1
|
Shen Y, Zhang G, Wei C, Zhao P, Wang Y, Li M, Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:613-631. [PMID: 38886929 PMCID: PMC11433915 DOI: 10.4103/nrr.nrr-d-23-01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O'Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. Proc Natl Acad Sci U S A 2024; 121:e2317864121. [PMID: 39495910 DOI: 10.1073/pnas.2317864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 11/06/2024] Open
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA-modifying enzyme that methylates wobble uridines in a subset of tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit reduced protein synthesis in the nervous system, including a specific decrease in selenoprotein levels. Either loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 null animals also exhibit associative memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA wobble uridine modification in redox homeostasis in the developing nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Carlson H Ogata
- Department of Biology, Brown University, Providence, RI 02912
| | - Caley A Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627
| | - Kate M O'Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Sciences, Brown University, Providence, RI 02912
| |
Collapse
|
3
|
Sharma P, Khetarpal P. Genetic Determinants of Selenium Availability, Selenium-Response, and Risk of Polycystic Ovary Syndrome. Biol Trace Elem Res 2024; 202:4843-4857. [PMID: 38227265 DOI: 10.1007/s12011-023-04052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Selenium is a trace element and its deficiency has been associated with the risk of PCOS, a multifactorial syndrome that affects a large number of women worldwide. Several databases and literature were searched to find out genetic variants of the genes involved in selenium uptake, metabolism, and regulation which may be significantly associated with the risk of PCOS through Se-related pathways. Genes that require selenium for their biological actions to perform were also shortlisted. A total of eighteen significantly associated genes with forty-four variants were identified as candidate variants that could play a potential role in the modulation of PCOS risk among the study population. The genetic variant distribution data was available in-house and was obtained through a GWAS study of the North India population. In silico tools were applied to understand the functional impact of these variants. Three variants namely LDLR (rs2228671), TNF (rs1041981), and SAA2 (rs2468844) are strongly associated with PCOS risk and have a functional impact on encoded protein. Certain variants of Se uptake genes such as DIO1, GPX2, TXNRD1, DIO2 and GPX3 are also significantly associated with the risk of PCOS development. "C" allele of the Se transporter gene SELENOP (rs9686343) significantly increases PCOS risk. Other potential genes require selenium for their biological actions and are involved in the inflammatory, antioxidant response, and energy homeostasis signaling pathways. Thus, genetic variants of the population may affect the Se availability in the body. Also, deficiency of Se effects may get modulated due to underlying genetic polymorphism of Se-associated genes. This information may be helpful in dosage adjustment of Se supplementation for a population in order to get maximum benefits.
Collapse
Affiliation(s)
- Priya Sharma
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
4
|
Vindry C, Guillin O, Wolff P, Marie P, Mortreux F, Mangeot P, Ohlmann T, Chavatte L. A homozygous mutation in the human selenocysteine tRNA gene impairs UGA recoding activity and selenoproteome regulation by selenium. Nucleic Acids Res 2023; 51:7580-7601. [PMID: 37254812 PMCID: PMC10415148 DOI: 10.1093/nar/gkad482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
The selenocysteine (Sec) tRNA (tRNA[Ser]Sec) governs Sec insertion into selenoproteins by the recoding of a UGA codon, typically used as a stop codon. A homozygous point mutation (C65G) in the human tRNA[Ser]Sec acceptor arm has been reported by two independent groups and was associated with symptoms such as thyroid dysfunction and low blood selenium levels; however, the extent of altered selenoprotein synthesis resulting from this mutation has yet to be comprehensively investigated. In this study, we used CRISPR/Cas9 technology to engineer homozygous and heterozygous mutant human cells, which we then compared with the parental cell lines. This C65G mutation affected many aspects of tRNA[Ser]Sec integrity and activity. Firstly, the expression level of tRNA[Ser]Sec was significantly reduced due to an altered recruitment of RNA polymerase III at the promoter. Secondly, selenoprotein expression was strongly altered, but, more surprisingly, it was no longer sensitive to selenium supplementation. Mass spectrometry analyses revealed a tRNA isoform with unmodified wobble nucleotide U34 in mutant cells that correlated with reduced UGA recoding activities. Overall, this study demonstrates the pleiotropic effect of a single C65G mutation on both tRNA phenotype and selenoproteome expression.
Collapse
Affiliation(s)
- Caroline Vindry
- CIRI, Centre International de Recherche en Infectiologie, 69007 Lyon, France
- INSERM U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France
| | - Olivia Guillin
- CIRI, Centre International de Recherche en Infectiologie, 69007 Lyon, France
- INSERM U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France
| | - Philippe Wolff
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Paul Marie
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule, 69007 Lyon, France
- CNRS/ENS/UCBL1 UMR5239, 69007 Lyon, France
- INSERM U1210, 69007 Lyon, France
| | - Franck Mortreux
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule, 69007 Lyon, France
- CNRS/ENS/UCBL1 UMR5239, 69007 Lyon, France
- INSERM U1210, 69007 Lyon, France
| | - Philippe E Mangeot
- CIRI, Centre International de Recherche en Infectiologie, 69007 Lyon, France
- INSERM U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, 69007 Lyon, France
- INSERM U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France
| | - Laurent Chavatte
- CIRI, Centre International de Recherche en Infectiologie, 69007 Lyon, France
- INSERM U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France
| |
Collapse
|
5
|
Gupta T, Malkin MG, Huang S. tRNA Function and Dysregulation in Cancer. Front Cell Dev Biol 2022; 10:886642. [PMID: 35721477 PMCID: PMC9198291 DOI: 10.3389/fcell.2022.886642] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Transfer RNA (tRNA) is a central component of protein synthesis and plays important roles in epigenetic regulation of gene expression in tumors. tRNAs are also involved in many cell processes including cell proliferation, cell signaling pathways and stress response, implicating a role in tumorigenesis and cancer progression. The complex role of tRNA in cell regulation implies that an understanding of tRNA function and dysregulation can be used to develop treatments for many cancers including breast cancer, colon cancer, and glioblastoma. Moreover, tRNA modifications including methylation are necessary for tRNA folding, stability, and function. In response to certain stress conditions, tRNAs can be cleaved in half to form tiRNAs, or even shorter tRNA fragments (tRF). tRNA structure and modifications, tiRNA induction of stress granule formation, and tRF regulation of gene expression through the repression of translation can all impact a cell’s fate. This review focuses on how these functions of tRNAs, tiRNA, and tRFs can lead to tumor development and progression. Further studies focusing on the specific pathways of tRNA regulation could help identify tRNA biomarkers and therapeutic targets, which might prevent and treat cancers.
