1
|
Garcia-Canovas M, Parrilla I, Cuello C, Gil MA, Martinez EA. Swine in vitro embryo production: Potential, challenges, and advances. Anim Reprod Sci 2024; 270:107600. [PMID: 39270509 DOI: 10.1016/j.anireprosci.2024.107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Pig production, a vital sector of the meat industry, faces demands for improved quality, efficiency, and sustainability. Advancements in breeding, disease control, and artificial insemination have enhanced production, while biotechnologies such as in vitro embryo production (IVP) and genetic engineering offer further progress. In vitro embryo production could facilitate the global exchange of valuable genetic material, accelerate breeding programs, and improve productivity, and it is essential for generating genetically modified (GM) pigs. These GM pigs have two main applications: first, they allow for targeted modifications aimed at improving production traits relevant to pig production in agriculture, such as meat quality and disease resistance. Second, they serve as valuable biomedical models for human disease research, regenerative medicine, and organ transplantation. Yet, despite notable advancements in recent decades, the efficiency of the current IVP systems for porcine embryos remains a challenge. Compared to the in vivo environment, suboptimal culture conditions lead to issues such as elevated polyspermy, poor embryo development, and the production of low-quality blastocysts. This review provides an overview of the key steps and recent advancements in porcine IVP technology. We will emphasize the promising utilization of oocytes from live females of high genetic value through ovum pick-up and the incorporation of extracellular vesicles and cytokines into IVP media. These innovative strategies hold immense potential to significantly enhance embryo development and overall success rates in porcine IVP, and could open the door for significant progress in both agriculture and biomedicine applications.
Collapse
Affiliation(s)
- Manuela Garcia-Canovas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain.
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| |
Collapse
|
2
|
Liu Y, Xie F, Zhang H, Ye H, Wen H, Qiu M, Ding Y, Zheng X, Yin Z, Zhang X. Preliminary construction of non-coding RNAs and ceRNA regulatory networks mediated by exosomes in porcine follicular fluid. Genomics 2024; 116:110920. [PMID: 39151553 DOI: 10.1016/j.ygeno.2024.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Follicles are fundamental units of the ovary, regulated intricately during development. Exosomes and ovarian granulosa cells (OGCs) play pivotal roles in follicular development, yet the regulatory mechanisms governing exosomes remain elusive. RESULTS High-throughput sequencing was employed to evaluate the complete transcript expression profiles of six samples (three porcine ovarian granulosa cells-exosome co-culture samples (GCE) and three porcine ovarian granulosa cells (POGCs) samples). Differential expression analysis revealed 924 lncRNAs, 35 circRNAs, 49 miRNAs, and 9823 mRNAs in the GCE group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated enrichment of differentially expressed transcripts in pathways related to cell proliferation and apoptosis. Furthermore, a ceRNA regulatory network comprising 43 lncRNAs, 6 circRNAs, 11 miRNAs, and 126 mRNAs was constructed based on intergene co-expression correlations. Seven miRNAs associated with cell proliferation and apoptosis regulation were identified within this network, encompassing 92 subnet pairs as candidate genes for further exploration of exosome regulatory mechanisms. Additionally, preliminary verification at the cellular level demonstrated that exosomal miR-200b enhances the viability of POGCs. CONCLUSIONS Transcriptome analysis unveiled a pivotal candidate ceRNA network potentially implicated in exosome-mediated regulation of granulosa cell proliferation and apoptosis, thereby influencing porcine follicular development. These findings offer insights into the molecular mechanisms of follicular fluid exosome regulation, encompassing both coding and non-coding RNA perspectives.
Collapse
Affiliation(s)
- Yangguang Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Fan Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Huibin Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Haibo Ye
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Haoyu Wen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Mengyao Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Duval C, Wyse BA, Tsang BK, Librach CL. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: a review. J Ovarian Res 2024; 17:160. [PMID: 39103867 DOI: 10.1186/s13048-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Extracellular vesicles (EVs), particles enriched in bioactive molecules like proteins, nucleic acids, and lipids, are crucial mediators of intercellular communication and play key roles in various physiological and pathological processes. EVs have been shown to be involved in ovarian follicular function and to be altered in two prevalent gynecological disorders; polycystic ovarian syndrome (PCOS) and endometriosis.Ovarian follicles are complex microenvironments where folliculogenesis takes place with well-orchestrated interactions between granulosa cells, oocytes, and their surrounding stromal cells. Recent research unveiled the presence of EVs, including exosomes and microvesicles, in the follicular fluid (FFEVs), which constitutes part of the developing oocyte's microenvironment. In the context of PCOS, a multifaceted endocrine, reproductive, and metabolic disorder, studies have explored the dysregulation of these FFEVs and their cargo. Nine PCOS studies were included in this review and two miRNAs were commonly reported in two different studies, miR-379 and miR-200, both known to play a role in female reproduction. Studies have also demonstrated the potential use of EVs as diagnostic tools and treatment options.Endometriosis, another prevalent gynecological disorder characterized by ectopic growth of endometrial-like tissue, has also been linked to aberrant EV signaling. EVs in the peritoneal fluid of women with endometriosis carry molecules that modulate the immune response and promote the establishment and maintenance of endometriosis lesions. EVs derived from endometriosis lesions, serum and peritoneal fluid obtained from patients with endometriosis showed no commonly reported biomolecules between the eleven reviewed studies. Importantly, circulating EVs have been shown to be potential biomarkers, also reflecting the severity of the pathology.Understanding the interplay of EVs within human ovarian follicles may provide valuable insights into the pathophysiology of both PCOS and endometriosis. Targeting EV-mediated communication may open avenues for novel diagnostic and therapeutic approaches for these common gynecological disorders. More research is essential to unravel the mechanisms underlying EV involvement in folliculogenesis and its dysregulation in PCOS and endometriosis, ultimately leading to more effective and personalized interventions.
