1
|
Guo R, Chen F, Mei C, Dai Z, Yan L, Shi Z. Conception Rate and Reproductive Hormone Secretion in Holstein Cows Immunized against Inhibin and Subjected to the Ovsynch Protocol. Animals (Basel) 2020; 10:ani10020313. [PMID: 32079231 PMCID: PMC7070342 DOI: 10.3390/ani10020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 01/29/2020] [Indexed: 01/26/2023] Open
Abstract
Simple Summary In recent decades, conception rates in lactating dairy cows have dramatically decreased, and improving the conception rate has become a major challenge in dairy cow reproduction. Various Ovsynch protocols have been developed to aid in the resumption of ovarian follicular activity for timely breeding in post-partum cows. However, the effect of Ovsynch protocols on improving the conception rate is unsatisfactory. In addition, immunization against inhibin was reported to improve the fertility of domestic animals. Thus, a novel reproductive technique combining immunization against inhibin and the widely used Ovsynch protocol was proposed and tested in this study. Our results showed that immunization against inhibin has the potential to improve conception rates in cows, but also compromised luteal function. According to these results, additional luteal-stimulating treatments are suggested to further improve cow fertility based on immunization and the Ovsynch protocol. Abstract This study was conducted to investigate the feasibility of improving fertility in dairy cows via immunization against inhibin. Thirty-two cows were divided into Control (n = 11), Low-dose (n = 10) and High-dose (n = 11) groups. The High-dose and Low-dose cows were treated with 1 and 0.5 mg of the inhibin immunogen, respectively. All the cows were subjected to the Ovsynch protocol from the day of antigen administration and were artificially inseminated. Blood samples were serially collected over a 24-day period from the start of the Ovsynch protocol to 14 days after insemination. The results showed that immunization against inhibin dose-dependently increased the plasma concentrations of follicle-stimulating hormone (FSH), estradiol (E2), and activin A, but decreased progesterone (P4) concentrations in the luteal phase. Immunization also increased the plasma interferon (IFN)-τ concentrations in pregnant cows on day 14 after initial insemination. The conception rates in High-dose (45.5%) and Low-dose (40%) cows marginally increased compared to that in Control cows (27.3%), but the increases were not significant (p > 0.05). In conclusion, a single immunization against inhibin has the potential to improve conception rates, despite impaired luteal development. To further improve the reproductive performance of dairy cows, additional luteal-stimulating treatments are suggested in combination with immunization against inhibin and Ovsynch techniques.
Collapse
Affiliation(s)
- Rihong Guo
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (F.C.)
| | - Fang Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (F.C.)
| | - Cheng Mei
- Dongying Austasia Modern Dairy Farm Co., Ltd., Dongying 257345, China;
| | - Zicun Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (F.C.)
| | - Leyan Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (F.C.)
| | - Zhendan Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (F.C.)
- Correspondence:
| |
Collapse
|
2
|
Saadeldin IM, Jang G. Sex differences in single IVF-derived bovine embryo cultured in chemically defined medium. Int J Vet Sci Med 2019; 6:S78-S80. [PMID: 30761326 PMCID: PMC6161862 DOI: 10.1016/j.ijvsm.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/07/2018] [Accepted: 01/07/2018] [Indexed: 11/24/2022] Open
Abstract
Single embryo culture is essential for culturing embryos derived from few oocytes obtained from elite cows through ultrasonography guidance. Bovine in vitro fertilization (IVF) and individual embryo culture is a challenge as it generally leads to impaired embryo development. In this study, we explored the embryonic development and the sex ratio of IVF-derived bovine embryo cultured individually in chemically defined two-step culture medium. Total 63 cumulus-oocyte complexes were collected, in vitro matured, in vitro fertilized and the resultant fertilized oocytes were randomly cultured individually (4 trials, 15–16 oocytes each) in microdrops of 5 µL of a chemically defined two-step culture medium. Blastocysts were counted in every trial (n = 32, 50.79%) and all of them were used for both genomic DNA and total RNA extraction, cDNA synthesis and PCR using specific primers for GAPDH, GDP6, XIST and SRY genes. Results showed significant difference in expression of XIST (positive expression in 11 blastocysts) and SRY (positive expression in 21 blastocysts) mRNAs, P < .05. This result supports the hypothesis of sexual dimorphism among the pre-implantation in vitro produced embryos and provides an efficient medium for single bovine embryos in vitro production.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Goo Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Emergence Center for Food-Medicine Personalized Therapy System, Advanced Institute of Convergence Technology, Seoul National University, Gyeonggi-Do, 16629, South Korea