Collapse
Affiliation(s)
- Tania Gupta
- Virginia Commonwealth University, Richmond, VA, United States
| | - Mark G. Malkin
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Suyun Huang
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Suyun Huang,
| |
Collapse
|
6
|
Watanabe LM, Navarro AM, Seale LA. Intersection between Obesity, Dietary Selenium, and Statin Therapy in Brazil. Nutrients 2021; 13:2027. [PMID: 34204631 PMCID: PMC8231251 DOI: 10.3390/nu13062027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023] Open
Abstract
Obesity is among the most alarming health concerns, impacting public health and causing a socioeconomic challenge, especially in developing countries like Brazil, where approximately one quart of the population presents obesity. As an established risk factor for numerous comorbidities with a multifactorial etiology, obesity is a consequence of energy-dense overfeeding, however with significant undernourishment, leading to excessive adipose tissue accumulation and dysfunction, dyslipidemia, and micronutrient deficiencies. About 60% of patients with obesity take statins, a cholesterol-lowering medication, to curb dyslipidemia, with ~10% of these patients presenting various myopathies as side effects. Statins act upon the rate-limiting enzyme of cholesterol biosynthesis in the liver, which is a pathway providing intermediates to the synthesis of selenoproteins, i.e., enzymes containing the micronutrient selenium. Statins have been postulated to negatively impact selenoprotein synthesis, particularly in conditions of selenium deficiency, and potentially implicated in the myopathies occurring as side effects of statins. The Brazilian population is prone to selenium deficiency, hence could be considered more susceptible to statin side effects. This review examines the specific consequences to the Brazilian population of the harmful intersection between obesity development and concomitant micronutrient deficiencies, particularly selenium, combined with statin treatment in the context of nutrition in Brazil.
Collapse
Affiliation(s)
- Ligia M. Watanabe
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo—FMRP/USP, Ribeirão Preto 14040-900, SP, Brazil; (L.M.W.); (A.M.N.)
| | - Anderson M. Navarro
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo—FMRP/USP, Ribeirão Preto 14040-900, SP, Brazil; (L.M.W.); (A.M.N.)
| | - Lucia A. Seale
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
7
|
Maass F, Michalke B, Willkommen D, Schulte C, Tönges L, Boerger M, Zerr I, Bähr M, Lingor P. Selenium speciation analysis in the cerebrospinal fluid of patients with Parkinson's disease. J Trace Elem Med Biol 2020; 57:126412. [PMID: 31582281 DOI: 10.1016/j.jtemb.2019.126412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The aim of the study was to investigate if speciation analysis by liquid chromatography coupled to mass spectrometry could be used to detect organic and inorganic binding forms of selenium in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD) and age-matched control subjects (AMC). METHODS PD patients and control subjects were enrolled from three different neurological departments. CSF samples were collected according to standardized biomarker protocols and subjected to inductively coupled plasma mass spectrometry (ICP-MS) for total selenium determination and ion exchange chromatography (IEC) hyphenated to ICP-MS for selenium speciation analysis. RESULTS 75 PD patients and 68 age-matched controls were enrolled for speciation analysis. 8 different species could be detected, but only selenoprotein P (SELENOP), human serum albumin-bound Se (Se-HSA), selenomethionine (Se-Met) and an unidentified Se-compound (U2) presented with more than 50% values above the limit of quantification, without showing significant differences between both groups (p > 0.05). The Se-HSA / Se-Met ratio yielded a significant difference between PD and AMC (p = 0.045). The inorganic species Se-IV and Se-VI were only detectable in a minor part of PD and AMC samples. A highly significant correlation between total selenium levels and SELENOP (PD p < 0.0001; AMC p < 0.0001) and Se-HSA (PD p < 0.0001; AMC p < 0.0001) could be demonstrated, respectively. CONCLUSIONS Speciation analysis yielded new insight into selenium homeostasis in PD but cannot be used to establish a diagnostic biomarker. The small number of detectable values for Se-IV and Se-VI suggests an inferior role of these potentially neurotoxic binding forms in PD pathology in contrast to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Fabian Maass
- Department of Neurology, University Medical Center, Göttingen, Germany.
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Desiree Willkommen
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Claudia Schulte
- German Center for Neurodegenerative Diseases, University of Tübingen, Germany; Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Lars Tönges
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany.
| | - Matthias Boerger
- Department of Neurology, University Medical Center, Göttingen, Germany.
| | - Inga Zerr
- Department of Neurology, University Medical Center, Göttingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Göttingen, Germany.
| | - Mathias Bähr
- Department of Neurology, University Medical Center, Göttingen, Germany.
| | - Paul Lingor
- Department of Neurology, University Medical Center, Göttingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, Göttingen, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Neurology, München, Germany.
| |
Collapse
|
8
|
Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants (Basel) 2018; 7:E66. [PMID: 29758013 PMCID: PMC5981252 DOI: 10.3390/antiox7050066] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Unlike other essential trace elements that interact with proteins in the form of cofactors, selenium (Se) becomes co-translationally incorporated into the polypeptide chain as part of 21st naturally occurring amino acid, selenocysteine (Sec), encoded by the UGA codon. Any protein that includes Sec in its polypeptide chain is defined as selenoprotein. Members of the selenoproteins family exert various functions and their synthesis depends on specific cofactors and on dietary Se. The Se intake in productive animals such as chickens affect nutrient utilization, production performances, antioxidative status and responses of the immune system. Although several functions of selenoproteins are unknown, many disorders are related to alterations in selenoprotein expression or activity. Selenium insufficiency and polymorphisms or mutations in selenoproteins' genes and synthesis cofactors are involved in the pathophysiology of many diseases, including cardiovascular disorders, immune dysfunctions, cancer, muscle and bone disorders, endocrine functions and neurological disorders. Finally, heavy metal poisoning decreases mRNA levels of selenoproteins and increases mRNA levels of inflammatory factors, underlying the antagonistic effect of Se. This review is an update on Se dependent antioxidant enzymes, presenting the current state of the art and is focusing on results obtained mainly in chicken.
