarius T, Bignell GR, Greenman CD, Widaa S, Chen L, Mahoney CL, Butler A, Edkins S, Waris S, Thornalley PJ, Futreal PA, Stratton MR. GLO1-A novel amplified gene in human cancer. Genes Chromosomes Cancer 2010; 49:711-25. [PMID: 20544845 PMCID: PMC3398139 DOI: 10.1002/gcc.20784] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To identify a novel amplified cancer gene a systematic screen of 975 human cancer DNA samples, 750 cell lines and 225 primary tumors, using the Affymetrix 10K SNP microarray was undertaken. The screen identified 193 amplicons. A previously uncharacterized amplicon located on 6p21.2 whose 1 Mb minimal common amplified region contained eight genes (GLO1, DNAH8, GLP1R, C6orf64, KCNK5, KCNK17, KCNK16, and C6orf102) was further investigated to determine which gene(s) are the biological targets of this amplicon. Real time quantitative PCR (qPCR) analysis of all amplicon 6p21.2 genes in 618 human cancer cell lines identified GLO1, encoding glyoxalase 1, to be the most frequently amplified gene [twofold or greater amplification in 8.4% (49/536) of cancers]. Also the association between amplification and overexpression was greatest for GLO1. RNAi knockdown of GLO1 had the greatest and most consistent impact on cell accumulation and apoptosis. Cell lines with GLO1 amplification were more sensitive to inhibition of GLO1 by bromobenzylglutathione cyclopentyl diester (BBGC). Subsequent qPCR of 520 primary tumor samples identified twofold and greater amplification of GLO1 in 8/37 (22%) of breast, 12/71 (17%) of sarcomas, 6/53 (11.3%) of nonsmall cell lung, 2/23 (8.7%) of bladder, 6/93 (6.5%) of renal and 5/83 (6%) of gastric cancers. Amplification of GLO1 was rare in colon cancer (1/35) and glioma (1/94). Collectively the results indicate that GLO1 is at least one of the targets of gene amplification on 6p21.2 and may represent a useful target for therapy in cancers with GLO1 amplification.
Collapse
Affiliation(s)
- Thomas Santarius
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Efficient, high-throughput transfection of human embryonic stem cells. Stem Cell Res Ther 2010; 1:23. [PMID: 20659329 PMCID: PMC2941115 DOI: 10.1186/scrt23] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 07/26/2010] [Indexed: 12/30/2022] Open
Abstract
Introduction Genetic manipulation of human embryonic stem cells (hESC) has been limited by their general resistance to common methods used to introduce exogenous DNA or RNA. Efficient and high throughput transfection of nucleic acids into hESC would be a valuable experimental tool to manipulate these cells for research and clinical applications. Methods We investigated the ability of two commercially available electroporation systems, the Nucleofection® 96-well Shuttle® System from Lonza and the Neon™ Transfection System from Invitrogen to efficiently transfect hESC. Transfection efficiency was measured by flow cytometry for the expression of the green fluorescent protein and the viability of the transfected cells was determined by an ATP catalyzed luciferase reaction. The transfected cells were also analyzed by flow cytometry for common markers of pluripotency. Results Both systems are capable of transfecting hESC at high efficiencies with little loss of cell viability. However, the reproducibility and the ease of scaling for high throughput applications led us to perform more comprehensive tests on the Nucleofection® 96-well Shuttle® System. We demonstrate that this method yields a large fraction of transiently transfected cells with minimal loss of cell viability and pluripotency, producing protein expression from plasmid vectors in several different hESC lines. The method scales to a 96-well plate with similar transfection efficiencies at the start and end of the plate. We also investigated the efficiency with which stable transfectants can be generated and recovered under antibiotic selection. Finally, we found that this method is effective in the delivery of short synthetic RNA oligonucleotides (siRNA) into hESC for knockdown of translation activity via RNA interference. Conclusions Our results indicate that these electroporation methods provide a reliable, efficient, and high-throughput approach to the genetic manipulation of hESC.
