1
|
Lit KK, Zhirenova Z, Blocki A. Insulin-like growth factor-binding protein 7 (IGFBP7): A microenvironment-dependent regulator of angiogenesis and vascular remodeling. Front Cell Dev Biol 2024; 12:1421438. [PMID: 39045455 PMCID: PMC11263173 DOI: 10.3389/fcell.2024.1421438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024] Open
Abstract
Insulin-like Growth Factor-Binding Protein 7 (IGFBP7) is an extracellular matrix (ECM) glycoprotein, highly enriched in activated vasculature during development, physiological and pathological tissue remodeling. Despite decades of research, its role in tissue (re-)vascularization is highly ambiguous, exhibiting pro- and anti-angiogenic properties in different tissue remodeling states. IGFBP7 has multiple binding partners, including structural ECM components, cytokines, chemokines, as well as several receptors. Based on current evidence, it is suggested that IGFBP7's bioactivity is strongly dependent on the microenvironment it is embedded in. Current studies indicate that during physiological angiogenesis, IGFBP7 promotes endothelial cell attachment, luminogenesis, vessel stabilization and maturation. Its effects on other stages of angiogenesis and vessel function remain to be determined. IGFBP7 also modulates the pro-angiogenic properties of other signaling factors, such as VEGF-A and IGF, and potentially acts as a growth factor reservoir, while its actual effects on the factors' signaling may depend on the environment IGFBP7 is embedded in. Besides (re-)vascularization, IGFBP7 clearly promotes progenitor and stem cell commitment and may exhibit anti-inflammatory and anti-fibrotic properties. Nonetheless, its role in inflammation, immunomodulation, fibrosis and cellular senescence is again likely to be context-dependent. Future studies are required to shed more light on the intricate functioning of IGFBP7.
Collapse
Affiliation(s)
- Kwok Keung Lit
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Zhamilya Zhirenova
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
2
|
Schuster J, Wendler O, Pesold VV, Koch M, Sievert M, Balk M, Rupp R, Mueller SK. Exosomal Serum Biomarkers as Predictors for Laryngeal Carcinoma. Cancers (Basel) 2024; 16:2028. [PMID: 38893148 PMCID: PMC11171163 DOI: 10.3390/cancers16112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The lack of screening methods for LSCC is a critical issue, as treatment options and the treatment outcome greatly depend on the stage of LSCC at initial diagnosis. Therefore, the objective of this study was to identify potential exosomal serum biomarkers that can diagnose LSCC and distinguish between early- and late-stage disease. METHODS A multiplexed proteomic array was used to identify differentially expressed proteins in exosomes isolated from the serum samples of LSCC patients compared to the control group (septorhinoplasty, SRP). The most promising proteins for diagnosis and differentiation were calculated using biostatistical methods and were validated by immunohistochemistry (IHC), Western blots (WB), and ELISA. RESULTS Exosomal insulin-like growth factor binding protein 7 (IGFBP7) and Annexin A1 (ANXA1) were the most promising exosomal biomarkers for distinguishing between control and LSCC patients and also between different stages of LSCC (fold change up to 15.9, p < 0.001 for all). CONCLUSION The identified proteins represent potentially novel non-invasive biomarkers. However, these results need to be validated in larger cohorts with a long-term follow-up. Exosomal biomarkers show a superior signal-to-noise ratio compared to whole serum and may therefore be an important tool for non-invasive biomarker profiling for laryngeal carcinoma in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sarina Katrin Mueller
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstrasse 1, 91054 Erlangen, Germany; (J.S.); (O.W.); (V.-V.P.); (M.K.); (M.S.); (M.B.); (R.R.)
| |
Collapse
|
3
|
Piau TB, de Queiroz Rodrigues A, Paulini F. Insulin-like growth factor (IGF) performance in ovarian function and applications in reproductive biotechnologies. Growth Horm IGF Res 2023; 72-73:101561. [PMID: 38070331 DOI: 10.1016/j.ghir.2023.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
The role of the insulin-like growth factor (IGF) system has attracted close attention. The activity of IGF binding proteins (IGFBPs) within the ovary has not been fully elucidated to date. These proteins bind to IGF with an equal, or greater, affinity than to the IGF1 receptor, thus being in the main position to regulate IGF signalling, in addition to extending the half-life of IGFs within the bloodstream and promoting IGF storage in specific tissue niches. IGF1 has an important part in cell proliferation, differentiation and apoptosis. Considering the importance of IGFs in oocyte maturation, this review sought to elucidate aspects including: IGF production mechanisms; constituent members of their family and their respective functions; the role that these factors play during folliculogenesis, together with their functions during oocyte maturation and apoptosis, and their performance during luteal development. This review also explores the role of IGFs in biotechnological applications, focusing specifically on animal genetic gain.
