1
|
Lecot-Connan T, Boumerdassi Y, Magnin F, Binart N, Kamenický P, Sonigo C, Beau I. Anti-Müllerian hormone induces autophagy to preserve the primordial follicle pool in mice. FASEB J 2024; 38:e23506. [PMID: 38411466 DOI: 10.1096/fj.202302141r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
The reserve pool of primordial follicles (PMFs) is finely regulated by molecules implicated in follicular growth or PMF survival. Anti-Müllerian hormone (AMH), produced by granulosa cells of growing follicles, is known for its inhibitory role in the initiation of PMF growth. We observed in a recent in vivo study that injection of AMH into mice seemed to induce an activation of autophagy. Furthermore, injection of AMH into mice activates the transcription factor FOXO3A which is also known for its implication in autophagy regulation. Many studies highlighted the key role of autophagy in the ovary at different stages of folliculogenesis, particularly in PMF survival. Through an in vitro approach with organotypic cultures of prepubertal mouse ovaries, treated or not with AMH, we aimed to understand the link among AMH, autophagy, and FOXO3A transcription factor. Autophagy and FOXO3A phosphorylation were analyzed by western blot. The expression of genes involved in autophagy was quantified by RT-qPCR. In our in vitro model, we confirmed the decrease in FOXO3A phosphorylation and the induction of autophagy in ovaries incubated with AMH. AMH also induces the expression of genes involved in autophagy. Interestingly, most of these genes are known to be FOXO3A target genes. In conclusion, we have identified a new role for AMH, namely the induction of autophagy, probably through FOXO3A activation. Thus, AMH protects the ovarian reserve not only by inhibiting the growth of PMFs but also by enabling their survival through activation of autophagy.
Collapse
Affiliation(s)
- Tatiana Lecot-Connan
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Yasmine Boumerdassi
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Françoise Magnin
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Nadine Binart
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
- AP-HP, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre, France
| | - Charlotte Sonigo
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
- AP-HP, Hôpital Antoine Béclère, Service de Médecine de la reproduction et Préservation de la Fertilité, Clamart, France
| | - Isabelle Beau
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
L-Carnitine Supports the In Vitro Growth of Buffalo Oocytes. Animals (Basel) 2022; 12:ani12151957. [PMID: 35953946 PMCID: PMC9367359 DOI: 10.3390/ani12151957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine the effect of L-carnitine on the growth and subsequent nuclear maturation of buffalo small growing oocytes (92−108 µm in diameter) in vitro. Oocyte-granulosa cell complexes (OGCs) were dissected from early antral follicles of slaughtered buffaloes and cultured in in vitro growth (IVG) medium with the supplementation of different concentrations (0, 1.25, 1.875 or 2.5 mM) of L-carnitine for 6 days. The results revealed that L-carnitine increased the diameter of buffalo oocytes in vitro. The degeneration rate was significantly (p < 0.05) lower in 2.5 mM of L-carnitine-treated oocytes (10%) than others (55%, 45% and 32.5% in 0, 1.25 and 1.875 mM of L-carnitine-supplemented groups, respectively). The OGCs showed antrum-like structures significantly (p < 0.05) higher in the 2.5 mM of L-carnitine group (74.0%) than the 0- and 1.25-mM groups (34.6% and 38.1%, respectively). Furthermore, in vitro grown oocytes were placed in in vitro maturation (IVM) medium for 24 h to examine meiotic competence of in vitro grown oocytes with L-carnitine. The L-carnitine (1.875 and 2.5 mM) treated oocytes showed a higher rate of nuclear maturation up to the metaphase II (MII) stage and a lower rate of degeneration. In conclusion, L-carnitine enhances the growth, prevents degeneration, promotes the formation of antrum-like structures and supports nuclear maturation of buffalo oocytes in vitro.
