1
|
Zhu T, Niu G, Zhang Y, Chen M, Li CY, Hao L, Zhang Z. Host-mediated RNA editing in viruses. Biol Direct 2023; 18:12. [PMID: 36978112 PMCID: PMC10043548 DOI: 10.1186/s13062-023-00366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses rely on hosts for life and reproduction, cause a variety of symptoms from common cold to AIDS to COVID-19 and provoke public health threats claiming millions of lives around the globe. RNA editing, as a crucial co-/post-transcriptional modification inducing nucleotide alterations on both endogenous and exogenous RNA sequences, exerts significant influences on virus replication, protein synthesis, infectivity and toxicity. Hitherto, a number of host-mediated RNA editing sites have been identified in diverse viruses, yet lacking a full picture of RNA editing-associated mechanisms and effects in different classes of viruses. Here we synthesize the current knowledge of host-mediated RNA editing in a variety of viruses by considering two enzyme families, viz., ADARs and APOBECs, thereby presenting a landscape of diverse editing mechanisms and effects between viruses and hosts. In the ongoing pandemic, our study promises to provide potentially valuable insights for better understanding host-mediated RNA editing on ever-reported and newly-emerging viruses.
Collapse
Affiliation(s)
- Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Lili Hao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zakh R, Churkin A, Totzeck F, Parr M, Tuller T, Etzion O, Dahari H, Roggendorf M, Frishman D, Barash D. A Mathematical Analysis of HDV Genotypes: From Molecules to Cells. MATHEMATICS (BASEL, SWITZERLAND) 2021; 9:2063. [PMID: 34540628 PMCID: PMC8445514 DOI: 10.3390/math9172063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatitis D virus (HDV) is classified according to eight genotypes. The various genotypes are included in the HDVdb database, where each HDV sequence is specified by its genotype. In this contribution, a mathematical analysis is performed on RNA sequences in HDVdb. The RNA folding predicted structures of the Genbank HDV genome sequences in HDVdb are classified according to their coarse-grain tree-graph representation. The analysis allows discarding in a simple and efficient way the vast majority of the sequences that exhibit a rod-like structure, which is important for the virus replication, to attempt to discover other biological functions by structure consideration. After the filtering, there remain only a small number of sequences that can be checked for their additional stem-loops besides the main one that is known to be responsible for virus replication. It is found that a few sequences contain an additional stem-loop that is responsible for RNA editing or other possible functions. These few sequences are grouped into two main classes, one that is well-known experimentally belonging to genotype 3 for patients from South America associated with RNA editing, and the other that is not known at present belonging to genotype 7 for patients from Cameroon. The possibility that another function besides virus replication reminiscent of the editing mechanism in HDV genotype 3 exists in HDV genotype 7 has not been explored before and is predicted by eigenvalue analysis. Finally, when comparing native and shuffled sequences, it is shown that HDV sequences belonging to all genotypes are accentuated in their mutational robustness and thermodynamic stability as compared to other viruses that were subjected to such an analysis.