Collapse
Affiliation(s)
- Tathyana Benetis Piau
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Aline de Queiroz Rodrigues
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Fernanda Paulini
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
4
|
Li Y, Fu L, Wu B, Guo X, Shi Y, Lv C, Yu Y, Zhang Y, Liang Z, Zhong C, Han S, Xu F, Tian Y. Angiogenesis modulated by CD93 and its natural ligands IGFBP7 and MMRN2: a new target to facilitate solid tumor therapy by vasculature normalization. Cancer Cell Int 2023; 23:189. [PMID: 37660019 PMCID: PMC10474740 DOI: 10.1186/s12935-023-03044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023] Open
Abstract
The tumor vasculature was different from the normal vasculature in both function and morphology, which caused hypoxia in the tumor microenvironment (TME). Previous anti-angiogenesis therapy had led to a modest improvement in cancer immunotherapy. However, antiangiogenic therapy only benefitted a few patients and caused many side effects. Therefore, there was still a need to develop a new approach to affect tumor vasculature formation. The CD93 receptor expressed on the surface of vascular endothelial cells (ECs) and its natural ligands, MMRN2 and IGFBP7, were now considered potential targets in the antiangiogenic treatment because recent studies had reported that anti-CD93 could normalize the tumor vasculature without impacting normal blood vessels. Here, we reviewed recent studies on the role of CD93, IGFBP7, and MMRN2 in angiogenesis. We focused on revealing the interaction between IGFBP7-CD93 and MMRN2-CD93 and the signaling cascaded impacted by CD93, IGFBP7, and MMRN2 during the angiogenesis process. We also reviewed retrospective studies on CD93, IGFBP7, and MMRN2 expression and their relationship with clinical factors. In conclusion, CD93 was a promising target for normalizing the tumor vasculature.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lei Fu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xingqi Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Shi
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yang Yu
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
5
|
Wu PL, Zhu JW, Zeng C, Li X, Xue Q, Yang HX. IGFBP7 enhances trophoblast invasion via IGF-1R/c-Jun signaling in unexplained recurrent spontaneous abortion. Reproduction 2022; 164:231-241. [PMID: 35900339 DOI: 10.1530/rep-21-0501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
In brief Insufficient trophoblast invasion at the maternal-fetal interface contributes to abortion-prone pregnancy. Our study shows that decreased levels of IGFBP7 in unexplained recurrent spontaneous abortion (URSA) trophoblast cells inhibit MMP2 and Slug expression as well as trophoblast invasion, suggesting that IGFBP7 should be considered a potential therapeutic protein target in URSA. Abstract Insufficient trophoblast invasion at the maternal-fetal interface contributes to abortion-prone pregnancy. Cyclosporine A (CsA) can exert therapeutic effects on URSA by promoting trophoblast invasion. A previous study showed decreased expression of insulin-like growth factor-binding protein 7 (IGFBP7) in the sera of recurrent spontaneous abortion patients. However, the role of IGFBP7 in URSA remains unknown. The aim of this study was to determine whether IGFBP7 modulates trophoblast invasion in URSA and the underlying molecular mechanisms. We found that IGFBP7 was expressed at lower levels in villous specimens from URSA patients. Manipulating IGFBP7 expression significantly affected the MMP2 and Slug expression in HTR-8/SVneo cells as well as trophoblast invasion in vitro. Inactivation of IGF-1R by IGFBP7 was observed, and IGF-1R inhibition increased the IGFBP7-induced MMP2 and Slug expression in HTR-8/SVneo cells. Moreover, the level of c-Jun was significantly upregulated in the URSA group. Silencing IGFBP7 increased the binding of downstream c-Jun to the MMP2 and Slug promoter regions in HTR-8/SVneo cells, thus suppressing transcription. In addition, increased expression of IGFBP7 in HTR-8/SVneo cells was observed upon CsA treatment. Knockdown of IGFBP7 inhibited the CsA-enhanced MMP2 and Slug expression in HTR-8/SVneo cells. Our results suggest that in normal pregnancy, IGFBP7 induces MMP2 and Slug expression via the IGF-1R-mediated c-Jun signaling pathway, thereby promoting trophoblast invasion. IGFBP7 depletion in URSA inhibits MMP2 and Slug expression as well as trophoblast invasion. Moreover, IGFBP7 participates in CsA-induced trophoblast invasion, suggesting that IGFBP7 is a potential therapeutic target for URSA.