Collapse
Affiliation(s)
- Evangelos Zoidis
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Isidoros Seremelis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Nikolaos Kontopoulos
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Georgios P Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| |
Collapse
|
9
|
Gharipour M, Sadeghi M, Behmanesh M, Salehi M, Nezafati P, Gharpour A. Selenium Homeostasis and Clustering of Cardiovascular Risk Factors: A Systematic Review. ACTA BIO-MEDICA : ATENEI PARMENSIS 2017; 88:263-270. [PMID: 29083329 PMCID: PMC6142834 DOI: 10.23750/abm.v88i3.5701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023]
Abstract
Selenium is a trace element required for a range of cellular functions. It is widely used for the biosynthesis of the unique amino acid selenocysteine [Sec], which is a structural element of selenoproteins. This systematic review focused on the possible relation between selenium and metabolic risk factors. The literature was searched via PubMed, Scopus, ISI Web of Science, and Google Scholar. Searches were not restricted by time or language. Relevant studies were selected in three phases. After an initial quality assessment, two reviewers extracted all the relevant data, whereas the third reviewer checked their extracted data. All evidence came from experimental and laboratory studies. Selenoprotein P is the best indicator for selenium nutritional levels. In addition, high levels of selenium may increase the risk of metabolic syndrome while the lack of sufficient selenium may also promote metabolic syndrome. selenium supplementation in subjects with sufficient serum selenium levels has a contrary effect on blood pressure, LDL, and total cholesterol. According to the bioavailability of different types of selenium supplementation such as selenomethionine, selenite and selenium-yeast, it seems that the best nutritional type of selenium is selenium-yeast. Regarding obtained results of longitudinal studies and randomized controlled trials, selenium supplementation should not be recommended for primary or secondary cardio-metabolic risk prevention in populations with adequate selenium status.
Collapse
|
10
|
Czauderna M, Białek M, Krajewska K, Ruszczyńska A, Bulska E. Selenium supplementation into diets containing carnosic acid, fish and rapeseed oils affects the chemical profile of whole blood in lambs. JOURNAL OF ANIMAL AND FEED SCIENCES 2017. [DOI: 10.22358/jafs/76594/2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
tRNA Modification Detection Using Graphene Nanopores: A Simulation Study. Biomolecules 2017; 7:biom7030065. [PMID: 32962315 PMCID: PMC5618246 DOI: 10.3390/biom7030065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
There are over 100 enzyme-catalyzed modifications on transfer RNA (tRNA) molecules. The levels and identity of wobble uridine (U) modifications are affected by environmental conditions and diseased states, making wobble U detection a potential biomarker for exposures and pathological conditions. The current detection of RNA modifications requires working with nucleosides in bulk samples. Nanopore detection technology uses a single-molecule approach that has the potential to detect tRNA modifications. To evaluate the feasibility of this approach, we have performed all-atom molecular dynamics (MD) simulation studies of a five-layered graphene nanopore by localizing canonical and modified uridine nucleosides. We found that in a 1 M KCl solution with applied positive and negative biases not exceeding 2 V, nanopores can distinguish U from 5-carbonylmethyluridine (cm5U), 5-methoxycarbonylmethyluridine (mcm5U), 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), and 5-methoxycarbonylmethyl-2′-O-methyluridine (mcm5Um) based on changes in the resistance of the nanopore. Specifically, we observed that in nanopores with dimensions less than 3 nm diameter, a localized mcm5Um and mcm5U modifications could be clearly distinguished from the canonical uridine, while the other modifications showed a modest yet detectable decrease in their respective nanopore conductance. We have compared the results between nanopores of various sizes to aid in the design, optimization, and fabrication of graphene nanopores devices for tRNA modification detection.
Collapse
|
12
|
Chen YF, Lin HC, Chuang KN, Lin CH, Yen HCS, Yeang CH. A quantitative model for the rate-limiting process of UGA alternative assignments to stop and selenocysteine codons. PLoS Comput Biol 2017; 13:e1005367. [PMID: 28178267 PMCID: PMC5323020 DOI: 10.1371/journal.pcbi.1005367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/23/2017] [Accepted: 01/18/2017] [Indexed: 12/20/2022] Open
Abstract
Ambiguity in genetic codes exists in cases where certain stop codons are alternatively used to encode non-canonical amino acids. In selenoprotein transcripts, the UGA codon may either represent a translation termination signal or a selenocysteine (Sec) codon. Translating UGA to Sec requires selenium and specialized Sec incorporation machinery such as the interaction between the SECIS element and SBP2 protein, but how these factors quantitatively affect alternative assignments of UGA has not been fully investigated. We developed a model simulating the UGA decoding process. Our model is based on the following assumptions: (1) charged Sec-specific tRNAs (Sec-tRNASec) and release factors compete for a UGA site, (2) Sec-tRNASec abundance is limited by the concentrations of selenium and Sec-specific tRNA (tRNASec) precursors, and (3) all synthesis reactions follow first-order kinetics. We demonstrated that this model captured two prominent characteristics observed from experimental data. First, UGA to Sec decoding increases with elevated selenium availability, but saturates under high selenium supply. Second, the efficiency of Sec incorporation is reduced with increasing selenoprotein synthesis. We measured the expressions of four selenoprotein constructs and estimated their model parameters. Their inferred Sec incorporation efficiencies did not correlate well with their SECIS-SBP2 binding affinities, suggesting the existence of additional factors determining the hierarchy of selenoprotein synthesis under selenium deficiency. This model provides a framework to systematically study the interplay of factors affecting the dual definitions of a genetic codon. The “code book” of protein translation maps 43 = 64 triplets of RNA sequences (codons) into 20 canonical amino acids and the stop signal. This code book is universal in almost all organisms on earth. Selenoproteins consist of selenium-containing amino acids–selenocysteines (Sec)–that are not among the 20 canonical amino acids. The cells “borrow” a stop codon UGA to translate selenocysteines. Since UGA maps to two possible outcomes, the translation machinery can synthesize both full-length selenoproteins (when UGA encodes selenocysteine) and truncated peptide chains (when UGA encodes translational termination). Despite extensive study about selenoprotein synthesis mechanisms, a quantitative model for how cells allocate resources to synthesize each species is yet to appear. We propose a quantitative model that can explain the dependency of experimental observables such as protein stability and Sec incorporation efficiency by various factors such as selenium concentration and mRNA levels. Saturation of those quantities implies the existence of limiting factors such as mRNA transcripts and Sec-specific tRNAs. The match between model simulations and experimental data suggests that the cellular decision making of synthesizing the two species of proteins may follow simple first-order kinetics.