Collapse
Affiliation(s)
- Rami Zakh
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel
| | - Alexander Churkin
- Department of Software Engineering, Sami Shamoon College of Engineering, Beer-Sheva 8410501, Israel
| | - Franziska Totzeck
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Marina Parr
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Ohad Etzion
- Soroka University Medical Center, Ben-Gurion University, Beer-Sheva 8410501, Israel
| | - Harel Dahari
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Michael Roggendorf
- Institute of Virology, Technische Universität München, 81675 Munich, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel
| |
Collapse
|
3
|
Dziri S, Rodriguez C, Gerber A, Brichler S, Alloui C, Roulot D, Dény P, Pawlotsky JM, Gordien E, Le Gal F. Variable In Vivo Hepatitis D Virus (HDV) RNA Editing Rates According to the HDV Genotype. Viruses 2021; 13:v13081572. [PMID: 34452437 PMCID: PMC8402866 DOI: 10.3390/v13081572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Human hepatitis delta virus (HDV) is a small defective RNA satellite virus that requires hepatitis B virus (HBV) envelope proteins to form its own virions. The HDV genome possesses a single coding open reading frame (ORF), located on a replicative intermediate, the antigenome, encoding the small (s) and the large (L) isoforms of the delta antigen (s-HDAg and L-HDAg). The latter is produced following an editing process, changing the amber/stop codon on the s-HDAg-ORF into a tryptophan codon, allowing L-HDAg synthesis by the addition of 19 (or 20) C-terminal amino acids. The two delta proteins play different roles in the viral cell cycle: s-HDAg activates genome replication, while L-HDAg blocks replication and favors virion morphogenesis and propagation. L-HDAg has also been involved in HDV pathogenicity. Understanding the kinetics of viral editing rates in vivo is key to unravel the biology of the virus and understand its spread and natural history. We developed and validated a new assay based on next-generation sequencing and aimed at quantifying HDV RNA editing in plasma. We analyzed plasma samples from 219 patients infected with different HDV genotypes and showed that HDV editing capacity strongly depends on the genotype of the strain.
Collapse
Affiliation(s)
- Samira Dziri
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
| | - Christophe Rodriguez
- Centre National de référence des Hépatites Virales B, C et Delta, Département de Virologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, 94000 Créteil, France; (C.R.); (J.M.P.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Athenaïs Gerber
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
| | - Ségolène Brichler
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Chakib Alloui
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Dominique Roulot
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
- Unité d’hépatologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Université Sorbonne-Paris-Cité, 93000 Bobigny, France
| | - Paul Dény
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-UMR CNRS 5286, 69001 Lyon, France
| | - Jean Michel Pawlotsky
- Centre National de référence des Hépatites Virales B, C et Delta, Département de Virologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, 94000 Créteil, France; (C.R.); (J.M.P.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Emmanuel Gordien
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Frédéric Le Gal
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
- Correspondence:
| |
Collapse
|
4
|
Endoh T, Sugimoto N. Conformational Dynamics of the RNA G-Quadruplex and its Effect on Translation Efficiency. Molecules 2019; 24:molecules24081613. [PMID: 31022854 PMCID: PMC6514569 DOI: 10.3390/molecules24081613] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022] Open
Abstract
During translation, intracellular mRNA folds co-transcriptionally and must refold following the passage of ribosome. The mRNAs can be entrapped in metastable structures during these folding events. In the present study, we evaluated the conformational dynamics of the kinetically favored, metastable, and hairpin-like structure, which disturbs the thermodynamically favored G-quadruplex structure, and its effect on co-transcriptional translation in prokaryotic cells. We found that nascent mRNA forms a metastable hairpin-like structure during co-transcriptional folding instead of the G-quadruplex structure. When the translation progressed co-transcriptionally before the metastable hairpin-like structure transition to the G-quadruplex, function of the G-quadruplex as a roadblock of the ribosome was sequestered. This suggested that kinetically formed RNA structures had a dominant effect on gene expression in prokaryotes. The results of this study indicate that it is critical to consider the conformational dynamics of RNA-folding to understand the contributions of the mRNA structures in controlling gene expression.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