Collapse
Affiliation(s)
- Pei-Li Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jing-Wen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Xin Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Hui-Xia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Lam J, Lee B, Yu J, Kwee BJ, Kim Y, Kim J, Choi Y, Yoon JS, Kim Y, Baek K, Jeon NL, Sung KE. A microphysiological system-based potency bioassay for the functional quality assessment of mesenchymal stromal cells targeting vasculogenesis. Biomaterials 2022; 290:121826. [DOI: 10.1016/j.biomaterials.2022.121826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
7
|
Analysis on the desert adaptability of indigenous sheep in the southern edge of Taklimakan Desert. Sci Rep 2022; 12:12264. [PMID: 35851076 PMCID: PMC9293982 DOI: 10.1038/s41598-022-15986-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
The southern margin of the Taklimakan Desert is characterized by low rainfall, heavy sandstorms, sparse vegetation and harsh ecological environment. The indigenous sheep in this area are rich in resources, with the advantages of perennial estrus and good resistance to stress in most sheep. Exploring the molecular markers of livestock adaptability in this environment will provide the molecular basis for breeding research to cope with extreme future changes in the desert environment. In this study, we analyzed the population genetic structure and linkage imbalance of five sheep breeds with three different agricultural geographic characteristics using four complementary genomic selection signals: fixation index (FST), cross-population extended haplotype homozygosity (xp-EHH), Rsb (extended haplotype homozygosity between-populations) and iHS (integrated haplotype homozygosity score). We used Illumina Ovine SNP 50K Genotyping BeadChip Array, and gene annotation and enrichment analysis were performed on selected regions of the obtained genome. The ovary of Qira Black sheep (Follicular phase, Luteal phase, 30th day of pregnancy, 45th day of pregnancy) was collected, and the differentially expressed genes were screened by transcriptomic sequencing. Genome-wide selective sweep results and transcriptome data were combined for association analysis to obtain candidate genes associated with perennial estrus and stable reproduction. In order to verify the significance of the results, 15 resulting genes were randomly selected for fluorescence quantitative analysis. The results showed that Dolang sheep and Qira Black sheep evolved from Kazak sheep. Linkage disequilibrium analysis showed that the decay rate of sheep breeds in the Taklimakan Desert was higher than that in Yili grassland. The signals of FST, xp-EHH, Rsb and iHS detected 526, 332, 308 and 408 genes, respectively, under the threshold of 1% and 17 overlapping genes under the threshold of 5%. A total of 29 genes were detected in association analysis of whole-genome and transcriptome data. This study reveals the genetic mechanism of perennial estrus and environmental adaptability of indigenous sheep breeds in the Taklimakan Desert. It provides a theoretical basis for the conservation and exploitation of genetic resources of indigenous sheep breeds in extreme desert environment. This provides a new perspective for the quick adaptation of sheep and other mammals to extreme environments and future climate changes.
Collapse
|
8
|
Yi X, Zheng X, Xu H, Li J, Zhang T, Ge P, Liao D, Li H, Lyu X, Ai J. IGFBP7 and the Tumor Immune Landscape: A Novel Target for Immunotherapy in Bladder Cancer. Front Immunol 2022; 13:898493. [PMID: 35812369 PMCID: PMC9259832 DOI: 10.3389/fimmu.2022.898493] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor binding protein-7 (IGFBP7) was recently reported to be a ligand of CD93, a potential target to normalize vasculature and attenuate immunotherapy. However, its role in the tumor microenvironment (TME) and immunotherapy response of bladder cancer (BLCA) remains unclear. We comprehensively evaluated the correlation between IGFBP7 and multiple immunological characteristics of BLCA across The Cancer Genome Atlas (TCGA) and two external cohorts. Importantly, the response of IGFBP7-grouped BLCA patients to immunotherapy was predicted and validated by five real-word immunotherapy cohorts. Finally, we developed an IGFBP7-based immune risk model validated by five independent cohorts. IGFBP7 modulated the TME across pan-caners. In BLCA, high expression of IGFBP7 was correlated with more aggressive clinical features. IGFBP7 was positively associated with immunomodulators and promoted tumor-infiltrating lymphocyte trafficking into the tumor microenvironment. However, T cells recognition and tumor cell killing were lower in the high-IGFBP7 group. In addition, high expression of IGFBP7 displayed lower enrichment scores for most pro-immunotherapy pathways. Clinical data from IMvigor210 and GSE176307 indicated that IGFBP7 negatively correlated with the BLCA immunotherapy response. The same trend was also observed in a renal cell carcinoma (RCC) cohort and two melanoma cohorts. Notably, urothelial and luminal differentiation were less frequently observed in the high-IGFBP7 group, while neuroendocrine differentiation was more frequently observed. Mechanistically, high IGFBP7 was associated with an enriched hypoxia pathway and higher expression of key genes in ERBB therapy and antiangiogenic therapy. Furthermore, our IGFBP7-based immune risk model was able to predict the prognosis and response to immunotherapy with good accuracy (5-year AUC = 0.734). Overall, IGFBP7 plays a critical role in the immunoregulation and TME of BLCA and may serve as a novel potential target for combination treatment with immunotherapy for BLCA.