Collapse
Affiliation(s)
- Cyntia Duval
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Benjamin K Tsang
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
4
|
Barranco I, Spinaci M, Nesci S, Mateo-Otero Y, Baldassarro VA, Algieri C, Bucci D, Roca J. Seminal extracellular vesicles alter porcine in vitro fertilization outcome by modulating sperm metabolism. Theriogenology 2024; 219:167-179. [PMID: 38437767 DOI: 10.1016/j.theriogenology.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Porcine seminal plasma (SP) is loaded with a heterogeneous population of extracellular vesicles (sEVs) that modulate several reproductive-related processes. This study investigated the effect of two sEV subsets, small (S-sEVs) and large (L-sEVs), on porcine in vitro fertilization (IVF). The sEVs were isolated from nine SP pools (five ejaculates/pool) using a size-exclusion chromatography-based procedure and characterized for quantity (total protein), morphology (cryogenic electron microscopy), size distribution (dynamic light scattering), purity and EV-protein markers (flow cytometry; albumin, CD81, HSP90β). The characterization confirmed the existence of two subsets of high purity (low albumin content) sEVs that differed in size (S- and L-sEVs). In vitro fertilization was performed with in vitro matured oocytes and frozen-thawed spermatozoa and the IVF medium was supplemented during gamete coincubation (1 h at 38.5 °C, 5 % CO2 in a humidified atmosphere) with three different concentrations of each sEV subset: 0 (control, without sEVs), 0.1, and 0.2 mg/mL. The first experiment showed that sEVs, regardless of subset and concentration, decreased penetration rates and total IVF efficiency (P < 0.0001). In a subsequent experiment, it was shown that sEVs, regardless of subset and concentration, impaired the ability of spermatozoa to bind to the zona pellucida of oocytes (P < 0.0001). The following experiment showed that sEVs, regardless of the subset, bound to frozen-thawed sperm but not to in vitro matured oocytes, indicating that sEVs would affect sperm functionality but not oocyte functionality. The lack of effect on oocytes was confirmed by incubating sEVs with oocytes prior to IVF, achieving sperm-zona pellucida binding results similar to those of control. In the last experiment, conducted under IVF conditions, sperm functionality was analyzed in terms of tyrosine phosphorylation, acrosome integrity and metabolism. The sEVs, regardless of the subset, did not affect sperm tyrosine phosphorylation or acrosome integrity, but did influence sperm metabolism by decreasing sperm ATP production under capacitating conditions. In conclusion, this study demonstrated that the presence of sEVs on IVF medium impairs IVF outcomes, most likely by altering sperm metabolism.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy; Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Diego Bucci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy.
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| |
Collapse
|
5
|
Gabryś J, Gurgul A, Szmatoła T, Kij-Mitka B, Andronowska A, Karnas E, Kucharski M, Wojciechowska-Puchałka J, Kochan J, Bugno-Poniewierska M. Follicular Fluid-Derived Extracellular Vesicles Influence on In Vitro Maturation of Equine Oocyte: Impact on Cumulus Cell Viability, Expansion and Transcriptome. Int J Mol Sci 2024; 25:3262. [PMID: 38542236 PMCID: PMC10970002 DOI: 10.3390/ijms25063262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 07/14/2024] Open
Abstract
Cumulus cell (CC) expansion is pivotal for oocyte maturation, during which CCs release factors that initiate paracrine signaling within the follicular fluid (FF). The FF is abundant in extracellular vesicles (EVs) that facilitate intercellular communication. Although bovine and murine EVs can control cumulus expansion, these effects have not been observed in equines. This study aimed to assess the impact of FF-derived EVs (ffEVs) on equine CC expansion, viability, and transcriptome. Cumulus-oocyte complexes (COCs) that underwent in vitro maturation (IVM) in the presence (200 µg protein/mL) or absence (control) of ffEVs were assessed for cumulus expansion and viability. CCs were isolated after 12 h of IVM, followed by RNA extraction, cDNA library generation, and subsequent transcriptome analysis using next-generation sequencing. Confocal microscopy images illustrated the internalization of labeled ffEVs by CCs. Supplementation with ffEVs significantly enhanced cumulus expansion in both compacted (Cp, p < 0.0001) and expanded (Ex, p < 0.05) COCs, while viability increased in Cp groups (p < 0.01), but decreased in Ex groups (p < 0.05), compared to the controls. Although transcriptome analysis revealed a subtle effect on CC RNA profiles, differentially expressed genes encompassed processes (e.g., MAPK and Wnt signaling) potentially crucial for cumulus properties and, consequently, oocyte maturation.