Collapse
|
3
|
Hernández-Coronado CG, Guzmán A, Castillo-Juárez H, Zamora-Gutiérrez D, Rosales-Torres AM. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. ANNALES D'ENDOCRINOLOGIE 2019; 80:263-272. [DOI: 10.1016/j.ando.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
|
4
|
Long GY, Yang JY, Xu JJ, Ni YH, Zhou XL, Ma JY, Fu YC, Luo LL. SIRT1 knock-in mice preserve ovarian reserve resembling caloric restriction. Gene 2019; 686:194-202. [PMID: 30340050 DOI: 10.1016/j.gene.2018.10.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
Previous studies have proposed that caloric restriction (CR) regulates many cell functions and prolongs the lifespan of an organism. Our previous studies proposed that CR also prevents follicular activation and preserves the ovarian reserve in mice by activating SIRT1. To test if SIRT1 preserves the ovarian reserve and prolongs the ovarian longevity, we generated SIRT1 knock-in mice that can overexpress SIRT1 in oocytes of the mouse. Ovaries of the mice at ages 35 days and 15 months were collected, and the follicular development and follicular reserve were examined. The vaginal opening and onset of estrus of transgenic female mice (both the homozygous and heterozygous for SIRT1 overexpression) were later than that of wild-type mice. Both the homozygous and heterozygous SIRT1-overexpressing mice had a larger and stronger reproductive capacity than wild-type mice. Moreover, 35-day-old and 15-month-old homozygous and heterozygous SIRT1-overexpressing mice also had a higher mean number and percentage of healthy follicles, fewer atretic follicles than wild-type mice, and the mean number and percentage of primordial follicles in both the homozygous and heterozygous SIRT1-overexpressing mice were higher than wild-type mice at the same age. However, the phenotypes of heterozygous and homozygous transgenic mice came no difference. Immunohistochemistry showed increased expression of SIRT1 and FOXO3a, and decreased expression of mTOR in both the homozygous and heterozygous SIRT1-overexpressing mice compared with wild-type mice. Thus, oocyte-specific SIRT1-overexpressing mice continuously activate FOXO3a and suppress mTOR and have a larger reproductive capacity, larger follicle reserve and longer ovarian lifespan.
Collapse
Affiliation(s)
- Guan-Yun Long
- Department of Gynaecology and Obstetrics of the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province 515041, People's Republic of China
| | - Jie-Ying Yang
- Department of Gynaecology and Obstetrics of the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province 515041, People's Republic of China
| | - Jin-Jie Xu
- Laboratory of Cell Senescence, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, People's Republic of China
| | - Yan-Hong Ni
- Department of Gynaecology, Obstetrics of Shantou Municipal Central Hospital, Shantou, Guangdong Province 515041, People's Republic of China
| | - Xiao-Ling Zhou
- Department of Gynaecology and Obstetrics of the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province 515041, People's Republic of China
| | - Jia-Yi Ma
- Department of Gynaecology and Obstetrics of the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province 515041, People's Republic of China
| | - Yu-Cai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, People's Republic of China
| | - Li-Li Luo
- Department of Gynaecology and Obstetrics of the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province 515041, People's Republic of China.
| |
Collapse
|
5
|
A Network Pharmacology Approach to Explore the Pharmacological Mechanism of Xiaoyao Powder on Anovulatory Infertility. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2960372. [PMID: 28074099 PMCID: PMC5203871 DOI: 10.1155/2016/2960372] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022]
Abstract
Aim. To explore the pharmacological mechanism of Xiaoyao powder (XYP) on anovulatory infertility by a network pharmacology approach. Method. Collect XYP's active compounds by traditional Chinese medicine (TCM) databases, and input them into PharmMapper to get their targets. Then note these targets by Kyoto Encyclopedia of Genes and Genomes (KEGG) and filter out targets that can be noted by human signal pathway. Get the information of modern pharmacology of active compounds and recipe's traditional effects through databases. Acquire infertility targets by Therapeutic Target Database (TTD). Collect the interactions of all the targets and other human proteins via String and INACT. Put all the targets into the Database for Annotation, Visualization, and Integrated Discovery (DAVID) to do GO enrichment analysis. Finally, draw the network by Cytoscape by the information above. Result. Six network pictures and two GO enrichment analysis pictures are visualized. Conclusion. According to this network pharmacology approach some signal pathways of XYP acting on infertility are found for the first time. Some biological processes can also be identified as XYP's effects on anovulatory infertility. We believe that evaluating the efficacy of TCM recipes and uncovering the pharmacological mechanism on a systematic level will be a significant method for future studies.