Collapse
Affiliation(s)
- Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tianyi Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Ge
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Dazhou Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyan Lyu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jianzhong Ai, ; Xiaoyan Lyu,
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jianzhong Ai, ; Xiaoyan Lyu,
| |
Collapse
|
9
|
Yoo EJ, Hahn VS. Tackling the Heterogeneity of Heart Failure with Preserved Ejection Fraction Using Proteomic Profiling. J Card Fail 2022; 28:947-949. [PMID: 35470058 DOI: 10.1016/j.cardfail.2022.03.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Edwin J Yoo
- Johns Hopkins University School of Medicine, Division of Cardiology, Baltimore, MD
| | | |
Collapse
|
10
|
Wang J, Deng X, Xie Y, Tang J, Zhou Z, Yang F, He Q, Cao Q, Zhang L, He L. An Integrated Transcriptome Analysis Reveals IGFBP7 Upregulation in Vasculature in Traumatic Brain Injury. Front Genet 2021; 11:599834. [PMID: 33505428 PMCID: PMC7831608 DOI: 10.3389/fgene.2020.599834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Vasculature plays critical roles in the pathogenesis and neurological repair of traumatic brain injury (TBI). However, how vascular endothelial cells respond to TBI at the molecular level has not been systematically reviewed. Here, by integrating three transcriptome datasets including whole cortex of mouse brain, FACS-sorted mouse brain endothelial cells, and single cell sequencing of mouse brain hippocampus, we revealed the key molecular alteration of endothelial cells characterized by increased Myc targets and Epithelial-Mesenchymal Transition signatures. In addition, immunofluorescence staining of patients’ samples confirmed that IGFBP7 was up-regulated in vasculature in response to TBI. TGFβ1, mainly derived from microglia and endothelial cells, sufficiently induces IGFBP7 expression in cultured endothelial cells, and is significantly upregulated in response to TBI. Our results identified IGFBP7 as a potential biomarker of vasculature in response to TBI, and indicate that TGFβ signaling may contribute to the upregulation of IGFBP7 in the vasculature.
Collapse
Affiliation(s)
- Jianhao Wang
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiangyi Deng
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Yuan Xie
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiefu Tang
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Ziwei Zhou
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Fan Yang
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Qiyuan He
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qingze Cao
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lei Zhang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | - Liqun He
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Zhao Q, Zhao R, Song C, Wang H, Rong J, Wang F, Yan L, Song Y, Xie Y. Increased IGFBP7 Expression Correlates with Poor Prognosis and Immune Infiltration in Gastric Cancer. J Cancer 2021; 12:1343-1355. [PMID: 33531979 PMCID: PMC7847654 DOI: 10.7150/jca.50370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Insulin-like growth factor binding protein-7 (IGFBP7) contributes to multiple biological processes in various tumors. However, the role of IGFBP7 in gastric cancer (GC) is still undetermined. The study aims to explore the role of IGFBP7 in GC via an integrated bioinformatics analysis. Methods: IGFBP7 expression levels in GC and its normal gastric tissues were analyzed using multiple databases, including the Tumor Immune Estimation Resource (TIMER), Oncomine, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, as well as by our clinical gastric specimens. The methylation analysis was conducted with MEXPRESS, UALCAN and Xena online tools. The survival analysis was conducted using the Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Coexpressed genes of IGFBP7 were selected with the cBioPortal tool and enrichment analysis was conducted with the clusterProfiler package in R software. Gene set enrichment analysis (GSEA) was performed to explore the IGFBP7-related biological processes involved in GC. Correlations between IGFBP7 and immune cell infiltrates were analyzed using the TIMER database. Results: IGFBP7 expression was significantly upregulated in GC and correlated with stage, grade, tumor status and Helicobacter pylori infection. High IGFBP7 expression and low IGFBP7 methylation levels were significantly associated with short survival of patients with GC. Univariate and multivariate analyses revealed that IGFBP7 was an independent risk factor for GC. The coexpressed genes LHFPL6, SEPTIN4, HSPB2, LAYN and GGT5 predicted unfavorable outcomes of GC. Enrichment analysis showed that the coexpressed genes were involved in extracellular matrix (ECM)-related processes. GSEA indicated that IGFBP7 was positively related to ECM and inflammation-related pathways. TIMER analysis indicated that the mRNA level of IGFBP7 was strongly correlated with genes related to various infiltrating immune cells in GC, especially with gene markers of tumor associated macrophages (TAMs). Conclusions: Increased IGFBP7 expression correlates with poor prognosis and immune cell infiltration in GC, which might be a potential biomarker for the diagnosis of GC.