| |
Collapse
|
3
|
Saadeldin IM, Swelum AAA, Elsafadi M, Moumen AF, Alzahrani FA, Mahmood A, Alfayez M, Alowaimer AN. Isolation and characterization of the trophectoderm from the Arabian camel (Camelus dromedarius). Placenta 2017; 57:113-122. [PMID: 28863999 DOI: 10.1016/j.placenta.2017.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
Abstract
We isolated and characterized trophoblast from in vivo-derived camel embryos and compared with embryonic stem-like cells. Camel embryos were flushed on day 8 post-insemination and used to derive trophectoderm and embryonic stem-like cells under feeder-free culture conditions using a basement membrane matrix. Embryos were evaluated for the expression of POU5F1, MYC, KLF4, SOX2, CDX2, and KRT8 mRNA transcripts by relative quantitative polymerase chain reaction. Camel embryos grew and expanded to ∼4.5 mm and maintained their vesicular shape in vitro for 21 days post-insemination. Trophoblast and embryonic stem-like cell lines grew under feeder-free culture conditions and showed distinct morphological criteria and normal chromosomal counts. Embryonic stem-like cells showed positive staining in the alkaline phosphatase reaction. Trophoblast cells showed a significant increase in CDX2, KRT8, KLF4, and SOX2 expression compared with embryonic stem-like cells and whole embryos. Embryonic stem-like cells showed a significant decrease in CDX2 expression and increase in SOX2 and KRT8 expression compared to embryonic expression. POU5F1 and MYC expression showed no difference between embryos and both cell lines. We characterized embryo survival in vitro, particularly the derivation of trophectoderm and embryonic stem-like cells, providing a foundation for further analysis of early embryonic development and placentation in camels.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Theriogeneology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Moumen
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh Branch, Rabigh 21911, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28626751 PMCID: PMC5463096 DOI: 10.1155/2017/1061589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs) compared to the conventional mouse embryonic fibroblasts (MEFs) were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2), cytokeratin-8 (KRT8), and interferon tau (IFNT). The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell's growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.
Collapse
|
5
|
Loren P, Cheuquemán C, Sánchez E, Risopatrón J, Arias ME, Felmer R, Sánchez R. Effect of short-term exposure of cumulus-oocyte complex to 3-morpholinosydnonimine on in vitro embryo development and gene expression in cattle. Reprod Domest Anim 2016; 51:1010-1019. [PMID: 27644683 DOI: 10.1111/rda.12788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/04/2016] [Indexed: 11/28/2022]
Abstract
Short-term exposure of gametes to different types of stress might induce stress tolerance in mammalian embryos. The aim of this study was to evaluate the effect of short-term exposure of bovine mature cumulus-oocyte complex (COC) to 3-morpholinosydnonimine (SIN-1) on subsequent in vitro embryo development, embryo quality and relative gene expression. Matured COCs were incubated with SIN-1 (0, 0.1, 1, 10 and 100 μM SIN-1) for 1 hr before in vitro fertilization and zygotes were cultured until Day 7. The cleavage rate at 72 hr did not show any differences among groups. However, the blastocyst rate on Day 7 decreased with all treatments evaluated, with the embryos generated with 10 μM SIN-1 showing the lowest embryo production rate. Embryo quality analysis did not show any differences in total cell number (TCN) or inner cell mass (ICM) among groups. Relative gene expression analysis showed a downregulation of eNOS expression and an upregulation of nNOS expression in all treatments evaluated compared to the control group. Also, a downregulation was observed in some treatments: SOD2 at 0.1 μM; SOD1 at 0.1 and 100 μM; PRDX5 at 0.1, 10 and 100 μM; and NANOG at 10 and 100 μM; and an upregulation of CDX2 expression was observed at 100 μM. The other genes (OCT4, HIF1A, HSPA1A, BCL2A and iNOS) did not show any differences in the relative gene expression. These results suggest that the short-term exposure of mature bovine COCs to SIN-1 does not induce stress tolerance and has no beneficial effect on bovine in vitro embryo production.