Collapse
|
6
|
Liu Q, Zhang Y, Shi B, Lu H, Zhang L, Zhang W. Foxo3b but not Foxo3a activates cyp19a1a in Epinephelus coioides. J Mol Endocrinol 2016; 56:337-49. [PMID: 26960338 DOI: 10.1530/jme-15-0251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
FOXO3 has been shown to be a critical transcription factor for folliculogenesis in mammals, while the information on its roles in reproduction of nonmammalian vertebrates remains scarce. In this study, two foxo3 homologs, namely foxo3a and foxo3b, were identified in a teleost, the orange-spotted grouper Epinephelus coioides. foxo3a was mainly expressed in the central nervous system, ovary, and gut whereas foxo3b was expressed ubiquitously in tissues examined. In contrast to the dominant expression of mammalian FOXO3 in germ cells but barely detectable in ovarian follicular cells, immunoreactive Foxo3a and Foxo3b were identified both in the ovarian germ cells and follicular cells. The immunointensities of both Foxo3a and Foxo3b in ovarian follicular cells during vitellogenesis were significantly increased stage-dependently, and co-localized with Cyp19a1a. In the nucleus of ovarian follicular cells, both Foxo3a and Foxo3b immunostaining could be detected at the vitellogenic stages. Transient transfection and EMSA showed that Foxo3a and Foxo3b upregulated cyp19a1a promoter activities in vitro through a conserved Foxo-binding site, with the latter being a more potent activator. However, ChIP analysis showed that only Foxo3b binds to cyp19a1a proximal promoter region containing the conserved Foxo-binding site in the vitellogenic ovary. Taken together, these results suggested that Foxo3a and Foxo3b are involved in the ovarian development possibly through regulating the ovarian germ cells as well as follicular cells, and Foxo3b but not Foxo3a may activate cyp19a1a in the ovarian follicular cells during vitellogenesis in the orange-spotted grouper.
Collapse
Affiliation(s)
- Qiongyou Liu
- Institute of Aquatic Economic AnimalsSchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China Department of Histology and EmbryologyZunyi Medical College, Zunyi, Guizhou, People's Republic of China
| | - Yang Zhang
- Institute of Aquatic Economic AnimalsSchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Boyang Shi
- Institute of Aquatic Economic AnimalsSchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huijie Lu
- Institute of Aquatic Economic AnimalsSchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lihong Zhang
- Department of BiologySchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weimin Zhang
- Institute of Aquatic Economic AnimalsSchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China Department of BiologySchool of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Abstract
The ovary of neonatal nonhuman primates contains the highest number of immature oocytes,
but its cryopreservation has not yet been sufficiently investigated in all life stages. In
the current study, we investigated cryodamage after vitrification/warming of neonatal
ovaries from a nonhuman primate, the common marmoset (Callithrix
jacchus). A Cryotop was used for cryopreservation of whole ovaries. The
morphology of the vitrified/warmed ovaries was found to be equivalent to that of fresh
ovaries. No significant difference in the number of oocytes retaining normal morphology
per unit area in histological sections was found between the two groups. In an analysis of
dispersed cells from the ovaries, however, the cell viability of the vitrified/warmed
group tended to be decreased. The results of a comet assay showed no significant
differences in DNA damage. These results show that cryopreservation of neonatal marmoset
ovaries using vitrification may be useful as a storage system for whole ovaries.