Collapse
Affiliation(s)
- Julia Gabryś
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1c, 30-248 Krakow, Poland;
| | - Tomasz Szmatoła
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1c, 30-248 Krakow, Poland;
| | - Barbara Kij-Mitka
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Mirosław Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland;
| | - Joanna Wojciechowska-Puchałka
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Joanna Kochan
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| |
Collapse
|
6
|
Edure T, Matsuno Y, Matsushita K, Maruyama N, Fujii W, Naito K, Sugiura K. Dynamics of extracellular vesicle uptake by mural granulosa cells in mice. Mol Reprod Dev 2024; 91:e23737. [PMID: 38450862 DOI: 10.1002/mrd.23737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Extracellular vesicles (EVs) play an important role in the development and function of mammalian ovarian follicles. However, the mechanisms by which they are taken up by the follicular granulosa cells remain unclear. In addition, while oocytes play a pivotal role in follicular development, the possible interactions between oocyte-derived paracrine factors (ODPFs) and EV signals are unknown. Therefore, this study aimed to elucidate the mechanism of EV uptake and the effects of ODPFs on EV uptake by follicular somatic mural granulosa cells in mice. Fluorescence-labeled transferrin (TRF) and cholera toxin B (CTB), substrates for clathrin- and caveolae-mediated endocytosis, respectively, were taken up by mural granulosa cells in vitro. Their uptake was inhibited by Pitstop 2 and genistein, inhibitors of clathrin and caveolae pathways, respectively. Mural granulosa cells took up EVs, and this uptake was suppressed by Pitstop 2 and genistein. Moreover, ODPFs promoted the uptake of EVs and CTB, but not TRF, by mural granulosa cells. These results suggest that mural granulosa cells take up EVs through both clathrin- and caveolae-mediated endocytosis and that oocytes may promote caveolae-mediated endocytosis to facilitate the uptake of EVs.
Collapse
Affiliation(s)
- Taichi Edure
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Matsuno
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kodai Matsushita
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Farrokhyar S, Baharara J, Eidi A, Hayati Roodbari N. Effect of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells on Ovarian Granulosa Cells of Immature NMRI Mice. CELL JOURNAL 2024; 26:28-38. [PMID: 38351727 PMCID: PMC10864772 DOI: 10.22074/cellj.2023.2002520.1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE In recent years, in vitro maturation (IVM) has become the focus of fertility maintenance, and infertility treatment. The aim of this study is development of oocytes during folliculogenesis and oogenesis is greatly influenced by the presence of BMP-7, BMP-15, and GDF-9 genes, which are present in exosomes generated from bone marrow stem cells. MATERIALS AND METHODS In the experimental study, we investigated how exosomes obtained from bone marrow stem cells affected development and expansion of ovarian granulosa cells (GCs) in NMRI mice. In this in vitro experiment, bone marrow stem cells were isolated from mice's bone marrow, and after identification, exosomes were recovered. Exosome doses of 100, 50, and 25 μg/ml were applied to GCs before using MTT assay to measure survival rates and quantitative reverse-transcription polymerase chain reaction (PCR) to measure expression of the BMP-7, BMP-15, and GDF-9 genes. RESULTS The results showed that the GCs treated with exosomes concentrations of 25, 50, and 100 μg/ml significantly increased bioavailability, growth and proliferation and it also increased expression level of BMP-7, BMP-15, and GDF-9 genes compared to the controls. CONCLUSION Findings of this study indicated that exosomes derived from bone marrow stem cells improved growth of GCs in NMRI mice and they were a good candidate for further clinical studies to improve quality of the assisted reproductive techniques.
Collapse
Affiliation(s)
- Sajad Farrokhyar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Baharara
- Department of Biology and Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Han Y, Qu X, Chen X, Lv Y, Zhang Y, Jin Y. Effects of follicular fluid exosomes on in vitro maturation of porcine oocytes. Anim Biotechnol 2023; 34:2757-2765. [PMID: 36036234 DOI: 10.1080/10495398.2022.2114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Exosomes are related to effective communication between cells. In this study we aimed to investigate the effect of porcine follicular fluid exosomes (FF-Exo) on cumulus expansion, oocyte mitochondrial membrane potential, and maturation in in vitro culture. We used different concentrations of FF-Exo (Exo-0, Exo-1, Exo-10, Exo-20, and Exo-40) and added them to an oocyte maturation medium. Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blot (WB) showed that the isolated samples were exosomes. Immunofluorescence showed that exosomes could be taken up by cumulus cells. Compared with the Exo-0 group, there was no significant difference in oocyte maturation rate in the Exo-1 group (p > 0.05), while the Exo-10 group (p < 0.05), Exo-20 group (p < 0.01) and Exo-40 group (p < 0.01) significantly increased. The maturation rate of the Exo-20 and Exo-40 groups was the highest, and there was no significant difference between the two groups (p > 0.05). However, different concentrations of treatment could not effectively induce cumulus expansion and the results of JC1 showed that it had no significant effect on mitochondrial membrane potential (p > 0.05). In conclusion, the results suggest that porcine FF-Exo are involved in oocyte nuclear maturation.
Collapse
Affiliation(s)
- Yue Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Xinglin Qu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Xuan Chen
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Yanqiu Lv
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Yuyang Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Yi Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
9
|
Zhou R, Liu D. The function of exosomes in ovarian granulosa cells. Cell Tissue Res 2023; 394:257-267. [PMID: 37603064 DOI: 10.1007/s00441-023-03820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Granulosa cells (GCs), as the basic components of ovarian tissue, play an indispensable role in maintaining normal ovarian functions such as hormone synthesis and ovulation. The abnormality of GCs often leads to ovarian endocrine disorders, which exert a negative effect on life quality and life expectancy. However, the pathogenesis and treatment of diseases are still poorly understood. Exosomes contain regulatory molecules and can transmit biological information in cell interaction. The role of exosomes in GCs has been studied extensively. This review summarizes the regulatory function of exosomes in GCs, as well as their participation in etiopathogenesis and their promising application in treatment when it comes to ovarian endocrine diseases, which can help us better understand ovarian diseases from the perspective of GCs.