5
|
Endoh T, Sugimoto N. Conformational Dynamics of mRNA in Gene Expression as New Pharmaceutical Target. CHEM REC 2017; 17:817-832. [DOI: 10.1002/tcr.201700016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
| |
Collapse
|
6
|
Hepatitis delta antigen requires a flexible quasi-double-stranded RNA structure to bind and condense hepatitis delta virus RNA in a ribonucleoprotein complex. J Virol 2014; 88:7402-11. [PMID: 24741096 DOI: 10.1128/jvi.00443-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The circular genome and antigenome RNAs of hepatitis delta virus (HDV) form characteristic unbranched, quasi-double-stranded RNA secondary structures in which short double-stranded helical segments are interspersed with internal loops and bulges. The ribonucleoprotein complexes (RNPs) formed by these RNAs with the virus-encoded protein hepatitis delta antigen (HDAg) perform essential roles in the viral life cycle, including viral replication and virion formation. Little is understood about the formation and structure of these complexes and how they function in these key processes. Here, the specific RNA features required for HDAg binding and the topology of the complexes formed were investigated. Selective 2'OH acylation analyzed by primer extension (SHAPE) applied to free and HDAg-bound HDV RNAs indicated that the characteristic secondary structure of the RNA is preserved when bound to HDAg. Notably, the analysis indicated that predicted unpaired positions in the RNA remained dynamic in the RNP. Analysis of the in vitro binding activity of RNAs in which internal loops and bulges were mutated and of synthetically designed RNAs demonstrated that the distinctive secondary structure, not the primary RNA sequence, is the major determinant of HDAg RNA binding specificity. Atomic force microscopy analysis of RNPs formed in vitro revealed complexes in which the HDV RNA is substantially condensed by bending or wrapping. Our results support a model in which the internal loops and bulges in HDV RNA contribute flexibility to the quasi-double-stranded structure that allows RNA bending and condensing by HDAg. IMPORTANCE RNA-protein complexes (RNPs) formed by the hepatitis delta virus RNAs and protein, HDAg, perform critical roles in virus replication. Neither the structures of these RNPs nor the RNA features required to form them have been characterized. HDV RNA is unusual in that it forms an unbranched quasi-double-stranded structure in which short base-paired segments are interspersed with internal loops and bulges. We analyzed the role of the HDV RNA sequence and secondary structure in the formation of a minimal RNP and visualized the structure of this RNP using atomic force microscopy. Our results indicate that HDAg does not recognize the primary sequence of the RNA; rather, the principle contribution of unpaired bases in HDV RNA to HDAg binding is to allow flexibility in the unbranched quasi-double-stranded RNA structure. Visualization of RNPs by atomic force microscopy indicated that the RNA is significantly bent or condensed in the complex.
Collapse
|
7
|
Dela-Moss LI, Moss WN, Turner DH. Identification of conserved RNA secondary structures at influenza B and C splice sites reveals similarities and differences between influenza A, B, and C. BMC Res Notes 2014; 7:22. [PMID: 24405943 PMCID: PMC3895672 DOI: 10.1186/1756-0500-7-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/02/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Influenza B and C are single-stranded RNA viruses that cause yearly epidemics and infections. Knowledge of RNA secondary structure generated by influenza B and C will be helpful in further understanding the role of RNA structure in the progression of influenza infection. FINDINGS All available protein-coding sequences for influenza B and C were analyzed for regions with high potential for functional RNA secondary structure. On the basis of conserved RNA secondary structure with predicted high thermodynamic stability, putative structures were identified that contain splice sites in segment 8 of influenza B and segments 6 and 7 of influenza C. The sequence in segment 6 also contains three unused AUG start codon sites that are sequestered within a hairpin structure. CONCLUSIONS When added to previous studies on influenza A, the results suggest that influenza splicing may share common structural strategies for regulation of splicing. In particular, influenza 3' splice sites are predicted to form secondary structures that can switch conformation to regulate splicing. Thus, these RNA structures present attractive targets for therapeutics aimed at targeting one or the other conformation.