Collapse
Affiliation(s)
- Yen-Fu Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Chuan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Kai-Neng Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Chih-Hsu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Chi S. Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- * E-mail: (HCSY); (CHY)
| | - Chen-Hsiang Yeang
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
- * E-mail: (HCSY); (CHY)
| |
Collapse
|
13
|
Gharipour M, Sadeghi M, Behmanesh M, Salehi M, Nezafati P, Gharipour A. Selenium Homeostasis and Clustering of Cardiovascular Risk Factors: A Systematic Review. ACTA BIO-MEDICA : ATENEI PARMENSIS 2017; 88. [PMID: 29083329 PMCID: PMC6142834 DOI: 10.23750/abm.v%vi%i.5701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Selenium is a trace element required for a range of cellular functions. It is widely used for the biosynthesis of the unique amino acid selenocysteine [Sec], which is a structural element of selenoproteins. This systematic review focused on the possible relation between selenium and metabolic risk factors. The literature was searched via PubMed, Scopus, ISI Web of Science, and Google Scholar. Searches were not restricted by time or language. Relevant studies were selected in three phases. After an initial quality assessment, two reviewers extracted all the relevant data, whereas the third reviewer checked their extracted data. All evidence came from experimental and laboratory studies. Selenoprotein P is the best indicator for selenium nutritional levels. In addition, high levels of selenium may increase the risk of metabolic syndrome while the lack of sufficient selenium may also promote metabolic syndrome. selenium supplementation in subjects with sufficient serum selenium levels has a contrary effect on blood pressure, LDL, and total cholesterol. According to the bioavailability of different types of selenium supplementation such as selenomethionine, selenite and selenium-yeast, it seems that the best nutritional type of selenium is selenium-yeast. Regarding obtained results of longitudinal studies and randomized controlled trials, selenium supplementation should not be recommended for primary or secondary cardio-metabolic risk prevention in populations with adequate selenium status.
Collapse
Affiliation(s)
- Mojgan Gharipour
- Cardiac Rehabilitation Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medicine Sciences, Isfahan, Iran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran,Correspondence: Dr. Masoumeh Sadeghi Associate Professor in Cardiology, Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran E-mail:
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansour Salehi
- Dept. of Genetics and Molecular Biology Medical School, Isfahan University of Medical Sciences
| | - Pouya Nezafati
- Department of Cardiac Surgery, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Gharipour
- School of Information and Communication Technology, Gold Coast Campus, Griffith University, QLD4222, Australia
| |
Collapse
|
14
|
Zupanic A, Meplan C, Huguenin GVB, Hesketh JE, Shanley DP. Modeling and gene knockdown to assess the contribution of nonsense-mediated decay, premature termination, and selenocysteine insertion to the selenoprotein hierarchy. RNA (NEW YORK, N.Y.) 2016; 22:1076-1084. [PMID: 27208313 PMCID: PMC4911915 DOI: 10.1261/rna.055749.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
The expression of selenoproteins, a specific group of proteins that incorporates selenocysteine, is hierarchically regulated by the availability of Se, with some, but not all selenoprotein mRNA transcripts decreasing in abundance with decreasing Se. Selenocysteine insertion into the peptide chain occurs during translation following recoding of an internal UGA stop codon. There is increasing evidence that this UGA recoding competes with premature translation termination, which is followed by nonsense-mediated decay (NMD) of the transcript. In this study, we tested the hypothesis that the susceptibility of different selenoprotein mRNAs to premature termination during translation and differential sensitivity of selenoprotein transcripts to NMD are major factors in the selenoprotein hierarchy. Selenoprotein transcript abundance was measured in Caco-2 cells using real-time PCR under different Se conditions and the data obtained fitted to mathematical models of selenoprotein translation. A calibrated model that included a combination of differential sensitivity of selenoprotein transcripts to NMD and different frequency of non-NMD related premature translation termination was able to fit all the measurements. The model predictions were tested using SiRNA to knock down expression of the crucial NMD factor UPF1 (up-frameshift protein 1) and selenoprotein mRNA expression. The calibrated model was able to predict the effect of UPF1 knockdown on gene expression for all tested selenoproteins, except SPS2 (selenophosphate synthetase), which itself is essential for selenoprotein synthesis. These results indicate an important role for NMD in the hierarchical regulation of selenoprotein mRNAs, with the exception of SPS2 whose expression is likely regulated by a different mechanism.
Collapse
Affiliation(s)
- Anze Zupanic
- Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle-upon-Tyne NE4 5PL, United Kingdom Eawag, Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Catherine Meplan
- Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle-upon-Tyne NE4 5PL, United Kingdom Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Grazielle V B Huguenin
- Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, CEP: 21941-902, Brazil
| | - John E Hesketh
- Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle-upon-Tyne NE4 5PL, United Kingdom Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Daryl P Shanley
- Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle-upon-Tyne NE4 5PL, United Kingdom Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| |
Collapse
|
15
|
Seyedali A, Berry MJ. Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency. RNA (NEW YORK, N.Y.) 2014; 20:1248-1256. [PMID: 24947499 PMCID: PMC4105750 DOI: 10.1261/rna.043463.113] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Selenoproteins contain the unique amino acid selenocysteine (Sec), which is encoded by the triplet UGA. Since UGA also serves as a stop codon, it has been postulated that selenoprotein mRNAs are targeted for degradation by the nonsense-mediated mRNA decay pathway (NMD). Several reports have observed a hierarchy of selenoprotein mRNA expression when selenium (Se) is limiting, whereby the abundance of certain transcripts decline while others do not. We sought to investigate the role of NMD in this hierarchical response that selenoprotein mRNAs exhibit to environmental Se status. Selenoprotein mRNAs were categorized as being predicted sensitive or resistant to NMD based on the requirements held by the current model. About half of the selenoprotein transcriptome was predicted to be sensitive to NMD and showed significant changes in mRNA abundance in response to cellular Se status. The other half that was predicted to be resistant to NMD did not respond to Se status. RNA immunoprecipitation with essential NMD factor UPF1 revealed that the mRNAs that were the most sensitive to Se status were also the most enriched on UPF1 during Se deficiency. Furthermore, depletion of SMG1, the kinase responsible for UPF1 phosphorylation and NMD activation, abrogated the decline in transcript abundance of Se-responsive transcripts. Lastly, mRNA decay rates of Se-responsive transcripts were altered upon the addition of Se to resemble the slower decay rates of nonresponsive transcripts. Taken together, these results present novel evidence in support of a crucial role for the NMD pathway in regulating selenoprotein mRNA levels when Se is limiting.