Collapse
Affiliation(s)
- Ruotong Zhou
- Department of Endocrinology, First Affiliated Hospital of Dalian Medical University, Zhongshan Str.222, Dalian, 116011, Liaoning, China
| | - Dan Liu
- Department of Endocrinology, First Affiliated Hospital of Dalian Medical University, Zhongshan Str.222, Dalian, 116011, Liaoning, China.
| |
Collapse
|
10
|
Yuan C, Cao M, Chen L, Zhao Y, Chen X, Shen C, Li C, Zhou X. Follicular fluid exosomes inhibit BDNF expression and promote the secretion of chemokines in granulosa cells by delivering miR-10b-5p. Theriogenology 2023; 199:86-94. [PMID: 36709652 DOI: 10.1016/j.theriogenology.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Ovulation is an inflammatory response. Before ovulation, follicle cells release chemokines to recruit immune cells and promote ovulation. The objective of this study was to investigate whether follicular fluid exosomes promote chemokine secretion by granulosa cells (GCs). Porcine follicular fluid exosomes and follicular GCs were isolated in vitro. GCs were treated with follicular fluid exosomes in vitro and the differential gene expression profiles of the exosome-treated and control groups were obtained by transcriptome sequencing. The results showed that, when compared to the controls, the expression of the chemokines CCL2 and CXCL8 was significantly increased, whereas the expression of brain-derived neurotrophic factor (BDNF) was significantly decreased. The miRNA expression profiles in follicular fluid exosomes were obtained by microRNA sequencing. The results showed that exosomes carried many microRNAs, and that miR-10b-5p carried by exosomes could promote the secretion of CCL2 and CXCL8 by targeting BDNF. In conclusion, the present study demonstrates that exosomes promote the secretion of CCL2 and CXCL8 by granulosa cells through the miR-10b-5p/BDNF axis to promote ovulation.
Collapse
Affiliation(s)
- Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Xue Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Caomeihui Shen
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
11
|
Zhao Y, Wang Y, Ling Z, Xue Y, Luan D, Kang J, Zhang Y, Quan F. Low-density small extracellular vesicles in bovine follicular fluid carrying let-7i target FASLG to inhibit granulosa cells apoptosis. Theriogenology 2023; 199:121-130. [PMID: 36716593 DOI: 10.1016/j.theriogenology.2023.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
Apoptosis of granulosa cells is a key factor in mammalian follicular atresia. It has a significant impact on oocyte development and maturation. Extracellular vesicles (EVs) are a group of highly heterogeneous population. Previous studies have found that ovarian follicular fluid is rich in EVs. In the present study, the follicular fluid of 3-5 mm follicles from bovine ovaries without corpus luteum was collected, and a subtype of small EVs (sEVs), low-density small EVs (LD-sEVs), was successfully isolated by differential ultracentrifugation combined with iodixanol density gradient centrifugation. LD-sEVs were identified using transmission electron microscope, nanoparticle tracking analysis and Western blot. Flow cytometry, Quantitative reverse transcription PCR (RT-qPCR), Western blot, and other methods were used to detect the effect of LD-sEVs on follicular granulosa cell apoptosis. After that, let-7i, a highly expressed miRNA component in LD-sEVs, was screened and target validation was carried out in granulosa cells. The results showed that LD-sEVs could be taken up by granulosa cells and inhibited the apoptosis. Further research found that let-7i inhibits the apoptosis of granulosa cells by targeting FASLG. It plays an important role in regulating the apoptosis of follicular granulosa cells, which may affect follicular development.
Collapse
Affiliation(s)
- Yunqi Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Ying Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zimeng Ling
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Yaxing Xue
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Deji Luan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shanxi, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shanxi, China.
| |
Collapse
|
12
|
Fan W, Qi Y, Wang Y, Yan H, Li X, Zhang Y. Messenger roles of extracellular vesicles during fertilization of gametes, development and implantation: Recent advances. Front Cell Dev Biol 2023; 10:1079387. [PMID: 36684431 PMCID: PMC9849778 DOI: 10.3389/fcell.2022.1079387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) have become a research hotspot in recent years because they act as messengers between cells in the physiological and pathological processes of the human body. It can be produced by the follicle, prostate, embryo, uterus, and oviduct in the reproductive field and exists in the extracellular environment as follicular fluid, semen, uterine cavity fluid, and oviduct fluid. Because extracellular vesicles are more stable at transmitting information, it allows all cells involved in the physiological processes of embryo formation, development, and implantation to communicate with one another. Extracellular vesicles carried miRNAs and proteins as mail, and when the messenger delivers the mail to the recipient cell, the recipient cell undergoes a series of changes. Current research begins with intercepting and decoding the information carried by extracellular vesicles. This information may help us gain a better understanding of the secrets of reproduction, as well as assist reproductive technology as an emerging marker and treatment.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yinghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaqian Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huiting Yan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuan Li
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingjie Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Yingjie Zhang,
| |
Collapse
|
13
|
Seminal extracellular vesicles subsets modulate gene expression in cumulus cells of porcine in vitro matured oocytes. Sci Rep 2022; 12:19096. [PMID: 36351965 PMCID: PMC9646759 DOI: 10.1038/s41598-022-22004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Seminal plasma (SP), a fluid composed mainly by secretions from accessory sex glands, contains a heterogenous population of extracellular vesicles (EVs), involved in several reproductive physiological processes. Seminal plasma has been found to modulate ovary function, in terms of hormone secretion and immune regulation. This study evaluated the potential effect of SP-EV-subsets on the modulation of cumulus-oocyte-complex (COCs) physiology during in vitro maturation (IVM). Two SP-EV-subsets, small-EVs (S-EVs) and large-EVs (L-EVs), were isolated from pig SP by size-exclusion-chromatography. Next, COCs were IVM in the absence (control) or presence of each SP-EV-subset to evaluate their uptake by COCs (PKH67-EVs labelling) and their effect on oocyte and cumulus cells (CCs) (gene expression, and progesterone and estradiol-17β levels). S-EVs and L-EVs were able to bind CCs but not oocytes. Supplementation with L-EVs induced changes (P ≤ 0.05) in the transcript levels of oocyte maturation- (HAS2) and steroidogenesis-related genes (CYP11A1 and HSD3B1) in CCs. No effect on nuclear oocyte maturation and progesterone and estradiol-17β levels was observed when COCs were IVM with any of the two SP-EV-subsets. In conclusion, while SP-EV-subsets can be integrated by CCs during IVM, they do not affect oocyte maturation and only L-EVs are able to modulate CCs function, mainly modifying the expression of steroidogenesis-related genes.