Collapse
Affiliation(s)
- Lumbini I Dela-Moss
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York 14627-0216, USA
| | - Walter N Moss
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York 14627-0216, USA
| | - Douglas H Turner
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York 14627-0216, USA
| |
Collapse
|
8
|
Kasprzak WK, Shapiro BA. MPGAfold in dengue secondary structure prediction. Methods Mol Biol 2014; 1138:199-224. [PMID: 24696339 PMCID: PMC6354254 DOI: 10.1007/978-1-4939-0348-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
This chapter presents the computational prediction of the secondary structures within the 5' and 3' untranslated regions of the dengue virus serotype 2 (DENV2), with the focus on the conformational prediction of the two dumbbell-like structures, 5' DB and 3' DB, found in the core region of the 3' untranslated region of DENV2. For secondary structure prediction purposes we used a 719 nt-long subgenomic RNA construct from DENV2, which we refer to as the minigenome. The construct combines the 5'-most 226 nt from the 5' UTR and a fragment of the capsid coding region with the last 42 nt from the non-structural protein NS5 coding region and the 451 nt of the 3' UTR. This minigenome has been shown to contain the elements needed for translation, as well as negative strand RNA synthesis. We present the Massively Parallel Genetic Algorithm MPGAfold, a non-deterministic algorithm, that was used to predict the secondary structures of the DENV2 719 nt long minigenome construct, as well as our computational workbench called StructureLab that was used to interactively explore the solution spaces produced by MPGAfold. The MPGAfold algorithm is first introduced at the conceptual level. Then specific parameters guiding its performance are discussed and illustrated with a representative selection of the results from the study. Plots of the solution spaces generated by MPGAfold illustrate the algorithm, while selected secondary structures focus on variable formation of the dumbbell structures and other identified structural motifs. They also serve as illustrations of some of the capabilities of the StructureLab workbench. Results of the computational structure determination calculations are discussed and compared to the experimental data.
Collapse
|
9
|
Abstract
Hepatitis delta virus (HDV) uses ADAR1 editing of the viral antigenome RNA to switch from viral RNA replication to packaging. At early times in the replication cycle, the virus produces the protein HDAg-S, which is required for RNA synthesis; at later times, as result of editing at the amber/W site, the virus produces HDAg-L, which is required for packaging, but inhibits further RNA synthesis as levels increase. Control of editing during the replication cycle is essential for the virus and is multifaceted. Both the rate at which amber/W site editing occurs and the ultimate amount of editing are restricted; moreover, despite the nearly double stranded character of the viral RNA, efficient editing is restricted to the amber/W site. The mechanisms used by the virus for controlling editing operate at several levels, and range from molecular interactions to procedural. They include the placement of editing in the HDV replication cycle, RNA structural dynamics, and interactions of both ADAR1 and HDAg with specific structural features of the RNA. That HDV genotypes 1 and 3 use different RNA structural features for editing and control the process in ways related to these features underscores the critical roles of editing and its control in HDV replication. This review will cover the mechanisms of editing at the amber/W site and the means by which the virus controls it in these two genotypes.
Collapse
Affiliation(s)
- John L Casey
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
10
|
Manzano M, Reichert ED, Polo S, Falgout B, Kasprzak W, Shapiro BA, Padmanabhan R. Identification of cis-acting elements in the 3'-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J Biol Chem 2011; 286:22521-34. [PMID: 21515677 PMCID: PMC3121397 DOI: 10.1074/jbc.m111.234302] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/21/2011] [Indexed: 12/30/2022] Open
Abstract
Using the massively parallel genetic algorithm for RNA folding, we show that the core region of the 3'-untranslated region of the dengue virus (DENV) RNA can form two dumbbell structures (5'- and 3'-DBs) of unequal frequencies of occurrence. These structures have the propensity to form two potential pseudoknots between identical five-nucleotide terminal loops 1 and 2 (TL1 and TL2) and their complementary pseudoknot motifs, PK2 and PK1. Mutagenesis using a DENV2 replicon RNA encoding the Renilla luciferase reporter indicated that all four motifs and the conserved sequence 2 (CS2) element within the 3'-DB are important for replication. However, for translation, mutation of TL1 alone does not have any effect; TL2 mutation has only a modest effect in translation, but translation is reduced by ∼60% in the TL1/TL2 double mutant, indicating that TL1 exhibits a cooperative synergy with TL2 in translation. Despite the variable contributions of individual TL and PK motifs in translation, WT levels are achieved when the complementarity between TL1/PK2 and TL2/PK1 is maintained even under conditions of inhibition of the translation initiation factor 4E function mediated by LY294002 via a noncanonical pathway. Taken together, our results indicate that the cis-acting RNA elements in the core region of DENV2 RNA that include two DB structures are required not only for RNA replication but also for optimal translation.