Collapse
Affiliation(s)
- Ali Seyedali
- Department of Cell and Molecular Biology, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
16
|
Reinke EN, Ekoue DN, Bera S, Mahmud N, Diamond AM. Translational regulation of GPx-1 and GPx-4 by the mTOR pathway. PLoS One 2014; 9:e93472. [PMID: 24691473 PMCID: PMC3972146 DOI: 10.1371/journal.pone.0093472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/05/2014] [Indexed: 02/02/2023] Open
Abstract
Glutathione peroxidase activity was previously determined to be elevated in lymphocytes obtained from patients treated with the Bcr-Abl kinase inhibitor imatinib mesylate. In order to expand upon this observation, the established chronic myelogenous leukemia cell lines KU812 and MEG-01 were treated with imatinib and the effect on several anti-oxidant proteins was determined. The levels of GPx-1 were significantly increased following treatment with imatinib. This increase was not due to altered steady-state mRNA levels, and appeared to be dependent on the expression of Bcr-Abl, as no increases were observed following imatinib treatment of cells that did not express the fusion protein. The nutrient-sensing signaling protein, mammalian target of rapamycin (mTOR), can be activated by Bcr-Abl and its activity regulates the translation of many different proteins. Treatment of those same cells used in the imatinib studies with rapamycin, an inhibitor of mTOR, resulted in elevated GPx-1 and GPx-4 protein levels independent of Bcr-Abl expression. These proteins all belong to the selenoprotein family of peptides that contain the UGA-encoded amino acid selenocysteine. Collectively, these data provide evidence of a novel means of regulating anti-oxidants of the selenoprotein family via the mTOR pathway.
Collapse
Affiliation(s)
- Emily N. Reinke
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dede N. Ekoue
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Soumen Bera
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nadim Mahmud
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Alan M. Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kaur M, Rob A, Caton-Williams J, Huang Z. Biochemistry of Nucleic Acids Functionalized with Sulfur, Selenium, and Tellurium: Roles of the Single-Atom Substitution. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1152.ch005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Manindar Kaur
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Abdur Rob
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | | | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
18
|
Martiniaková M, Boboňová I, Omelka R, Grosskopf B, Chovancová H, Španková J, Toman R. Simultaneous subchronic exposure to selenium and diazinon as possible risk factor for osteoporosis in adult male rats. Acta Vet Scand 2013; 55:81. [PMID: 24237628 PMCID: PMC3843554 DOI: 10.1186/1751-0147-55-81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/13/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Osteoporosis and its main health outcome, fragility fractures, are large and escalating health problems. Skeletal damage may be the critical result of low-level prolonged exposure to several xenobiotics in the general population, but the mechanisms of their adverse effects are not clearly understood. The current study was aimed to investigate the possible ability of simultaneous subchronic peroral administration of selenium (Se) and diazinon (DZN) to induce changes in bone of adult male rats.In our study, twenty 1-month-old male Wistar rats were randomly divided into two experimental groups. In the first group, young males were exposed to 5 mg Na2SeO3/L and 40 mg of DZN/L in drinking water, for 90 days. Ten 1-month-old males without Se and DZN intoxication served as a control group. At the end of the experiment, macroscopic and microscopic structures of the femurs were analysed using analytical scales, sliding instrument, and polarized light microscopy. RESULTS The body weight, femoral length and cortical bone thickness were significantly decreased in rats simultaneously exposed to Se and DZN (P < 0.05). These rats also displayed different microstructure in the middle part of the compact bone where vascular canals expanded into central area of substantia compacta. The canals occurred only near endosteal surfaces in rats from the control group. Additionally, a smaller number of primary and secondary osteons, as well as a few resorption lacunae were observed near endosteal surfaces in rats simultaneously administered to Se and DZN. The resorption lacunae as typical structures of bone resorption manifestation are connected with an early stage of osteoporosis. Histomorphometric analysis revealed that area, perimeter, maximum and minimum diameters of primary osteons' vascular canals were significantly increased (P < 0.05) in the Se-DZN-exposed rats. On the other hand, all measured variables of Haversian canals and secondary osteons were considerable reduced (P < 0.05) in these rats. CONCLUSIONS Simultaneous subchronic peroral exposure to Se and DZN induces changes in macroscopic and microscopic structures of the femurs in adult male rats, and also it can be considered as possible risk factor for osteoporosis. The current study contributes to the knowledge on damaging impact of several xenobiotics on the bone.
Collapse
|
19
|
Bernotiene R, Ivanoviene L, Sadauskiene I, Liekis A, Ivanov L. The effects of cadmium chloride and sodium selenite on protein synthesis in mouse liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:1261-1265. [PMID: 24211594 DOI: 10.1016/j.etap.2013.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 06/02/2023]
Abstract
The study aimed at evaluating the effects of cadmium and selenite ions on protein synthesis and metallothioneins content in mice liver after 2 h, 8 h, 24 h and 14 days of exposure. Our studies revealed that cadmium suppressed protein synthesis after 2 h and 24 h, but activated after 8h and 14 days. Also, the endogenous mRNA translation were reduced under any exposure to cadmium, meanwhile, metallothioneins content was decreased after 2 h, but then was progressively increasing up to 492% after 14 days. Meantime, selenite did not influence metallothioneins content, caused mild activation of protein synthesis, and slightly suppressed the endogenous mRNA translation. The combined treatments with cadmium and selenite favored toward resisting of protein synthesis to cadmium after 2 h and 24 h of intoxication. Besides, selenite also protected translation against cadmium in cell-free systems, but did not attenuate effects of cadmium on metallothioneins content.
Collapse
Affiliation(s)
- Rasa Bernotiene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50009 Kaunas, Lithuania.