Collapse
|
46
|
Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010; 70:5923-30. [PMID: 20570894 PMCID: PMC2913706 DOI: 10.1158/0008-5472.can-10-0655] [Citation(s) in RCA: 515] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor suppressor microRNAs (miRNA) provide a new opportunity to treat cancer. This approach, "miRNA replacement therapy," is based on the concept that the reintroduction of miRNAs depleted in cancer cells reactivates cellular pathways that drive a therapeutic response. Here, we describe the development of a therapeutic formulation using chemically synthesized miR-34a and a lipid-based delivery vehicle that blocks tumor growth in mouse models of non-small-cell lung cancer. This formulation is effective when administered locally or systemically. The antioncogenic effects are accompanied by an accumulation of miR-34a in the tumor tissue and downregulation of direct miR-34a targets. Intravenous delivery of formulated miR-34a does not induce an elevation of cytokines or liver and kidney enzymes in serum, suggesting that the formulation is well tolerated and does not induce an immune response. The data provide proof of concept for the systemic delivery of a synthetic tumor suppressor mimic, obviating obstacles associated with viral-based miRNA delivery and facilitating a rapid route for miRNA replacement therapy into the clinic.
Collapse
Affiliation(s)
- Jason F. Wiggins
- Mirna Therapeutics, Inc., 2150 Woodward Street, Suite 100, Austin, TX 78744
| | - Lynnsie Ruffino
- Mirna Therapeutics, Inc., 2150 Woodward Street, Suite 100, Austin, TX 78744
| | - Kevin Kelnar
- Mirna Therapeutics, Inc., 2150 Woodward Street, Suite 100, Austin, TX 78744
| | - Michael Omotola
- Mirna Therapeutics, Inc., 2150 Woodward Street, Suite 100, Austin, TX 78744
| | - Lubna Patrawala
- Mirna Therapeutics, Inc., 2150 Woodward Street, Suite 100, Austin, TX 78744
| | - David Brown
- Mirna Therapeutics, Inc., 2150 Woodward Street, Suite 100, Austin, TX 78744
| | - Andreas G. Bader
- Mirna Therapeutics, Inc., 2150 Woodward Street, Suite 100, Austin, TX 78744
| |
Collapse
|
47
|
The beautiful cell: high-content screening in drug discovery. Anal Bioanal Chem 2010; 398:219-26. [DOI: 10.1007/s00216-010-3788-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/21/2010] [Accepted: 04/24/2010] [Indexed: 01/22/2023]
|
48
|
Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010; 6:322-9. [PMID: 20224296 PMCID: PMC2914492 DOI: 10.4161/auto.6.3.11625] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal pathway for degrading cytoplasmic proteins, macromolecules, and organelles. While autophagy has become one of the most attractive topics in cancer research, the current autophagy literature is often viewed as confusing, because of its association with apparently contradictory roles, such as survival and cell death. Autophagy can serve as a tumor suppressor, as a partial reduction in autophagic capacity or defective autophagy (e.g., heterozygous knockdown BECN1 (+/-) in mice) provides an oncogenic stimulus, causing malignant transformation and spontaneous tumors. In addition, autophagy seems to function as a protective cell survival mechanism against environmental and cellular stress (e.g., nutrient deprivation, hypoxia and therapeutic stress) and causes resistance to antineoplastic therapies. Recent studies have demonstrated that the inhibition of autophagy in cancer cells may be therapeutically beneficial in some circumstances, as it can sensitize cancer cells to different therapies, including DNA-damaging agents, antihormone therapies (e.g., tamoxifen), and radiation therapy. This supports the hypothesis that inhibiting autophagy can negatively influence cancer cell survival and increase cell death when combined with anticancer agents, providing a therapeutic advantage against cancer. On the other hand, the induction of autophagy by the inhibition of anti-autophagic proteins, such as Bcl-2, PKCdelta, and tissue transglutaminase 2 (TG2), may lead to autophagic cell death in some apoptosis-resistant cancers (i.e., breast and pancreatic cancers), indicating that the induction of autophagy alone may also be used as a potential therapy. Overall, the data suggest that, depending on the cellular features, either the induction or the inhibition of autophagy can provide therapeutic benefits to patients and that the design and synthesis of the first-generation modulators of autophagy may provide the tools for proof of concept experiments and the impetus for translational studies that may ultimately lead to new therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Kevin N. Dalby