Collapse
Affiliation(s)
- Hideyuki H Motohashi
- Department of Neurophysiology, National Institute of Neuroscience (NIN), National Center for Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | | |
Collapse
|
8
|
Leisinger CA, Coffman EA, Coutinho da Silva MA, Forshey BS, Pinto CRF. Factors affecting in vitro maturation of alpaca (Lama paco) oocytes. Anim Reprod Sci 2014; 150:70-5. [DOI: 10.1016/j.anireprosci.2014.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 08/14/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
|
9
|
Barilovits SJ, Newsom KJ, Bickford JS, Beachy DE, Rhoton-Vlasak A, Nick HS. Characterization of a mechanism to inhibit ovarian follicle activation. Fertil Steril 2014; 101:1450-7. [PMID: 24559722 DOI: 10.1016/j.fertnstert.2014.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To demonstrate that a small molecule can induce the transcription factor Foxo3 in the ovary and lead to inhibition of follicle activation. DESIGN Cell culture, organ culture, and animal studies. SETTING University-based laboratory. ANIMAL(S) 23 female C57BL/6 mice. INTERVENTION(S) Human ovary cells and mouse ovaries in culture treated with 2-deoxyglucose (2-DG) to mimic glucose deprivation, and mice intraperitoneally injected with 100 mg/kg, 300 mg/kg, or 600 mg/kg 2-DG daily for 2 weeks. MAIN OUTCOME MEASURE(S) In cell and organ culture, Foxo3 expression analyzed by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR); in treated animals, expression of genes regulated by nutrient deprivation (Foxo3, ATF4, GRP78, CHOP, ASNS, c-Myc) measured in brain, kidney, and ovary by qRT-PCR; and ovarian follicles histologically classified and counted. RESULT(S) Foxo3 expression is induced by 2-DG at both the mRNA and protein level in human ovarian cell culture, possibly through ATF4-dependent gene regulation. Foxo3 expression is also induced by 2-DG in ovarian organ culture. Treatment of mice with 100 mg/kg 2-DG resulted in a 2.6 fold induction of Foxo3 in the ovary and a 58% decrease in type 3a primary follicles. CONCLUSION(S) Expression of Foxo3 is induced by nutrient deprivation in cell culture, organ culture, and in vivo. In mice, 2-DG treatment results in an inhibition of primordial follicle activation. These data indicate that Foxo3 induction by 2-DG may be useful for fertility preservation.
Collapse
Affiliation(s)
- Sarah J Barilovits
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida; Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida
| | - Kimberly J Newsom
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida
| | - Justin S Bickford
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida
| | - Dawn E Beachy
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida
| | - Alice Rhoton-Vlasak
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, Florida
| | - Harry S Nick
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida; Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
10
|
Abstract
The female germline comprises a reserve population of primordial (non-growing) follicles containing diplotene oocytes arrested in the first meiotic prophase. By convention, the reserve is established when all individual oocytes are enclosed by granulosa cells. This commonly occurs prior to or around birth, according to species. Histologically, the ‘reserve’ is the number of primordial follicles in the ovary at any given age and is ultimately depleted by degeneration and progression through folliculogenesis until exhausted. How and when the reserve reaches its peak number of follicles is determined by ovarian morphogenesis and germ cell dynamics involving i) oogonial proliferation and entry into meiosis producing an oversupply of oocytes and ii) large-scale germ cell death resulting in markedly reduced numbers surviving as the primordial follicle reserve. Our understanding of the processes maintaining the reserve comes primarily from genetically engineered mouse models, experimental activation or destruction of oocytes, and quantitative histological analysis. As the source of ovulated oocytes in postnatal life, the primordial follicle reserve requires regulation of i) its survival or maintenance, ii) suppression of development (dormancy), and iii) activation for growth and entry into folliculogenesis. The mechanisms influencing these alternate and complex inter-related phenomena remain to be fully elucidated. Drawing upon direct and indirect evidence, we discuss the controversial concept of postnatal oogenesis. This posits a rare population of oogonial stem cells that contribute new oocytes to partially compensate for the age-related decline in the primordial follicle reserve.