Collapse
Affiliation(s)
- Qiaoyun Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Rulin Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Conghua Song
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Jianfang Rong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Fangfei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Lili Yan
- Laboratory of Biochemistry and Molecular Biology, Jiangxi Institute of Medical Sciences, Nanchang 330000, Jiangxi Province, China
| | - Yanping Song
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| |
Collapse
|
12
|
Zhu S, Wang H, Zhang Z, Ma M, Zheng Z, Xu X, Sun T. IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway. Mol Med Rep 2020; 22:4837-4847. [PMID: 33173998 PMCID: PMC7646924 DOI: 10.3892/mmr.2020.11578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Abstract
Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) has been reported to have various functions in different cellular contexts. Our previous investigation discovered that IGFBP-rP1 inhibited retinal angiogenesis in vitro and in vivo by inhibiting the pro-angiogenic effect of VEGF and downregulating VEGF expression. Recently, IGFBP-rP1 was confirmed to be downregulated in the aqueous humor of patients with neovascular age-related macular degeneration compared with controls; however, its specific role remains unknown. The present study applied the technique of gene silencing, reverse transcription-quantitative PCR, western blotting, cell viability assays, cell motility assays and tube formation assays. Chemical hypoxic conditions and choroidal endothelial (RF/6A) cells were used to explore the effect of IGFBP-rP1-silencing on the phenotype activation of RF/6A cells under hypoxic conditions and to elucidate the underlying mechanisms. siRNA achieved IGFBP-rP1-silencing in RF/6A cells without cytotoxicity. IGFBP-rP1-silencing significantly restored the viability of RF/6A cells in hypoxia and enhanced hypoxia-induced migration and capillary-like tube formation of RF/6A cells. Furthermore, IGFBP-rP1-silencing significantly upregulated the expression of B-RAF, phosphorylated (p)-MEK, p-ERK and VEGF in RF/6A cells under hypoxic conditions; however, these upregulations were inhibited by exogenous IGFBP-rP1. These data indicated that silencing IGFBP-rP1 expression in RF/6A cells effectively promoted the hypoxia-induced angiogenic potential of choroidal endothelial cells by upregulating RAF/MEK/ERK signaling pathway activation and VEGF expression.
Collapse
Affiliation(s)
- Shuting Zhu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Hong Wang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhihua Zhang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Mingming Ma
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhi Zheng
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xun Xu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Tao Sun
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| |
Collapse
|
13
|
Bar O, Gelb S, Atamny K, Anzi S, Ben-Zvi A. Angiomodulin (IGFBP7) is a cerebral specific angiocrine factor, but is probably not a blood-brain barrier inducer. Fluids Barriers CNS 2020; 17:27. [PMID: 32238174 PMCID: PMC7110827 DOI: 10.1186/s12987-020-00188-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/23/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Several secreted factors have been identified as drivers of cerebral vasculature development and inducers of blood-brain barrier (BBB) differentiation. Vascular endothelial growth factor A (VEGF-A) is central for driving cerebral angiogenesis and Wnt family factors (Wnt7a, Wnt7b and norrin) are central for induction and maintenance of barrier properties. Expressed by developing neural tissue (neuron and glia progenitors), they influence the formation of central nervous system (CNS) vascular networks. Another type of factors are tissue-specific paracrine factors produced by endothelial cells (ECs), also known as 'angiocrine' factors, that provide instructive signals to regulate homeostatic and regenerative processes. Very little is known about CNS angiocrine factors and their role in BBB development. Angiomodulin (AGM) was reported to be expressed by developing vasculature and by pathological tumor vasculature. Here we investigated AGM in the developing CNS and its function as a potential BBB inducer. METHODS We analyzed microarray data to identify potential angiocrine factors specifically expressed at early stages of barrier formation. We then tested AGM expression with immunofluorescence and real-time PCR in various organs during development, post-natal and in adults. Permeability induction with recombinant proteins (Miles assay) was used to test potential interaction of AGM with VEGF-A. RESULTS Several angiocrine factors are differentially expressed by CNS ECs and AGM is a prominent CNS-specific angiocrine candidate. Contrary to previous reports, we found that AGM protein expression is specific to developing CNS endothelium and not to highly angiogenic developing vasculature in general. In skin vasculature we found that AGM antagonizes VEGF-A-induced vascular hyperpermeability. Finally, CNS AGM expression is not specific to BBB vasculature and AGM is highly expressed in non-BBB choroid-plexus vasculature. CONCLUSIONS We propose AGM as a developmental CNS vascular-specific marker. AGM is not a pan-endothelial marker, nor a general marker for developing angiogenic vasculature. Thus, AGM induction in the developing CNS might be distinct from its induction in pathology. While AGM is able to antagonize VEGF-A-induced vascular hyperpermeability in the skin, its high expression levels in non-BBB CNS vasculature does not support its potential role as a BBB inducer. Further investigation including loss-of-function approaches might elucidate AGM function in the developing CNS.