| | | | | | | | | |
Collapse
|
20
|
Chen P, Wang RR, Ma XJ, Liu Q, Ni JZ. Different Forms of Selenoprotein M Differentially Affect Aβ Aggregation and ROS Generation. Int J Mol Sci 2013; 14:4385-99. [PMID: 23439548 PMCID: PMC3634452 DOI: 10.3390/ijms14034385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 11/24/2022] Open
Abstract
Selenoprotein M (SelM), one of the executants of selenium in vivo, is highly expressed in human brain and most probably involved in antioxidation, neuroprotection, and intracellular calcium regulation, which are the key factors for preventing the onset and progression of Alzheimer’s disease (AD). In this paper, human SelM was successfully overexpressed in human embryonic kidney cells HEK293T. Sodium selenite (Na2SeO3 0.5 μmol/L) increased the expression of full-length SelM and inhibited the expression of truncated SelM. The full-length SelM exhibited higher antioxidant activity than its selenocysteine-to-cysteine mutation form SelM’, whereas the truncated SelM had an adverse effect that increased the oxidative stress level of cells. When β-amyloid (Aβ42, an AD relevant peptide) was cotransfected with the empty expression vector, SelM, or SelM’ under the induction of 0.5 μmol/L Na2SeO3, the intracellular Aβ42 aggregation rates were detected to be 57.9% ± 5.5%, or 22.3% ± 2.6%, or 26.3% ± 2.1%, respectively, showing the inhibitory effects on Aβ aggregation by the full-length SelM and SelM’. Meanwhile, the intumescentia of mitochondria caused by Aβ42 transfection was significantly mitigated by the cotransfection of SelM or SelM’ with Aβ42 under the induction of 0.5 μmol/L Na2SeO3. On the contrary, cotransfection of SelM and Aβ42 without the induction of Na2SeO3 increased Aβ42 aggregation rate to 65.1% ± 3.2%, and it could not inhibit the Aβ-induced intumescent mitochondria. In conclusion, full-length SelM and SelM’ might prevent Aβ aggregation by resisting oxidative stress generated during the formation of Aβ oligomers in cells.
Collapse
Affiliation(s)
- Ping Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (P.C.); (X.-J.M.)
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruo-Ran Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China; E-Mail:
| | - Xiao-Jie Ma
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (P.C.); (X.-J.M.)
| | - Qiong Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (Q.L.); (J.-Z.N.); Tel.: +86-755-2653-5432 (Q.L.); Fax: +86-755-2653-4274 (Q.L.)
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (P.C.); (X.-J.M.)
- Authors to whom correspondence should be addressed; E-Mails: (Q.L.); (J.-Z.N.); Tel.: +86-755-2653-5432 (Q.L.); Fax: +86-755-2653-4274 (Q.L.)
| |
Collapse
|
21
|
Martiniaková M, Boboňová I, Omelka R, Grosskopf B, Stawarz R, Toman R. Structural changes in femoral bone tissue of rats after subchronic peroral exposure to selenium. Acta Vet Scand 2013; 55:8. [PMID: 23369508 PMCID: PMC3598879 DOI: 10.1186/1751-0147-55-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022] Open
Abstract
Background The role of selenium (Se) on bone microarchitecture is still poorly understood. The present study aims to investigate the macroscopic and microscopic structures of femoral bone tissue in adult male rats after subchronic peroral administration of Se. Methods Twenty one-month-old male Wistar rats were randomly divided into two experimental groups. In the first group (Se group) young males were exposed to 5 mg Na2SeO3/L in drinking water, for 90 days. Ten one-month-old males without Se administration served as a control group. At the end of the experiment, macroscopic and microscopic structures of the femurs were analysed using analytical scales, sliding instrument, and polarized light microscopy. Results The body weight, femoral length and cortical bone thickness were significantly decreased in Se group rats. These rats also displayed different microstructure in the middle part of the femur, both in medial and lateral views, where vascular canals expanded into the central area of the bone while, in control rats, these canals occurred only near the endosteal surfaces. Additionally, a smaller number of primary and secondary osteons was identified in Se group rats. Histomorphometric analyses revealed significant increases for area, perimeter, maximum and minimum diameters of primary osteons’ vascular canals but significant reductions for all measured variables of Haversian canals and secondary osteons. Conclusions Se negatively affected the macroscopic and microscopic structures of femoral bone tissue in adult male rats. The results contribute to the knowledge on damaging impact of Se on bone.
Collapse
|
22
|
Al-Othman AM, Al-Othman ZA, El-Desoky GE, Aboul-Soud MAM, Habila MA, Giesy JP. Daily intake of selenium and concentrations in blood of residents of Riyadh City, Saudi Arabia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2012; 34:417-431. [PMID: 22270491 DOI: 10.1007/s10653-011-9448-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/21/2011] [Indexed: 05/31/2023]
Abstract
Concentrations of selenium (Se) in food from local markets of Riyadh, Kingdom of Saudi Arabia (KSA) were measured and daily intake calculated based on information from a questionnaire of foods eaten by healthy Saudis. The daily intake of Se was then compared to concentrations of Se in blood serum. Primary sources of Se in the diet of Saudis were as follows: meat and meat products (31%), egg (20.4%), cereals and cereal products (16%), legumes (8.7%), fruits (6.8%), milk and dairy products (2.0%), beverages (2%), sweets (1.8%), pickles (0.2%), and oil (0.02%). Daily intake of Se, estimated to be 93 μg Se/person/day, was slightly greater than that calculated from the Food and Agriculture Organization (FAO) food balance sheet for KSA, which was approximately 90 μg Se/person/day. The daily intake of Se by Saudis in Riyadh was greater than that of Australians or Dutch but less that of Canadians and Americans. There was a statistically significant correlation (R = +0.38, P < 0.05) between daily intake of Se and concentrations of Se in blood serum of Saudis in Riyadh. The mean concentration of Se in serum was 1.0 × 10(2) ± 30.5 μg Se/l. Taken together, the results suggest that the average Se intake and Se serum concentrations are within the known limits and recommendations, making it unlikely that Saudis are on average at risk of deficiency or toxicity.
Collapse
Affiliation(s)
- Abdulaziz M Al-Othman
- Department of Community Health Sciences, College of Applied Medical Science, King Saud University, Riyadh 11433, Kingdom of Saudi Arabia
| | | | | | | | | | | |
Collapse
|
23
|
Selenoproteins in bladder cancer. Clin Chim Acta 2012; 413:847-54. [PMID: 22349600 DOI: 10.1016/j.cca.2012.01.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/19/2012] [Accepted: 01/31/2012] [Indexed: 12/13/2022]
Abstract
Selenoproteins with genetically encoded selenium (Se) are very important in response to oxidative stress, redox balance and regulation of various metabolic and developmental processes. Although increased circulating Se has been associated with 33% risk reduction of bladder cancer, there are little data on selenoprotein expression at the protein and genetic level from both human and animal studies. Data from the Mammalian Gene Collection (MGC) Project clearly showed that highest mRNA expression in human urinary epithelium for TRXR1 (thioredoxin reductase 1), GPX1 (glutathione peroxidase 1), SEP15 (15 kDa selenoprotein), SELT (selenoprotein T) and SEPW1 (selenoprotein W1). Although bladder tumor has been characterized by increased Se, GPX and TRXR activity, circulating Se and GPX was interestingly decreased in these cancer patients. As such, selenoprotein expression in urinary epithelium may be involved in bladder cancer (development, progression and recurrence) and may play a significant role in chemotherapeutic intervention. Despite these findings, the role of selenoproteins in bladder cancer has rarely been investigated and the significance of selenoproteins in normal and malignant uroepithelium remains poorly understood.