Collapse
|
14
|
Extracellular Vesicles in Veterinary Medicine. Animals (Basel) 2022; 12:ani12192716. [PMID: 36230457 PMCID: PMC9559303 DOI: 10.3390/ani12192716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound vesicles involved in many physiological and pathological processes not only in humans but also in all the organisms of the eukaryotic and prokaryotic kingdoms. EV shedding constitutes a fundamental universal mechanism of intra-kingdom and inter-kingdom intercellular communication. A tremendous increase of interest in EVs has therefore grown in the last decades, mainly in humans, but progressively also in animals, parasites, and bacteria. With the present review, we aim to summarize the current status of the EV research on domestic and wild animals, analyzing the content of scientific literature, including approximately 220 papers published between 1984 and 2021. Critical aspects evidenced through the veterinarian EV literature are discussed. Then, specific subsections describe details regarding EVs in physiology and pathophysiology, as biomarkers, and in therapy and vaccines. Further, the wide area of research related to animal milk-derived EVs is also presented in brief. The numerous studies on EVs related to parasites and parasitic diseases are excluded, deserving further specific attention. The literature shows that EVs are becoming increasingly addressed in veterinary studies and standardization in protocols and procedures is mandatory, as in human research, to maximize the knowledge and the possibility to exploit these naturally produced nanoparticles.
Collapse
|
15
|
Yuan C, Chen X, Shen C, Chen L, Zhao Y, Wang X, Cao M, Zhao Z, Chen T, Zhang B, Iqbal T, Li C, Zhou X. Follicular fluid exosomes regulate oxidative stress resistance, proliferation, and steroid synthesis in porcine theca cells. Theriogenology 2022; 194:75-82. [DOI: 10.1016/j.theriogenology.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
16
|
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, Chen Y, Zhou S, Zhang J, Li Y, Wang W, Dai J, Wang S. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. J Nanobiotechnology 2022; 20:374. [PMID: 35953871 PMCID: PMC9367160 DOI: 10.1186/s12951-022-01566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
17
|
Kanke T, Fujii W, Naito K, Sugiura K. Effect of fibroblast growth factor signaling on cumulus expansion in mice in vitro. Mol Reprod Dev 2022; 89:281-289. [PMID: 35678749 DOI: 10.1002/mrd.23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/23/2022] [Accepted: 05/25/2022] [Indexed: 11/07/2022]
Abstract
The expansion of cumulus cells associated with oocytes is an essential phenomenon in normal mammalian ovulation. Indeed, attenuated expression of cumulus expansion-related genes, including Has2, Ptgs2, Ptx3, and Tnfaip6, results in ovulation failure, leading to female subfertility or infertility. Moreover, emerging evidence suggests that proteins of the fibroblast growth factor (FGF) family, produced within ovarian follicles, regulate the development and function of cumulus cells; however, the effects of FGF signaling on cumulus expansion have not been investigated extensively. Herein, we investigate the effects of FGF signaling, particularly those of FGF8 secreted by oocytes, on epidermal growth factor-induced cumulus expansion in mice. The phosphorylation level of MAPK3/1, an intracellular mediator of FGF signaling, was significantly decreased in cumulus-oocyte complexes (COCs) following treatment with NVP-BGJ398, an FGF receptor inhibitor. Moreover, even though NVP-BGJ398 treatment did not affect cumulus cell expansion, it significantly upregulated the expression of Ptgs2 and Ptx3. In contrast, treatment with recombinant FGF8 did not affect the degree of cumulus expansion or the expression of expansion-related genes in COCs or oocytectomized cumulus cell complexes. Collectively, these results suggest that FGFs, other than FGF8, exert suppressive effects on the cumulus expansion process in mice.
Collapse
Affiliation(s)
- Takuya Kanke
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Gad A, Murin M, Bartkova A, Kinterova V, Marcollova K, Laurincik J, Prochazka R. Small-extracellular vesicles and their microRNA cargo from porcine follicular fluids: the potential association with oocyte quality. J Anim Sci Biotechnol 2022; 13:82. [PMID: 35725584 PMCID: PMC9208166 DOI: 10.1186/s40104-022-00723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ovarian follicular fluids (FFs) contain several kinds of regulatory factors that maintain a suitable microenvironment for oocyte development. Extracellular vesicles (EVs) are among the factors that play essential roles in regulating follicle and oocyte development through their cargo molecules that include microRNAs (miRNAs). This study aimed to investigate small-EV (s-EV) miRNAs in porcine FFs and their potential association with oocyte quality. Methods Individual aspirated oocytes were stained with lissamine green B stain (LB), a vital stain for oocyte quality, and each oocyte was classified as high-quality (unstained; HQ) or low-quality (stained; LQ). FFs corresponding to oocytes were pooled together into HQ and LQ groups. Small-EVs were isolated from FFs, characterized, and their miRNA cargo was identified using the Illumina NovaSeq sequencing platform. Additionally, s-EVs from the HQ and LQ groups were utilized to investigate their effect on oocyte development after co-incubation during in vitro maturation. Results A total of 19 miRNAs (including miR-125b, miR-193a-5p, and miR-320) were significantly upregulated, while 23 (including miR-9, miR-206, and miR-6516) were downregulated in the HQ compared to the LQ group. Apoptosis, p53 signaling, and cAMP signaling were among the top pathways targeted by the elevated miRNAs in the HQ group while oocyte meiosis, gap junction, and TGF-beta signaling were among the top pathways targeted by the elevated miRNAs in the LQ group. The supplementation of small-EVs during maturation does not affect the oocyte developmental rates. However, LQ s-EVs increase the proportion of oocytes with homogeneous mitochondrial distribution and decrease the proportion of heterogeneous distribution. Conclusion Our findings indicated that FF-EVs contain different miRNA cargos associated with oocyte quality and could affect the mitochondrial distribution patterns during oocyte maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00723-1.