Collapse
Affiliation(s)
- P Loren
- Student of Doctoral Program in Sciences major in Applied Cellular and Molecular Biology, Universidad de la Frontera, Temuco, Chile.,Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - C Cheuquemán
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - E Sánchez
- Student of Doctoral Program in Sciences major in Applied Cellular and Molecular Biology, Universidad de la Frontera, Temuco, Chile.,Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - J Risopatrón
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Basic Science, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - M E Arias
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Agricultural and Livestock Production, Faculty of Farming, Livestock and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Felmer
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Agricultural and Livestock Production, Faculty of Farming, Livestock and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Sánchez
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
6
|
Ao X, Sa R, Wang J, Dao R, Wang H, Yu H. Activation-induced cytidine deaminase selectively catalyzed active DNA demethylation in pluripotency gene and improved cell reprogramming in bovine SCNT embryo. Cytotechnology 2016; 68:2637-2648. [PMID: 27507642 DOI: 10.1007/s10616-016-9988-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
DNA methylation in mammals is an epigenetic marker and necessary for normal embryogenesis. The global genomic demethylation of 5-methylcytosine occurs during the first cell cycle following fertilization. Activation-induced cytidine deaminase (AID), which is well-known for the function in antibody diversification, has been implicated to play a role in active demethylation, but its role in cell reprogramming and its crosstalk with other DNA demethylation mechanism need to be clarified. In this study, the dynamic epigenetic regulation of cell pluripotency and embryo development by AID in bovine preimplantation embryos was investigated. The analysis of an AID overexpressing transgenic cell line showed that AID overexpression did not change the global genomic methylation but did change the methylation status of the promoters of the OCT4, NANOG and SOX2 genes, thereby causing changes in their expression. The siRNA-mediated AID knockdown in early embryonic development indicated that AID interference did not affect oocyte maturation or the following embryo development after in vitro fertilization but influenced the DNA methylation status of OCT4 and NANOG. To clarify the role of AID in preimplantation embryos, SCNT embryos were obtained using AID-overexpressing cells as nuclear donors. Compared to the control group, the cleavage and blastocyst rates were both significantly improved in the AID-overexpression group. The expression of OCT4 and NANOG was increased in the SCNT embryos, whereas the methylation levels of their promoters were reduced. In conclusion, this study demonstrated that AID selectively catalyzes DNA demethylation of pluripotency genes to play a role in regulation their expression, improves bovine SCNT embryo development by increased expression levels.
Collapse
Affiliation(s)
- Xudong Ao
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Rula Sa
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Jie Wang
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Rinuo Dao
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Huimin Wang
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Haiquan Yu
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
7
|
Choi W, Kim E, Yum SY, Lee C, Lee J, Moon J, Ramachandra S, Malaweera BO, Cho J, Kim JS, Kim S, Jang G. Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells. Prion 2016. [PMID: 26217959 DOI: 10.1080/19336896.2015.1071459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even though prion (encoded by the PRNP gene) diseases like bovine spongiform encephalopathy (BSE) are fatal neurodegenerative diseases in cattle, their study via gene deletion has been limited due to the absence of cell lines or mutant models. In this study, we aim to develop an immortalized fibroblast cell line in which genome-engineering technology can be readily applied to create gene-modified clones for studies. To this end, this study is designed to 1) investigate the induction of primary fibroblasts to immortalization by introducing Bmi-1 and hTert genes; 2) investigate the disruption of the PRNP in those cells; and 3) evaluate the gene expression and embryonic development using knockout (KO) cell lines. Primary cells from a male neonate were immortalized with Bmi-1and hTert. Immortalized cells were cultured for more than 180 days without any changes in their doubling time and morphology. Furthermore, to knockout the PRNP gene, plasmids that encode transcription activator-like effector nuclease (TALEN) pairs were transfected into the cells, and transfected single cells were propagated. Mutated clonal cell lines were confirmed by T7 endonuclease I assay and sequencing. Four knockout cell lines were used for somatic cell nuclear transfer (SCNT), and the resulting embryos were developed to the blastocyst stage. The genes (CSNK2A1, FAM64A, MPG and PRND) were affected after PRNP disruption in immortalized cells. In conclusion, we established immortalized cattle fibroblasts using Bmi-1 and hTert genes, and used TALENs to knockout the PRNP gene in these immortalized cells. The efficient PRNP KO is expected to be a useful technology to develop our understanding of in vitro prion protein functions in cattle.