- Division of Medicinal Chemistry; College of Pharmacy; The University of Texas at Austin; Austin, TX USA
| | - Ibrahim Tekedereli
- Department of Experimental Therapeutics; The University of Texas, M.D. Anderson Cancer Center; Houston, TX USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics; The University of Texas, M.D. Anderson Cancer Center; Houston, TX USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics; The University of Texas, M.D. Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
49
|
Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. EMBO J 2010; 29:1116-25. [PMID: 20186120 PMCID: PMC2845271 DOI: 10.1038/emboj.2010.14] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/25/2010] [Indexed: 11/18/2022] Open
Abstract
Bioinformatic analysis classifies the human protein encoded by immature colon carcinoma transcript-1 (ICT1) as one of a family of four putative mitochondrial translation release factors. However, this has not been supported by any experimental evidence. As only a single member of this family, mtRF1a, is required to terminate the synthesis of all 13 mitochondrially encoded polypeptides, the true physiological function of ICT1 was unclear. Here, we report that ICT1 is an essential mitochondrial protein, but unlike the other family members that are matrix-soluble, ICT1 has become an integral component of the human mitoribosome. Release-factor assays show that although ICT1 has retained its ribosome-dependent PTH activity, this is codon-independent; consistent with its loss of both domains that promote codon recognition in class-I release factors. Mutation of the GGQ domain common to ribosome-dependent PTHs causes a loss of activity in vitro and, crucially, a loss of cell viability, in vivo. We suggest that ICT1 may be essential for hydrolysis of prematurely terminated peptidyl-tRNA moieties in stalled mitoribosomes.
Collapse
Affiliation(s)
- Ricarda Richter
- Mitochondrial Research Group, Institute for Ageing and Health, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Anz D, Koelzer VH, Moder S, Thaler R, Schwerd T, Lahl K, Sparwasser T, Besch R, Poeck H, Hornung V, Hartmann G, Rothenfusser S, Bourquin C, Endres S. Immunostimulatory RNA blocks suppression by regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2009; 184:939-46. [PMID: 19966212 DOI: 10.4049/jimmunol.0901245] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of immune suppression by regulatory T (Treg) cells in the maintenance of immune homeostasis is well established. However, little is known about how Treg cell function is inhibited on viral infection to allow the development of a protective immune response. As viral RNA is a crucial mediator for activation of antiviral immunity, we examined the effects of immunostimulatory RNA and infection with RNA viruses on Treg cell function. We show that synthetic RNA oligonucleotides potently inhibit Treg cell-induced suppression in a sequence-dependent manner. This effect is entirely dependent on TLR7 activation of APCs and subsequent IL-6 production. In addition, stimulation with the RNA viruses encephalomyocarditis virus and Sendai virus that specifically activate the RNA-sensing helicases melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-inducible gene I (RIG-I) also blocks Treg cell function. Interestingly, this effect is seen even in the absence of APCs. Consistent with this, both Treg and T effector cells express RIG-I and MDA-5. Using MDA-5-deficient mice, we demonstrate that the loss of Treg cell function on infection with encephalomyocarditis virus is strictly dependent on MDA-5 expression by Treg cells. Thus, we show in this study for the first time that activation of a RIG-I-like helicase on Treg cells blocks their suppressive function.
Collapse
Affiliation(s)
- David Anz
- Division of Clinical Pharmacology, Center of Integrated Protein Science Munich, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|