Collapse
|
11
|
Merkwitz C, Lochhead P, Tsikolia N, Koch D, Sygnecka K, Sakurai M, Spanel-Borowski K, Ricken AM. Expression of KIT in the ovary, and the role of somatic precursor cells. ACTA ACUST UNITED AC 2011; 46:131-84. [DOI: 10.1016/j.proghi.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Bao RM, Hayakawa K, Moniruzzaman M, Taketsuru H, Miyano T. FOXO3 knockdown accelerates development of bovine primordial follicles. J Reprod Dev 2011; 57:475-80. [PMID: 21502726 DOI: 10.1262/jrd.11-013h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of the present study was to elucidate the involvement of FOXO3 in the activation of bovine primordial follicles. In immunohistochemistry, FOXO3 was detected in all of the oocytes in primordial and primary follicles. The FOXO3 decreased after treatment with FOXO3 small interfering RNAs (siRNAs). Ovarian tissues containing dominantly primordial follicles were treated with FOXO3 siRNAs and then xenografted to severe combined immune deficiency (SCID) mice. Two months after xenografting, some primordial follicles developed to the secondary and tertiary stages, and the total percentage of these developing follicles (secondary and tertiary follicles: 18 ± 7%) was higher than in the control grafts treated with control siRNA (7 ± 1%). It is thought that bovine primordial follicle activation is regulated by the FOXO3-dependent mechanism and that knockdown of FOXO3 induces the release of primordial follicles from FOXO3 suppression, initiating their growth.
Collapse
Affiliation(s)
- Rong-Mei Bao
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | | | | | | | | |
Collapse
|
13
|
Hirashima Y, Moniruzzaman M, Miyano T. p27(Kip1) negatively regulates the activation of murine primordial oocytes. J Reprod Dev 2010; 57:217-22. [PMID: 21157123 DOI: 10.1262/jrd.10-119h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mice, small oocytes (primordial oocytes) are enclosed within flattened granulosa cells to form primordial follicles around birth. A small number of primordial oocytes enter the growth phase, whereas others are quiescent. The mechanism regulating this selection of primordial oocytes is not well understood. The objective of the present study was to understand the role of p27(Kip1), which regulates cell cycle progression in somatic cells, in the growth initiation of primordial oocytes in neonatal mice. We studied the localization of p27(Kip1) in 0-, 3-, 5-, 7- and 21-day-old mouse ovaries by immunohistochemistry. Ovaries from 3-day-old mice were treated with p27(Kip1) siRNAs (small interfering RNAs), and knockdown of p27(Kip1) was determined by immunohistochemistry and Western blotting. Ovaries treated with siRNAs were organ-cultured for 6 days, and oocyte growth was estimated histologically. Expression of p27(Kip1) was undetectable in the primordial oocytes of newborn mice. In the 3-day-old ovaries (n=3), p27(Kip1) was demonstrated in the nucleus of 36 ± 6% primordial oocytes. The percentage of p27(Kip1)-positive primordial oocytes increased to 72 ± 8 (n=3), 85 ± 7 (n=3) and 93 ± 5 (n=3) in the 5-, 7- and 21-day-old mouse ovaries, respectively. After knockdown of the p27(Kip1) protein by siRNAs, a higher proportion of oocytes entered the growth phase in cultured ovaries than those in the control. These results suggest that p27(Kip1) negatively regulates primordial oocyte growth and that knockdown of p27(Kip1) leads primordial oocytes to enter the growth phase in vitro.
Collapse
Affiliation(s)
- Yumiko Hirashima
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | |
Collapse
|