Collapse
Affiliation(s)
- Mark Manzano
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Erin D. Reichert
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Stephanie Polo
- the Center for Biologics Evaluation and Review, Food and Drug Administration, Bethesda, Maryland 20892
| | - Barry Falgout
- the Center for Biologics Evaluation and Review, Food and Drug Administration, Bethesda, Maryland 20892
| | | | - Bruce A. Shapiro
- the Center for Cancer Research Nanobiology Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Radhakrishnan Padmanabhan
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| |
Collapse
|
11
|
Laing C, Schlick T. Computational approaches to 3D modeling of RNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:283101. [PMID: 21399271 PMCID: PMC6286080 DOI: 10.1088/0953-8984/22/28/283101] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many exciting discoveries have recently revealed the versatility of RNA and its importance in a variety of functions within the cell. Since the structural features of RNA are of major importance to their biological function, there is much interest in predicting RNA structure, either in free form or in interaction with various ligands, including proteins, metabolites and other molecules. In recent years, an increasing number of researchers have developed novel RNA algorithms for predicting RNA secondary and tertiary structures. In this review, we describe current experimental and computational advances and discuss recent ideas that are transforming the traditional view of RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we provide a comparative study in order to test the performance of available 3D structure prediction algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; most predictions have very large root mean square deviations from the experimental structure. We conclude by outlining some suggestions for future RNA folding research.
Collapse
Affiliation(s)
- Christian Laing
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | | |
Collapse
|
12
|
Chen R, Linnstaedt SD, Casey JL. RNA editing and its control in hepatitis delta virus replication. Viruses 2010; 2:131-146. [PMID: 21994604 PMCID: PMC3185552 DOI: 10.3390/v2010131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 12/31/2009] [Accepted: 01/05/2009] [Indexed: 12/12/2022] Open
Abstract
The hepatitis delta virus genome is a small circular RNA, similar to viroids. Although HDV contains a gene, the protein produced (HDAg) is encoded by less than half the genome and possesses no RNA polymerase activity. Because of this limited coding capacity, HDV relies heavily on host functions and on structural features of the viral RNA—very much like viroids. The virus’ use of host RNA editing activity to produce two functionally distinct forms of HDAg is a particularly good example of this reliance. This review covers the mechanisms and control of RNA editing in the HDV replication cycle.
Collapse
Affiliation(s)
| | | | - John L. Casey
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-202-687-1052; Fax: +1-202-687-1800
| |
Collapse
|
13
|
Shiao YH, Lupascu ST, Gu YD, Kasprzak W, Hwang CJ, Fields JR, Leighty RM, Quiñones O, Shapiro BA, Alvord WG, Anderson LM. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells. PLoS One 2009; 4:e7505. [PMID: 19838300 PMCID: PMC2759515 DOI: 10.1371/journal.pone.0007505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 09/30/2009] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Ribosomal RNA (rRNA) is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA) upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. METHODOLOGY/PRINCIPAL FINDINGS Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1) and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014). During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs) in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C) in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014). Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. CONCLUSIONS/SIGNIFICANCE The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.
Collapse
Affiliation(s)
- Yih-Horng Shiao
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Simon AE, Gehrke L. RNA conformational changes in the life cycles of RNA viruses, viroids, and virus-associated RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:571-83. [PMID: 19501200 PMCID: PMC2784224 DOI: 10.1016/j.bbagrm.2009.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/13/2022]
Abstract
The rugged nature of the RNA structural free energy landscape allows cellular RNAs to respond to environmental conditions or fluctuating levels of effector molecules by undergoing dynamic conformational changes that switch on or off activities such as catalysis, transcription or translation. Infectious RNAs must also temporally control incompatible activities and rapidly complete their life cycle before being targeted by cellular defenses. Viral genomic RNAs must switch between translation and replication, and untranslated subviral RNAs must control other activities such as RNA editing or self-cleavage. Unlike well characterized riboswitches in cellular RNAs, the control of infectious RNA activities by altering the configuration of functional RNA domains has only recently been recognized. In this review, we will present some of these molecular rearrangements found in RNA viruses, viroids and virus-associated RNAs, relating how these dynamic regions were discovered, the activities that might be regulated, and what factors or conditions might cause a switch between conformations.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA.
