1
|
Messiaen S, Guiard J, Aigueperse C, Fliniaux I, Tourpin S, Barroca V, Allemand I, Fouchet P, Livera G, Vernet M. Loss of the histone chaperone ASF1B reduces female reproductive capacity in mice. Reproduction 2016; 151:477-89. [PMID: 26850882 DOI: 10.1530/rep-15-0327] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
Anti-silencing function 1 (ASF1) is an evolutionarily conserved histone H3-H4 chaperone involved in the assembly/disassembly of nucleosome and histone modification. Two paralogous genes, Asf1a and Asf1b, exist in the mouse genome. Asf1a is ubiquitously expressed and its loss causes embryonic lethality. Conversely, Asf1b expression is more restricted and has been less studied. To determine the in vivo function of Asf1b, we generated a Asf1b-deficient mouse line (Asf1b(GT(ROSA-βgeo)437)) in which expression of the lacZ reporter gene is driven by the Asf1b promoter. Analysis of β-galactosidase activity at early embryonic stages indicated a correlation between Asf1b expression and cell differentiation potential. In the gonads of both male and female, Asf1b expression was specifically detected in the germ cell lineage with a peak expression correlated with meiosis. The viability of Asf1b-null mice suggests that Asf1b is dispensable for mouse development. However, these mice showed reduced reproductive capacity compared with wild-type controls. We present evidence that the timing of meiotic entry and the subsequent gonad development are affected more severely in Asf1b-null female mice than in male mice. In female mice, in addition to subfertility related to altered gamete formation, variable defects compromising the development and/or survival of their offspring were also observed. Altogether, our data indicate the importance of Asf1b expression at the time of meiotic entry, suggesting that chromatin modifications may play a central role in this process.
Collapse
Affiliation(s)
- S Messiaen
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - J Guiard
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - C Aigueperse
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - I Fliniaux
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - S Tourpin
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - V Barroca
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - I Allemand
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de gamétogenèseapoptose et génotoxicité, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - P Fouchet
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de gamétogenèseapoptose et génotoxicité, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - G Livera
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - M Vernet
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France Laboratoire de Recherche sur la réparation et la transcription dans les cellules souchesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| |
Collapse
|
2
|
Transcription factor p63 controls the reserve status but not the stemness of horizontal basal cells in the olfactory epithelium. Proc Natl Acad Sci U S A 2015; 112:E5068-77. [PMID: 26305958 DOI: 10.1073/pnas.1512272112] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Adult tissue stem cells can serve two broad functions: to participate actively in the maintenance and regeneration of a tissue or to wait in reserve and participate only when activated from a dormant state. The adult olfactory epithelium, a site for ongoing, life-long, robust neurogenesis, contains both of these functional stem cell types. Globose basal cells (GBCs) act as the active stem cell population and can give rise to all the differentiated cells found in the normal tissue. Horizontal basal cells (HBCs) act as reserve stem cells and remain dormant unless activated by tissue injury. Here we show that HBC activation following injury by the olfactotoxic gas methyl bromide is coincident with the down-regulation of protein 63 (p63) but anticipates HBC proliferation. Gain- and loss-of-function studies show that this down-regulation of p63 is necessary and sufficient for HBC activation. Moreover, activated HBCs give rise to GBCs that persist for months and continue to act as bona fide stem cells by participating in tissue maintenance and regeneration over the long term. Our analysis provides mechanistic insight into the dynamics between tissue stem cell subtypes and demonstrates that p63 regulates the reserve state but not the stem cell status of HBCs.
Collapse
|
3
|
Abstract
The ability of the olfactory epithelium (OE) to regenerate after injury is mediated by at least two populations of presumed stem cells-globose basal cells (GBCs) and horizontal basal cells (HBCs). Of the two, GBCs are molecularly and phenotypically analogous to the olfactory progenitors of the embryonic placode (OPPs). In contrast, HBCs are a reserve stem cell population that appears later in development and requires activation by severe epithelial damage before contributing to epithelial reconstitution. Neither HBC emergence nor the mechanism of activation after injury is understood. Here we show that the transcription factor p63 (Trp63), which is expressed selectively by adult HBCs, is required for HBC differentiation. The first evidence of HBC differentiation is the expression of p63 by cells that closely resemble embryonic OPPs and adult GBCs by morphology and expression of the transcription factors Sox2, Ascl1, and Hes1. HBC formation is delayed in Ascl1 knock-out OE and is completely abrogated in p63-null mice. Strikingly, other cell types of the OE form normally in the p63 knock-out OE. The role of p63 in HBC differentiation appears to be conserved in the regenerating rat OE, where HBCs disappear and then reappear after tissue lesion. Finally, p63 protein is downregulated in HBCs activated by lesion to become multipotent progenitor cells. Together, our data identify a novel mechanism for the generation of a reserve stem cell population and suggest that a p63-dependent molecular switch is responsible for activating reserve stem cells when they are needed.
Collapse
|