Collapse
Affiliation(s)
- Ofri Bar
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Sivan Gelb
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Kian Atamny
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Shira Anzi
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
14
|
Yan H, Li T, Wang Y, Li H, Xu J, Lu X. Insulin-like growth factor binding protein 7 accelerates hepatic steatosis and insulin resistance in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol 2019; 46:1101-1110. [PMID: 31397492 DOI: 10.1111/1440-1681.13159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
An association between increased insulin-like growth factor binding protein-7 (IGFBP7) expression and insulin resistance in metabolic diseases has been reported. However, the role and molecular mechanism of IGFBP-7 in non-alcoholic fatty liver disease (NAFLD) remains largely unknown. Therefore, the potential function of IGFBP7 in the pathological progression of NAFLD was explored in this investigation. For in vivo experiments, an animal model of NAFLD was established in C57BL/6 mice by feeding a high-fat diet (HFD), and IGFBP7 was knocked down by injecting adeno-associated adenovirus (AAV)-mediated short-hairpin (sh)-IGFBP7 into the liver. We found that AAV-sh-IGFBP7 treatment significantly alleviated hepatocyte injury and inhibited hepatic lipid accumulation by reducing lipogenesis-associated gene expression. Furthermore, downregulation of IGFBP7 markedly ameliorated IR and restored impaired insulin signalling by elevating the phosphorylation levels of IRS-1, Akt and GSK3β in HFD-treated mice. Similar results were also confirmed by an in vitro study in a palmitic acid (PA)-stimulated HepG2 cell model. In conclusion, our study demonstrates that IGFBP7 contributes to hepatic steatosis and insulin resistance in NAFLD development, which might serve as a novel therapeutic agent for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hua Yan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Gerontology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ting Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yatao Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyuan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaolan Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Park M, Mazalo J, Di Girolamo N. Insulin-like growth factor binding protein-7: A marker of conjunctivalization in an animal model of limbal stem cell deficiency. Ocul Surf 2019; 17:447-457. [PMID: 31125784 DOI: 10.1016/j.jtos.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Limbal stem cell deficiency (LSCD) is characterized by the loss of limbal epithelial stem cells, resulting in a pathological process termed 'conjunctivalization' which compromises corneal transparency, leading to blindness. Current diagnosis for LSCD is limited because reliable conjunctiva-specific biomarkers are lacking. This study sought to address this shortcoming through the serendipitous discovery of insulin-like growth factor binding protein (IGFBP)-7. METHODS IGFBP-7 expression was determined in normal (n=83) and conjunctivalized (n=52) mouse corneas with experimentally-induced LSCD, and in cadaveric normal human corneas (n=7) and human pterygia (n=15); a disease characterized by the invasion of a conjunctivalized, fibrovascular pannus. Clinical assessments including slit-lamp microscopy, fluorescein staining and impression cytology, and biochemical, molecular and immunological assays were also conducted. RESULTS Mass spectrometry of conditioned media from mouse limbal explant-derived cells revealed the presence of IGFBP-7. This factor was expressed in normal limbal and conjunctival epithelium and conjunctivalized corneas from mice with LSCD, and in human pterygium epithelium but not in normal mouse or human corneal epithelium. Four weeks after inducing LSCD, IGFBP-7 staining was increased by 2.9-fold in mouse corneas compared to steady-state, and by 1.6-fold in impression cytology specimens derived from the same mice. Notably, IGFBP-7 was detected approximately 2-weeks earlier than Muc5AC. CONCLUSIONS This study provides novel insights into the specificity of IGFBP-7 for the mammalian conjunctival epithelium in health and disease. A point-of-care test for IGFBP-7 could be developed to assist clinicians in early diagnosis, and in monitoring disease progression, severity and therapeutic outcomes in patients with LSCD.