Collapse
|
24
|
Reszka E, Jablonska E, Gromadzinska J, Wasowicz W. Relevance of selenoprotein transcripts for selenium status in humans. GENES AND NUTRITION 2011; 7:127-37. [PMID: 21898179 PMCID: PMC3316749 DOI: 10.1007/s12263-011-0246-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022]
Abstract
The most commonly used methods for assessing the selenium (Se) status in humans involve analysis of Se concentration, selenoprotein activity, and concentration in the blood and its compartments. Recently, it has been suggested that the expression of selenoprotein mRNA in circulating blood leukocytes could differently reflect Se status, due to prioritization of specific selenoprotein synthesis in response to dietary Se supply. Whereas the Se levels required for optimization of selenoprotein P level and plasma glutathione peroxidise activity are well known, estimation of Se level that is required for maximal mRNA expression of selenoprotein in humans is the subject of current investigations. Studies on rats suggest that whole blood selenoprotein mRNA level can be used as the relevant molecular biomarker for assessing Se status, and suboptimal Se intake may be sufficient to achieve effective expression. Human studies, however, did not confirm this hypothesis. According to studies on rodents and humans discussed in this review, it appears that suboptimal Se intake may be sufficient to satisfy molecular requirements of Se and it is lower than current recommended dietary intake in humans. The use of selenoprotein transcripts as a molecular biomarker of Se status requires further studies on a large group of healthy individuals with different baseline Se, including data regarding genetic polymorphism of selenoproteins and data regarding potential modifiers of Se metabolism.
Collapse
Affiliation(s)
- Edyta Reszka
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy St., 91-348, Lodz, Poland
| | | | | | | |
Collapse
|
25
|
Leihne V, Kirpekar F, Vågbø CB, van den Born E, Krokan HE, Grini PE, Meza TJ, Falnes PØ. Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA. Nucleic Acids Res 2011; 39:7688-701. [PMID: 21653555 PMCID: PMC3177185 DOI: 10.1093/nar/gkr406] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Uridine at the wobble position of tRNA is usually modified, and modification is required for accurate and efficient protein translation. In eukaryotes, wobble uridines are modified into 5-methoxycarbonylmethyluridine (mcm5U), 5-carbamoylmethyluridine (ncm5U) or derivatives thereof. Here, we demonstrate, both by in vitro and in vivo studies, that the Arabidopsis thaliana methyltransferase AT1G31600, denoted by us AtTRM9, is responsible for the final step in mcm5U formation, thus representing a functional homologue of the Saccharomyces cerevisiae Trm9 protein. We also show that the enzymatic activity of AtTRM9 depends on either one of two closely related proteins, AtTRM112a and AtTRM112b. Moreover, we demonstrate that AT1G36310, denoted AtALKBH8, is required for hydroxylation of mcm5U to (S)-mchm5U in tRNAGlyUCC, and has a function similar to the mammalian dioxygenase ALKBH8. Interestingly, atalkbh8 mutant plants displayed strongly increased levels of mcm5U, and also of mcm5Um, its 2′-O-ribose methylated derivative. This suggests that accumulated mcm5U is prone to further ribose methylation by a non-specialized mechanism, and may challenge the notion that the existence of mcm5U- and mcm5Um-containing forms of the selenocysteine-specific tRNASec in mammals reflects an important regulatory process. The present study reveals a role in for several hitherto uncharacterized Arabidopsis proteins in the formation of modified wobble uridines.
Collapse
Affiliation(s)
- Vibeke Leihne
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol Cell Biol 2010; 30:1814-27. [PMID: 20123966 DOI: 10.1128/mcb.01602-09] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Uridines in the wobble position of tRNA are almost invariably modified. Modifications can increase the efficiency of codon reading, but they also prevent mistranslation by limiting wobbling. In mammals, several tRNAs have 5-methoxycarbonylmethyluridine (mcm5U) or derivatives thereof in the wobble position. Through analysis of tRNA from Alkbh8-/- mice, we show here that ALKBH8 is a tRNA methyltransferase required for the final step in the biogenesis of mcm5U. We also demonstrate that the interaction of ALKBH8 with a small accessory protein, TRM112, is required to form a functional tRNA methyltransferase. Furthermore, prior ALKBH8-mediated methylation is a prerequisite for the thiolation and 2'-O-ribose methylation that form 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) and 5-methoxycarbonylmethyl-2'-O-methyluridine (mcm5Um), respectively. Despite the complete loss of all of these uridine modifications, Alkbh8-/- mice appear normal. However, the selenocysteine-specific tRNA (tRNASec) is aberrantly modified in the Alkbh8-/- mice, and for the selenoprotein Gpx1, we indeed observed reduced recoding of the UGA stop codon to selenocysteine.
Collapse
|
27
|
Berry MJ, Howard MT. Reprogramming the Ribosome for Selenoprotein Expression: RNA Elements and Protein Factors. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-0-387-89382-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
|
28
|
Pappas A, Zoidis E, Surai P, Zervas G. Selenoproteins and maternal nutrition. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:361-72. [DOI: 10.1016/j.cbpb.2008.08.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/13/2008] [Accepted: 08/20/2008] [Indexed: 11/24/2022]
|
29
|
Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 2007; 9:775-806. [PMID: 17508906 DOI: 10.1089/ars.2007.1528] [Citation(s) in RCA: 867] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The requirement of the trace element selenium for life and its beneficial role in human health has been known for several decades. This is attributed to low molecular weight selenium compounds, as well as to its presence within at least 25 proteins, named selenoproteins, in the form of the amino acid selenocysteine (Sec). Incorporation of Sec into selenoproteins employs a unique mechanism that involves decoding of the UGA codon. This process requires multiple features such as the selenocysteine insertion sequence (SECIS) element and several protein factors including a specific elongation factor EFSec and the SECIS binding protein 2, SBP2. The function of most selenoproteins is currently unknown; however, thioredoxin reductases (TrxR), glutathione peroxidases (GPx) and thyroid hormone deiodinases (DIO) are well characterised selenoproteins involved in redox regulation of intracellular signalling, redox homeostasis and thyroid hormone metabolism. Recent evidence points to a role for selenium compounds as well as selenoproteins in the prevention of some forms of cancer. A number of clinical trials are either underway or being planned to examine the effects of selenium on cancer incidence. In this review we describe some of the recent progress in our understanding of the mechanism of selenoprotein synthesis, the role of selenoproteins in human health and disease and the therapeutic potential of some of these proteins.