Collapse
Affiliation(s)
- Ahmed Gad
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Matej Murin
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.
| | - Alexandra Bartkova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94901, Nitra, Slovakia
| | - Veronika Kinterova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| | - Katerina Marcollova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| | - Jozef Laurincik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94901, Nitra, Slovakia
| | - Radek Prochazka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| |
Collapse
|
19
|
Kowalczyk A, Wrzecińska M, Czerniawska-Piątkowska E, Kupczyński R. Exosomes - Spectacular role in reproduction. Biomed Pharmacother 2022; 148:112752. [PMID: 35220028 DOI: 10.1016/j.biopha.2022.112752] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022] Open
Abstract
Exosomes are nano-sized structures that are found in semen, epididymal -fluid, endometrium, as well as in follicular fluid. They are responsible for transporting bioactive cargo- proteins, lipids, and nucleic acids. Exosomes have been proven to influence processes in both female and male reproductive systems, including gametogenesis, acrosomal reaction, sperm capacitation, and embryo implantation in the endometrium. Exosomes are made of the same particles as the cells they come from and are secreted by normal and pathological cells. Therefore, exosomes can reflect the physiological state of cells. Moreover, due to the transportation of biomolecules, they participate in intercellular communication and can be used as biomarkers of many diseases, including ovarian, endometrial and prostate cancer. Identification of exosomes as biomarkers could contribute to a better understanding of genital dysfunction and fertility disorders.
Collapse
Affiliation(s)
- Alicja Kowalczyk
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, Wrocław, Poland.
| | - Marcjanna Wrzecińska
- Department of Ruminant Science, West Pomeranian University of Technology, ul. Klemensa Janickiego 29, 71-270 Szczecin, Poland.
| | - Ewa Czerniawska-Piątkowska
- Department of Ruminant Science, West Pomeranian University of Technology, ul. Klemensa Janickiego 29, 71-270 Szczecin, Poland.
| | - Robert Kupczyński
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, Wrocław, Poland.
| |
Collapse
|
20
|
Aleksejeva E, Zarovni N, Dissanayake K, Godakumara K, Vigano P, Fazeli A, Jaakma Ü, Salumets A. Extracellular vesicle research in reproductive science- Paving the way for clinical achievements. Biol Reprod 2022; 106:408-424. [PMID: 34982163 DOI: 10.1093/biolre/ioab245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian conception involves a multitude of reciprocal interactions via a molecular dialogue between mother and conceptus. Extracellular vesicles (EVs) are secreted membrane-encapsulated particles that mediate cell-to-cell communication in various contexts. EVs, which are present in seminal, follicular, oviductal, and endometrial fluids, as well as in embryo secretions, carry molecular constituents that impact gamete maturation, fertilization, early embryo development, and embryo-maternal communication. The distribution, concentration, and molecular cargo of EVs are regulated by steroid hormones and the health status of the tissue of origin, and thus are influenced by menstrual phase, stage of conception, and the presence of infertility-associated diseases. EVs have been recognized as a novel source of biomarkers and potential reproductive medicine therapeutics, particularly for assisted reproductive technology (ART). There are still many technological and scientific hindrances to be overcome before EVs can be used in clinical diagnostic and therapeutic ART applications. Issues to be resolved include the lack of standardized measurement protocols and an absence of absolute EV quantification technologies. Additionally, clinically suitable and robust EV isolation methods have yet to be developed. In this review, we provide an overview of EV-mediated interactions during the early stages of reproduction from gamete maturation to embryo implantation and then outline the technological progress that must be made for EV applications to be translated to clinical settings.
Collapse
Affiliation(s)
- Elina Aleksejeva
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Competence Centre on Health Technologies, 50411 Tartu, Estonia
| | | | - Keerthie Dissanayake
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Anatomy, Faculty of Medicine, University of Peradeniya, 20400 Peradeniya, Sri Lanka.,Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Paola Vigano
- Reproductive Sciences Laboratory, Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Anatomy, Faculty of Medicine, University of Peradeniya, 20400 Peradeniya, Sri Lanka.,Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, Medical School, University of Sheffield, S10 2TN Sheffield, UK
| | - Ülle Jaakma
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - Andres Salumets
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Competence Centre on Health Technologies, 50411 Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia.,Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden
| |
Collapse
|
21
|
Comparison of MicroRNA Profiles in Extracellular Vesicles from Small and Large Goat Follicular Fluid. Animals (Basel) 2021; 11:ani11113190. [PMID: 34827922 PMCID: PMC8614480 DOI: 10.3390/ani11113190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Ovarian follicular development is associated with ovulation and is further related to litter size in goats. Extracellular vesicles (EVs) derived from miRNAs within follicular fluid undergo dynamic changes, and, together with follicle growth, may be considered as potential regulators of follicular development. However, the function and changes in EVs remain ambiguous. Here, we identified miRNA changes in EVs from small to large goat follicular fluid. Using bioinformatics tools, we demonstrated the existence of differentially expressed miRNAs in EVs from follicles of different sizes that are responsible for an altered biological effect. This study contributes to a better understanding of follicular development in goats. Abstract Extracellular vesicles (EVs), which exist in the follicular fluid of ruminant ovaries, are considered as cargo carriers for the transfer of biomolecules to recipient cells. However, the functions and changes in EVs in antral follicles remain ambiguous. In the present study, we isolated and characterized EVs from goat follicular fluid by means of differential ultracentrifugation and Western blotting of marker proteins. Bioinformatics tools were used to detect miRNA expression levels in EVs. Different miRNA expression patterns of EVs exist in small to large follicles. Thirteen differentially expressed miRNAs (seven upregulated and six downregulated) were identified and used for analysis. A total of 1948 predicted target genes of 13 miRNAs were mapped to signaling pathways, and three significantly enriched pathways (FoxO, MAPK, and PI3K-AKT signaling pathways) were involved in follicular development, as revealed by KEGG enrichment analysis. Our findings suggest that EVs in follicular fluid play biofunctional roles during follicular development in goats.