Collapse
Affiliation(s)
- Mijeong Park
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Jessica Mazalo
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
16
|
Slater T, Haywood NJ, Matthews C, Cheema H, Wheatcroft SB. Insulin-like growth factor binding proteins and angiogenesis: from cancer to cardiovascular disease. Cytokine Growth Factor Rev 2019; 46:28-35. [PMID: 30954375 DOI: 10.1016/j.cytogfr.2019.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/22/2022]
Abstract
Angiogenesis is a tightly regulated activity that is vital during embryonic development and for normal physiological repair processes and reproduction in healthy adults. Pathological angiogenesis is a driving force behind a variety of diseases including cancer and retinopathies, and inhibition of angiogenesis is a therapeutic option that has been the subject of much research, with several inhibitory agents now available for medical therapy. Conversely, therapeutic angiogenesis has been mooted as having significant potential in the treatment of ischemic conditions such as angina pectoris and peripheral arterial disease, but so far there has been less translation from lab to bedside. The insulin-like growth factor binding proteins (IGFBP) are a family of seven proteins essential for the binding and transport of the insulin-like growth factors (IGF). It is being increasingly recognised that IGFBPs have a significant role beyond simply modulating IGF activity, with evidence of both IGF dependent and independent actions through a variety of mechanisms. Moreover, the action of the IGFBPs can be stimulatory or inhibitory depending on the cell type and environment. Specifically the IGFBPs have been heavily implicated in angiogenesis, both pathological and physiological, and they have significant promise as targeted cell therapy agents for both pathological angiogenesis inhibition and therapeutic angiogenesis following ischemic injury. In this short review we will explore the current understanding of the individual impact of each IGFBP on angiogenesis, and the pathways through which these effects occur.
Collapse
Affiliation(s)
- Thomas Slater
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Connor Matthews
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Harneet Cheema
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom.
| |
Collapse
|
17
|
Berendam SJ, Koeppel AF, Godfrey NR, Rouhani SJ, Woods AN, Rodriguez AB, Peske JD, Cummings KL, Turner SD, Engelhard VH. Comparative Transcriptomic Analysis Identifies a Range of Immunologically Related Functional Elaborations of Lymph Node Associated Lymphatic and Blood Endothelial Cells. Front Immunol 2019; 10:816. [PMID: 31057546 PMCID: PMC6478037 DOI: 10.3389/fimmu.2019.00816] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Lymphatic and blood vessels are formed by specialized lymphatic endothelial cells (LEC) and blood endothelial cells (BEC), respectively. These endothelial populations not only form peripheral tissue vessels, but also critical supporting structures in secondary lymphoid organs, particularly the lymph node (LN). Lymph node LEC (LN-LEC) also have been shown to have important immunological functions that are not observed in LEC from tissue lymphatics. LN-LEC can maintain peripheral tolerance through direct presentation of self-antigen via MHC-I, leading to CD8 T cell deletion; and through transfer of self-antigen to dendritic cells for presentation via MHC-II, resulting in CD4 T cell anergy. LN-LEC also can capture and archive foreign antigens, transferring them to dendritic cells for maintenance of memory CD8 T cells. The molecular basis for these functional elaborations in LN-LEC remain largely unexplored, and it is also unclear whether blood endothelial cells in LN (LN-BEC) might express similar enhanced immunologic functionality. Here, we used RNA-Seq to compare the transcriptomic profiles of freshly isolated murine LEC and BEC from LN with one another and with freshly isolated LEC from the periphery (diaphragm). We show that LN-LEC, LN-BEC, and diaphragm LEC (D-LEC) are transcriptionally distinct from one another, demonstrating both lineage and tissue-specific functional specializations. Surprisingly, tissue microenvironment differences in gene expression profiles were more numerous than those determined by endothelial cell lineage specification. In this regard, both LN-localized endothelial cell populations show a variety of functional elaborations that suggest how they may function as antigen presenting cells, and also point to as yet unexplored roles in both positive and negative regulation of innate and adaptive immune responses. The present work has defined in depth gene expression differences that point to functional specializations of endothelial cell populations in different anatomical locations, but especially the LN. Beyond the analyses provided here, these data are a resource for future work to uncover mechanisms of endothelial cell functionality.
Collapse
Affiliation(s)
- Stella J. Berendam
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alexander F. Koeppel
- Department of Public Health Sciences and Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Nicole R. Godfrey
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Sherin J. Rouhani
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Amber N. Woods
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Anthony B. Rodriguez
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - J. David Peske
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kara L. Cummings
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Stephen D. Turner
- Department of Public Health Sciences and Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Victor H. Engelhard
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- *Correspondence: Victor H. Engelhard
| |
Collapse
|
18
|
Doreille A, Dieudé M, Cardinal H. The determinants, biomarkers, and consequences of microvascular injury in kidney transplant recipients. Am J Physiol Renal Physiol 2018; 316:F9-F19. [PMID: 30379097 DOI: 10.1152/ajprenal.00163.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Independent of the initial cause of kidney disease, microvascular injury to the peritubular capillary network appears to play a central role in the development of interstitial fibrosis in both native and transplanted kidney disease. This association is explained by mechanisms such as the upregulation of profibrotic genes and epigenetic changes induced by hypoxia, capillary leakage, endothelial and pericyte transition to interstitial fibroblasts, as well as modifications in the secretome of endothelial cells. Alloimmune injury due to antibody-mediated rejection and ischemia-reperfusion injury are the two main etiologies of microvascular damage in kidney transplant recipients. The presence of circulating donor-specific anti-human leukocyte antigen (HLA) antibodies, histological findings, such as diffuse C4d staining in peritubular capillaries, and the extent and severity of peritubular capillaritis, are commonly used clinically to provide both diagnostic and prognostic information. Complement-dependent assays, circulating non-HLA antibodies, or evaluation of the microvasculature with novel imaging techniques are the subject of ongoing studies.