Collapse
Affiliation(s)
- Laura Vanda Papp
- Queensland Institute of Medical Research, Cancer and Cell Biology Division, Herston, QLD, Australia
| | | | | | | |
Collapse
|
30
|
Baliga MS, Wang H, Zhuo P, Schwartz JL, Diamond AM. Selenium and GPx-1 overexpression protect mammalian cells against UV-induced DNA damage. Biol Trace Elem Res 2007; 115:227-42. [PMID: 17625244 DOI: 10.1007/bf02685998] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 08/02/2006] [Accepted: 08/11/2006] [Indexed: 10/22/2022]
Abstract
Supplementation of the culture media of human MCF-7 breast carcinoma cells or mouse fibroblasts with low levels of selenium (30 nM) provided as sodium selenite was shown to protect these cells from ultraviolet (UV)-induced chromosome damage, as quantified by micronucleus assay. Selenium supplementation was also effective in reducing UV-induced gene mutations as measured in the lacI shuttle vector model. Protection was dependent on functional BRCA1 activity, a protein implicated in breast cancer risk and DNA damage repair. In addition, overexpression of GPx-1, a selenoprotein with antioxidant activity, also attenuated UV induced micronuclei formation in the absence of selenium supplementation. Combining selenium supplementation with GPx-1 overexpression further reduced UV-induced micronucleus frequency. These data provide evidence that the benefits of selenium supplementation might be either through the prevention or repair of DNA damage, and they implicate at least one selenoprotein (GPx-1) in the process.
Collapse
Affiliation(s)
- Manjeshwar S Baliga
- Department of Human Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
31
|
Falnes PØ, Klungland A, Alseth I. Repair of methyl lesions in DNA and RNA by oxidative demethylation. Neuroscience 2006; 145:1222-32. [PMID: 17175108 DOI: 10.1016/j.neuroscience.2006.11.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 10/27/2006] [Accepted: 11/01/2006] [Indexed: 11/29/2022]
Abstract
It was established several decades ago that it is crucial for all organisms to repair their DNA to maintain genome integrity and numerous proteins are dedicated to this purpose. However, it is becoming increasingly clear that it is also important to prevent and repair lesions in the macromolecules encoded by the DNA, i.e. RNA and protein. Many neurological disorders such as Alzheimer's disease and Parkinson's disease are associated with the aggregation of defective, misfolded proteins, and several mechanisms exist to prevent such aggregation, both through direct protein repair and through the elimination and repair of faulty or damaged RNAs. A few years ago, it was discovered that the E. coli AlkB protein represented an iron and 2-oxoglutarate dependent oxygenase capable of repairing methyl lesions in DNA by a novel mechanism, termed oxidative demethylation. Furthermore, it was found that both human and bacterial AlkB proteins were able to demethylate lesions also in RNA, thus representing the first example of RNA repair. In the present review, recent findings on the AlkB mechanism, as well as on RNA damage in general, will be discussed.
Collapse
Affiliation(s)
- P Ø Falnes
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041 Blindern, N-0316 Oslo, Norway.
| | | | | |
Collapse
|
32
|
Hoffmann PR, Berry MJ. Selenoprotein synthesis: a unique translational mechanism used by a diverse family of proteins. Thyroid 2005; 15:769-75. [PMID: 16131320 DOI: 10.1089/thy.2005.15.769] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this review is to provide an overview of the unique mechanism by which mammalian selenoprotein synthesis occurs. Selenoprotein synthesis requires translational recoding of the UGA codon from a stop signal to a selenocysteine insertion signal (SECIS). Dedicated factors directly involved in this translation process include specific secondary structure in the mRNA (SECIS), a unique tRNA (Sec-tRNA(Sec)), an RNA binding protein (SBP2), and a specialized elongation factor (EFsec). Regulation of this process is discussed along with physiologic and clinical issues regarding selenoprotein synthesis, including the side effects associated with statin drugs.
Collapse
Affiliation(s)
- Peter R Hoffmann
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
| | | |
Collapse
|
33
|
Carlson BA, Xu XM, Gladyshev VN, Hatfield DL. Selective Rescue of Selenoprotein Expression in Mice Lacking a Highly Specialized Methyl Group in Selenocysteine tRNA. J Biol Chem 2005; 280:5542-8. [PMID: 15611090 DOI: 10.1074/jbc.m411725200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenocysteine (Sec) is the 21st amino acid in the genetic code. Its tRNA is variably methylated on the 2'-O-hydroxyl site of the ribosyl moiety at position 34 (Um34). Herein, we identified a role of Um34 in regulating the expression of some, but not all, selenoproteins. A strain of knock-out transgenic mice was generated, wherein the Sec tRNA gene was replaced with either wild type or mutant Sec tRNA transgenes. The mutant transgene yielded a tRNA that lacked two base modifications, N(6)-isopentenyladenosine at position 37 (i(6)A37) and Um34. Several selenoproteins, including glutathione peroxidases 1 and 3, SelR, and SelT, were not detected in mice rescued with the mutant transgene, whereas other selenoproteins, including thioredoxin reductases 1 and 3 and glutathione peroxidase 4, were expressed in normal or reduced levels. Northern blot analysis suggested that other selenoproteins (e.g. SelW) were also poorly expressed. This novel regulation of protein expression occurred at the level of translation and manifested a tissue-specific pattern. The available data suggest that the Um34 modification has greater influence than the i(6)A37 modification in regulating the expression of various mammalian selenoproteins and Um34 is required for synthesis of several members of this protein class. Many proteins that were poorly rescued appear to be involved in responses to stress, and their expression is also highly dependent on selenium in the diet. Furthermore, their mRNA levels are regulated by selenium and are subject to nonsense-mediated decay. Overall, this study described a novel mechanism of regulation of protein expression by tRNA modification that is in turn regulated by levels of the trace element, selenium.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Female
- Fertility
- Gene Expression Regulation
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Litter Size
- Male
- Methionine Sulfoxide Reductases
- Methylation
- Mice
- Proteins/analysis
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Selenium/analysis
- Selenium/metabolism
- Selenoprotein W
- Selenoproteins
- Spermatozoa/metabolism
Collapse
Affiliation(s)
- Bradley A Carlson
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Carlson BA, Xu XM, Gladyshev VN, Hatfield DL. Um34 in selenocysteine tRNA is required for the expression of stress-related selenoproteins in mammals. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106652] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|