| | | |
Collapse
|
15
|
Linnstaedt SD, Kasprzak WK, Shapiro BA, Casey JL. The fraction of RNA that folds into the correct branched secondary structure determines hepatitis delta virus type 3 RNA editing levels. RNA (NEW YORK, N.Y.) 2009; 15:1177-1187. [PMID: 19383766 PMCID: PMC2685515 DOI: 10.1261/rna.1504009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/20/2009] [Indexed: 05/27/2023]
Abstract
RNA editing by the host RNA adenosine deaminase ADAR1 at the amber/W site of hepatitis delta virus RNA plays a central role in the viral replication cycle by affecting the balance between viral RNA synthesis and packaging. Previously, we found that HDV genotype III (HDV-3) RNA can form two secondary structures following transcription: an unbranched rod structure, which is characteristic of HDV, and a metastable branched structure that serves as the substrate for editing. The unstable nature of the branched editing substrate structure raised the possibility that structural dynamics of the RNA following transcription could determine the rate at which editing occurs. Here, editing and its control are examined in two HDV-3 isolates, from Peru and Ecuador. Analysis of editing in vitro by ADAR1 indicated that the branched structure formed by RNA derived from the Peruvian isolate is edited more efficiently than that from the Ecuadorian isolate. In contrast, in the context of replication, Peruvian RNA is edited less efficiently than RNA containing Ecuadorian sequences. Computational analyses of RNA folding using the massively parallel genetic algorithm (MPGAfold) indicated that the Peruvian RNA is less likely to form the branched structure required for editing than the Ecuadorian isolate. This difference was confirmed by in vitro transcription of these RNAs. Overall, our data indicate that HDV-3 controls RNA editing levels via (1) the fraction of the RNA that folds, during transcription, into the metastable branched structure required for editing and (2) the efficiency with which ADAR1 edits this branched substrate RNA.
Collapse
Affiliation(s)
- Sarah D Linnstaedt
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
16
|
RNA secondary structures located in the interchromosomal region of human ACAT1 chimeric mRNA are required to produce the 56-kDa isoform. Cell Res 2009; 18:921-36. [PMID: 18542101 DOI: 10.1038/cr.2008.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have previously reported that the human ACAT1 gene produces a chimeric mRNA through the interchromosomal processing of two discontinuous RNAs transcribed from chromosomes 1 and 7. The chimeric mRNA uses AUG(1397-1399) and GGC(1274-1276) as translation initiation codons to produce normal 50-kDa ACAT1 and a novel enzymatically active 56-kDa isoform, respectively, with the latter being authentically present in human cells, including human monocyte-derived macrophages. In this work, we report that RNA secondary structures located in the vicinity of the GGC(1274-1276) codon are required for production of the 56-kDa isoform. The effects of the three predicted stem-loops (nt 1255-1268, 1286-1342 and 1355-1384) were tested individually by transfecting expression plasmids into cells that contained the wild-type, deleted or mutant stem-loop sequences linked to a partial ACAT1 AUG open reading frame (ORF) or to the ORFs of other genes. The expression patterns were monitored by western blot analyses. We found that the upstream stem-loop(1255-1268) from chromosome 7 and downstream stem-loop(1286-1342) from chromosome 1 were needed for production of the 56-kDa isoform, whereas the last stem-loop(1355-1384) from Chromosome 1 was dispensable. The results of experiments using both monocistronic and bicistronic vectors with a stable hairpin showed that translation initiation from the GGC(1274-1276) codon was mediated by an internal ribosome entry site (IRES). Further experiments revealed that translation initiation from the GGC(1274-1276) codon requires the upstream AU-constituted RNA secondary structure and the downstream GC-rich structure. This mechanistic work provides further support for the biological significance of the chimeric nature of the human ACAT1 transcript.