Collapse
|
22
|
Currin L, Baldassarre H, Bordignon V. In Vitro Production of Embryos from Prepubertal Holstein Cattle and Mediterranean Water Buffalo: Problems, Progress and Potential. Animals (Basel) 2021; 11:2275. [PMID: 34438733 PMCID: PMC8388507 DOI: 10.3390/ani11082275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Abstract
Laparoscopic ovum pick-up (LOPU) coupled with in vitro embryo production (IVEP) in prepubertal cattle and buffalo accelerates genetic gain. This article reviews LOPU-IVEP technology in prepubertal Holstein Cattle and Mediterranean Water Buffalo. The recent expansion of genomic-assisted selection has renewed interest and demand for prepubertal LOPU-IVEP schemes; however, low blastocyst development rates has constrained its widespread implementation. Here, we present an overview of the current state of the technology, limitations that persist and suggest possible solutions to improve its efficiency, with a focus on gonadotropin stimulations strategies to prime oocytes prior to follicular aspiration, and IVEP procedures promoting growth factor metabolism and limiting oxidative and endoplasmic reticulum stress.
Collapse
Affiliation(s)
| | | | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.C.); (H.B.)
| |
Collapse
|
23
|
Yuan C, Li Z, Zhao Y, Wang X, Chen L, Zhao Z, Cao M, Chen T, Iqbal T, Zhang B, Fan W, Wei Y, Li C, Zhou X. Follicular fluid exosomes: Important modulator in proliferation and steroid synthesis of porcine granulosa cells. FASEB J 2021; 35:e21610. [PMID: 33908671 DOI: 10.1096/fj.202100030rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Granulosa cells (GCs) are regulated by various factors during ovarian development. However, there are few reports on the role of follicular fluid exosomes in ovarian GCs. In this study, porcine ovarian GCs were used to explore the effects of follicular fluid exosomes on GCs. GCs were treated with in vitro, and the changes in cell proliferation, steroid synthesis, and associated signal pathways were detected. The results showed that exosomes increased cell viability and altered the gene expression profile of GCs. Exosomes also increased the level of gene expression associated with both proliferation and progesterone synthesis, in which the MAPK/ERK and WNT/B-CATENIN pathways were involved. In addition, exosome-carried microRNAs were identified by high-throughput sequencing, and exosomal miR-31-5p was found to promote the proliferation of GCs and progesterone synthesis via the WNT/B-CATENIN pathway by targeting the SFRP4 follicle growth inhibitor. In conclusion, this study has demonstrated that exosomes are essential substances involved in regulating the physiological function of GCs.
Collapse
Affiliation(s)
- Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zheng Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xin Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zijiao Zhao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tariq Iqbal
- College of Animal Sciences, Jilin University, Changchun, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Wenjing Fan
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yameng Wei
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
24
|
Butreddy A, Kommineni N, Dudhipala N. Exosomes as Naturally Occurring Vehicles for Delivery of Biopharmaceuticals: Insights from Drug Delivery to Clinical Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1481. [PMID: 34204903 PMCID: PMC8229362 DOI: 10.3390/nano11061481] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Exosomes as nanosized vesicles are emerging as drug delivery systems for therapeutics owing to their natural origin, their ability to mediate intercellular communication, and their potential to encapsulate various biological molecules such as proteins and nucleic acids within the lipid bilayer membrane or in the lumen. Exosomes contain endogenous components (proteins, lipids, RNA) that could be used to deliver cargoes to target cells, offering an opportunity to diagnose and treat various diseases. Owing to their ability to travel safely in extracellular fluid and to transport cargoes to target cells with high efficacy, exosomes offer enhanced delivery of cargoes in vivo. However, several challenges related to the stabilization of the exosomes, the production of sufficient amounts of exosomes with safety and efficacy, the efficient loading of drugs into exosomes, the clearance of exosomes from circulation, and the transition from the bench scale to clinical production may limit their development and clinical use. For the clinical use of exosomes, it is important to understand the molecular mechanisms behind the transport and function of exosome vesicles. This review exploits techniques related to the isolation and characterization of exosomes and their drug delivery potential to enhance the therapeutic outcome and stabilization methods. Further, routes of administration, clinical trials, and regulatory aspects of exosomes will be discussed in this review.