Collapse
Affiliation(s)
- Alice Doreille
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Université Paris-Sud , Paris , France
| | - Mélanie Dieudé
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Canadian Donation and Transplantation Research Program, Montreal, Quebec, Canada
| | - Heloise Cardinal
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Canadian Donation and Transplantation Research Program, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Cai X, Wang L, Wang X, Hou F. Silence of IGFBP7 suppresses apoptosis and epithelial mesenchymal transformation of high glucose induced-podocytes. Exp Ther Med 2018; 16:1095-1102. [PMID: 30112052 PMCID: PMC6090473 DOI: 10.3892/etm.2018.6298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor-binding protein 7 (IGFBP7) has been identified as a secreted protein associated with a number of cellular processes. However, the specific regulatory mechanisms of IGFBP7 on podocytes of diabetic nephropathy (DN) are yet to be elucidated. In the present study, podocytes were identified initially via an immunofluorescence assay using an anti-synaptopodin antibody. It was subsequently demonstrated that glucose promoted podocyte proliferation in a time- and dose-dependent manner via MTT assay. In addition, IGFBP7 expression was silenced in podocytes via siRNA, the effects of which were evaluated using western blotting and reverse transcription-quantitative polymerase chain reaction. It was demonstrated that silencing IGFBP7 inhibited apoptosis and epithelial mesenchymal transformation (EMT) of podocytes mediated by high glucose (HG). Transforming growth factor (TGF)-β1/mothers against decapentaplegic homolog (Smad) signaling was associated with proliferation, apoptotic activities and EMT. Therefore, the expression levels of TGF-β1/Smad pathway were detected, and it was observed that silencing IGFBP7 suppressed the TGF-β1/Smad pathway in podocytes induced by HG. These findings suggested that IGFBP7 may serve as a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Xiaojun Cai
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang 150036, P.R. China
| | - Lei Wang
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang 150036, P.R. China
| | - Xuling Wang
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang 150036, P.R. China
| | - Fengyan Hou
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
20
|
Significant Down-Regulation of "Biological Adhesion" Genes in Porcine Oocytes after IVM. Int J Mol Sci 2017; 18:ijms18122685. [PMID: 29232894 PMCID: PMC5751287 DOI: 10.3390/ijms18122685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023] Open
Abstract
Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes’ maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB+ oocytes were directly exposed to microarray assays and RT-qPCR (“before IVM” group), or first in vitro matured and then if classified as BCB+ passed to molecular analyses (“after IVM” group). As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes’ successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte’s achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.
Collapse
|
21
|
Comprehensive Transcriptome Analysis of Six Catfish Species from an Altitude Gradient Reveals Adaptive Evolution in Tibetan Fishes. G3-GENES GENOMES GENETICS 2015; 6:141-8. [PMID: 26564948 PMCID: PMC4704712 DOI: 10.1534/g3.115.024448] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Glyptosternoid fishes (Siluriformes), one of the three broad fish lineages (the two other are schizothoracines and Triplophysa), have a limited distribution in the rivers in the Tibetan Plateau and peripheral regions. To investigate the genetic mechanisms underlying adaptation to the Tibetan Plateau in several fish species from gradient altitudes, a total of 20,659,183–37,166,756 sequence reads from six species of catfish were generated by Illumina sequencing, resulting in six assemblies. Analysis of the 1,656 orthologs among the six assembled catfish unigene sets provided consistent evidence for genome-wide accelerated evolution in the three glyptosternoid lineages living at high altitudes. A large number of genes refer to functional categories related to hypoxia and energy metabolism exhibited rapid evolution in the glyptosternoid lineages relative to yellowhead catfish living in plains areas. Genes showing signatures of rapid evolution and positive selection in the glyptosternoid lineages were also enriched in functions associated with energy metabolism and hypoxia. Our analyses provide novel insights into highland adaptation in fishes and can serve as a foundation for future studies aiming to identify candidate genes underlying the genetic basis of adaptation in Tibetan fishes.
Collapse
|