Collapse
|
17
|
Cao J, Wu X, Jin Y. Lower GC-content in editing exons: implications for regulation by molecular characteristics maintained by selection. Gene 2008; 421:14-9. [PMID: 18632225 DOI: 10.1016/j.gene.2008.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 03/01/2008] [Accepted: 05/21/2008] [Indexed: 01/26/2023]
Abstract
We unexpectedly discover that there are much lower GC3 and GC-content and higher Gibbs free energy on editing exons than other exons in the Drosophila synaptotagmin I transcripts, which was further, confirmed statistically by others 47 experimentally-validated samples. Sequence alignment, Ks and Ka/Ks assays suggest that rapidly ascending purifying selection occur in editing exons which constrains nucleotide divergency. The presence of specific molecular characteristics such as lower GC-content in editing exons imply an unexpected requirement and are likely to direct RNA editing occurrence. Thus, relations between molecular characteristics of DNA, RNA editing and purifying selection might be present.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, PR China
| | | | | |
Collapse
|
18
|
Martinez HM, Maizel JV, Shapiro BA. RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Struct Dyn 2008; 25:669-83. [PMID: 18399701 PMCID: PMC3727907 DOI: 10.1080/07391102.2008.10531240] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented.
Collapse
Affiliation(s)
- Hugo M. Martinez
- Center for Cancer Research, Nanobiology Program, National Cancer Institute, Building 469, Room 150, Frederick, MD 21702, USA
| | - Jacob V. Maizel
- Center for Cancer Research, Nanobiology Program, National Cancer Institute, Building 469, Room 150, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research, Nanobiology Program, National Cancer Institute, Building 469, Room 150, Frederick, MD 21702, USA
| |
Collapse
|
19
|
Koehler-Hansner K, Flore O, Opalka B, Hengge UR. Interaction of Adenovirus E1A with the HHV8 Promoter of Latent Genes: E1A Proteins are Able to Activate the HHV-8 LANAp in MV3 Reporter Cells. Open Virol J 2008; 2:61-8. [PMID: 19440465 PMCID: PMC2678816 DOI: 10.2174/1874357900802010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 06/05/2008] [Accepted: 06/10/2008] [Indexed: 11/22/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) is associated with Kaposi's sarcoma, body cavity-based lymphoma, and Castleman's disease. Adenoviral (Ad) E1A proteins regulate the activity of cellular and viral promoters/enhancers and transcription factors and can suppress tumorigenicity of human cancers. As (i) HHV-8 and Ad may co-exist in immunocompromised patients and (ii) E1A might be considered as therapeutic transgene for HHV-8-associated neoplasms we investigated whether the promoter of the latency-associated nuclear antigen (LANAp) controlling expression of vCyclin, vFLIP, and LANA proteins required for latent type infection is regulated by E1A. Transfection experiments in MV3 melanoma cells revealed activation of the LANAp by Ad5 E1A constructs containing an intact N terminus (aa 1-119). In particular, an Ad12 E1A mutant, Spm2, lacking six consecutive alanine residues in the "spacer" region activated the HHV-8 promoter about 15-fold compared to vector controls. In summary, we report the activation of the LANAp by E1A as a novel interaction of E1A with a viral promoter. These data may have relevance for the management of viral infections in immunocompromised patients. A role for E1A as a therapeutic in this context remains to be defined.
Collapse
Affiliation(s)
- Karin Koehler-Hansner
- Department of Internal Medicine (Cancer Research), University of Duisburg-Essen Medical School, Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | |
Collapse
|
20
|
Shapiro BA, Bindewald E, Kasprzak W, Yingling Y. Protocols for the in silico design of RNA nanostructures. Methods Mol Biol 2008; 474:93-115. [PMID: 19031063 DOI: 10.1007/978-1-59745-480-3_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent developments in the field of nanobiology have significantly expanded the possibilities for new modalities in the treatment of many diseases, including cancer. Ribonucleic acid (RNA) represents a relatively new molecular material for the development of these biologically oriented nanodevices. In addition, RNA nanobiology presents a relatively new approach for the development of RNA-based nanoparticles that can be used as crystallization substrates and scaffolds for RNA-based nanoarrays. Presented in this chapter are some methodological shaped-based protocols for the design of such RNA nanostructures. Included are descriptions and background materials describing protocols that use a database of three-dimensional RNA structure motifs; designed RNA secondary structure motifs; and a combination of the two approaches. An example is also given illustrating one of the protocols.