Collapse
Affiliation(s)
- WooJae Choi
- a Laboratory of Theriogenology and Biotechnology; Department of Veterinary Clinical Science ; College of Veterinary Medicine and the Research Institute of Veterinary Science; Seoul National University ; Seoul , Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Saini M, Selokar N, Raja A, Sahare A, Singla S, Chauhan M, Manik R, Palta P. Effect of donor cell type on developmental competence, quality, gene expression, and epigenetic status of interspecies cloned embryos produced using cells from wild buffalo and oocytes from domestic buffalo. Theriogenology 2015; 84:101-8.e1. [DOI: 10.1016/j.theriogenology.2015.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
|
9
|
Mohapatra SK, Sandhu A, Singh KP, Singla SK, Chauhan MS, Manik R, Palta P. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them. PLoS One 2015; 10:e0129235. [PMID: 26053554 PMCID: PMC4459972 DOI: 10.1371/journal.pone.0129235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/06/2015] [Indexed: 11/26/2022] Open
Abstract
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.
Collapse
Affiliation(s)
| | - Anjit Sandhu
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Karn Pratap Singh
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | | | - Radheysham Manik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
- * E-mail:
| |
Collapse
|
10
|
Kim MS, Sakurai T, Bai H, Bai R, Sato D, Nagaoka K, Chang KT, Godkin JD, Min KS, Imakawa K. Presence of Transcription Factor OCT4 Limits Interferon-tau Expression during the Pre-attachment Period in Sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:638-45. [PMID: 25049833 PMCID: PMC4093334 DOI: 10.5713/ajas.2012.12462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/23/2012] [Accepted: 10/18/2012] [Indexed: 11/27/2022]
Abstract
Interferon-tau (IFNT) is thought to be the conceptus protein that signals maternal recognition of pregnancy in ruminants. We and others have observed that OCT4 expression persists in the trophectoderm of ruminants; thus, both CDX2 and OCT4 coexist during the early stages of conceptus development. The aim of this study was to examine the effect of CDX2 and OCT4 on IFNT gene transcription when evaluated with other transcription factors. Human choriocarcinoma JEG-3 cells were cotransfected with an ovine IFNT (-654-bp)-luciferase reporter (-654-IFNT-Luc) construct and several transcription factor expression plasmids. Cotransfection of the reporter construct with Cdx2, Ets2 and Jun increased transcription of -654-IFNT-Luc by about 12-fold compared with transfection of the construct alone. When cells were initially transfected with Oct4 (0 h) followed by transfection with Cdx2, Ets2 and/or Jun 24 h later, the expression of -654-IFNT-Luc was reduced to control levels. OCT4 also inhibited the stimulatory activity of CDX2 alone, but not when CDX2 was combined with JUN and/or ETS2. Thus, when combined with the other transcription factors, OCT4 exhibited little inhibitory activity towards CDX2. An inhibitor of the transcriptional coactivator CREB binding protein (CREBBP), 12S E1A, reduced CDX2/ETS2/JUN stimulated -654-IFNT-Luc expression by about 40%, indicating that the formation of an appropriate transcription factor complex is required for maximum expression. In conclusion, the presence of OCT4 may initially minimize IFNT expression; however, as elongation proceeds, the increasing expression of CDX2 and formation of the transcription complex leads to greatly increased IFNT expression, resulting in pregnancy establishment in ruminants.
Collapse
Affiliation(s)
- Min-Su Kim
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Toshihiro Sakurai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hanako Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rulan Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Daisuke Sato
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Nagaoka
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kyu-Tae Chang
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - James D Godkin
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kwan-Sik Min
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|