Collapse
Affiliation(s)
- Bruce A Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD, USA
| | | | | | | |
Collapse
|
21
|
Gandy SZ, Linnstaedt SD, Muralidhar S, Cashman KA, Rosenthal LJ, Casey JL. RNA editing of the human herpesvirus 8 kaposin transcript eliminates its transforming activity and is induced during lytic replication. J Virol 2007; 81:13544-51. [PMID: 17913828 PMCID: PMC2168827 DOI: 10.1128/jvi.01521-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human herpesvirus 8 is the etiologic agent associated with Kaposi's sarcoma and primary effusion lymphoma (PEL). The K12 RNA, which produces as many as three variants of the kaposin protein, as well as a microRNA, is the most abundant transcript expressed in latent Kaposi's sarcoma-associated herpesvirus infection, and yet it is also induced during lytic replication. The portion of the transcript that includes the microRNA and the kaposin A sequence has been shown to have tumorigenic potential. Genome coordinate 117990, which is within this transcript, has been found to be heterogeneous, primarily in RNAs but also among viral DNA sequences. This sequence heterogeneity affects an amino acid in kaposins A and C and the microRNA. The functional effects of this sequence heterogeneity have not been studied, and its origin has not been definitively settled; both RNA editing and heterogeneity at the level of the viral genome have been proposed. Here, we show that transcripts containing A at position 117990 are tumorigenic, while those with G at this position are not. Using a highly sensitive quantitative assay, we observed that, in PEL cells under conditions where more than 60% of cDNAs derived from K12 RNA transcripts have G at coordinate 117990, there is no detectable G in the viral DNA sequence at this position, only A. This result is consistent with RNA editing by one of the host RNA adenosine deaminases (ADARs). Indeed, we observed that purified human ADAR1 efficiently edits K12 RNA in vitro. Remarkably, the amount of editing correlated with the replicative state of the virus; editing levels were nearly 10-fold higher in cells treated to induce lytic viral replication. These results suggest that RNA editing controls the function of one segment of the kaposin transcript, such that it has transforming activity during latent replication and possibly another, as-yet-undetermined, function during lytic replication.
Collapse
Affiliation(s)
- Sharon Z Gandy
- Department of Microbiology and Immunology, Georgetown University Medical Center, 3900 Reservoir Rd., NW, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
22
|
Shapiro BA, Yingling YG, Kasprzak W, Bindewald E. Bridging the gap in RNA structure prediction. Curr Opin Struct Biol 2007; 17:157-65. [PMID: 17383172 DOI: 10.1016/j.sbi.2007.03.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/11/2007] [Accepted: 03/12/2007] [Indexed: 11/24/2022]
Abstract
The field of RNA structure prediction has experienced significant advances in the past several years, thanks to the availability of new experimental data and improved computational methodologies. These methods determine RNA secondary structures and pseudoknots from sequence alignments, thermodynamics-based dynamic programming algorithms, genetic algorithms and combined approaches. Computational RNA three-dimensional modeling uses this information in conjunction with manual manipulation, constraint satisfaction methods, molecular mechanics and molecular dynamics. The ultimate goal of automatically producing RNA three-dimensional models from given secondary and tertiary structure data, however, is still not fully realized. Recent developments in the computational prediction of RNA structure have helped bridge the gap between RNA secondary structure prediction, including pseudoknots, and three-dimensional modeling of RNA.
Collapse
Affiliation(s)
- Bruce A Shapiro
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|