Collapse
Affiliation(s)
- Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Shameerpet, Hyderabad 500078, Telangana State, India;
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Narendar Dudhipala
- Depratment of Pharmaceutics, Vaagdevi College of Pharmacy, Warangal 506005, Telangana State, India
| |
Collapse
|
25
|
Machtinger R, Baccarelli AA, Wu H. Extracellular vesicles and female reproduction. J Assist Reprod Genet 2021; 38:549-557. [PMID: 33471231 PMCID: PMC7910356 DOI: 10.1007/s10815-020-02048-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/21/2020] [Indexed: 01/28/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane bound complexes that have been identified as a mean for intercellular communication between cells and tissues both in physiological and pathological conditions. These vesicles contain numerous molecules involved in signal transduction including microRNAs, mRNAs, DNA, proteins, lipids, and cytokines and can affect the behavior of recipient cells. Female reproduction is dependent on extremely fine-tuned endocrine regulation, and EVs may represent an added layer that contributes to this regulation. This narrative review article provides an update on the research of the role of EVs in female reproduction including folliculogenesis, fertilization, embryo quality, and implantation. We also highlight potential pitfalls in typical EV studies and discuss gaps in the current literature.
Collapse
Affiliation(s)
- Ronit Machtinger
- Sheba Medical Center, Ramat Gan and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, 52621, Tel Hashomer, Israel.
| | - Andrea A Baccarelli
- Environmental Precision Biosciences Laboratory, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Haotian Wu
- Environmental Precision Biosciences Laboratory, Columbia University, Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
26
|
Activation-induced cytidine deaminase is a possible regulator of cross-talk between oocytes and granulosa cells through GDF-9 and SCF feedback system. Sci Rep 2021; 11:3833. [PMID: 33589683 PMCID: PMC7884688 DOI: 10.1038/s41598-021-83529-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 01/08/2023] Open
Abstract
Activation-induced cytidine deaminase (AID, Aicda) is a master gene regulating class switching of immunoglobulin genes. In this study, we investigated the significance of AID expression in the ovary. Immunohistological study and RT-PCR showed that AID was expressed in murine granulosa cells and oocytes. However, using the Aicda-Cre/Rosa-tdRFP reporter mouse, its transcriptional history in oocytes was not detected, suggesting that AID mRNA in oocytes has an exogenous origin. Microarray and qPCR validation revealed that mRNA expressions of growth differentiation factor-9 (GDF-9) in oocytes and stem cell factor (SCF) in granulosa cells were significantly decreased in AID-knockout mice compared with wild-type mice. A 6-h incubation of primary granuloma cells markedly reduced AID expression, whereas it was maintained by recombinant GDF-9. In contrast, SCF expression was induced by more than threefold, whereas GDF-9 completely inhibited its increase. In the presence of GDF-9, knockdown of AID by siRNA further decreased SCF expression. However, in AID-suppressed granulosa cells and ovarian tissues of AID-knockout mice, there were no differences in the methylation of SCF and GDF-9. These findings suggest that AID is a novel candidate that regulates cross-talk between oocytes and granulosa cells through a GDF-9 and SCF feedback system, probably in a methylation-independent manner.
Collapse
|
27
|
Wang X, Meng K, Wang H, Wang Y, Zhao Y, Kang J, Zhang Y, Quan F. Identification of small extracellular vesicle subtypes in follicular fluid: Insights into the function and miRNA profiles. J Cell Physiol 2021; 236:5633-5645. [PMID: 33576507 DOI: 10.1002/jcp.30251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
The study of small extracellular vesicles (sEVs) heterogeneity is one of the main problems that must be solved, and the different sEV subtypes in follicular fluid are still unclear, limiting our understanding of their function. This study first separated sEV subtypes from follicular fluid using differential ultracentrifugation combined with iodixanol density gradient flotation and then evaluated their miRNA profile and effects on the proliferation and apoptosis of granulosa cells (GCs). We also performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of potential target genes of differentially expressed miRNAs (DEMs) and KEGG analysis of potential target genes of non-DEMs. Low-density sEVs (sEV_F6) were enriched in TSG101, while high-density sEVs (sEV_F8) were enriched in CD63. The miRNA profiles of sEV_F6 and sEV_F8 were heterogeneous, and the differential signaling pathways were mainly related to the adhesion and hypoxic stress pathways, while the same signaling pathways were mainly related to cell proliferation, apoptosis, cell cycle, and autophagy pathways. In addition, the highly expressed miRNAs in both subtypes were mainly related to cell proliferation and apoptosis. Both subtypes transferred their miRNAs into GCs and promoted the proliferation ability of the GCs and inhibited their apoptosis. The results showed for the first time that there are different subtypes of sEVs in follicular fluid and that the miRNA profiles of subtypes are heterogeneous.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hengqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunqi Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Cui C, Wang J, Han X, Wang Q, Zhang S, Liang S, Li H, Meng L, Zhang C, Chen H. Identification of small extracellular vesicle-linked miRNA specifically derived from intrafollicular cells in women with polycystic ovary syndrome. Reprod Biomed Online 2021; 42:870-880. [PMID: 33840620 DOI: 10.1016/j.rbmo.2021.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/06/2021] [Accepted: 02/04/2021] [Indexed: 01/04/2023]
Abstract
RESEARCH QUESTION This study aimed to identify small extracellular vesicle (sEV)-linked microRNAs (miRNA) specifically derived from intrafollicular cells in women with polycystic ovary syndrome (PCOS) and to investigate their biological functions. DESIGN A total of 120 women were recruited from September 2017 to October 2018. To investigate miRNA profiles in sEV derived from follicular fluid and serum, 30 women with PCOS and 30 without PCOS were included for a miRNA microarray containing probes interrogating 2549 human miRNA. To study the expression levels of differentially expressed miRNA, sEV in follicular fluid obtained from another 30 PCOS and 30 non-PCOS patients were used for quantitative real-time polymerase chain reaction analysis. RESULTS A total of 281 sEV-linked miRNA specifically derived from intrafollicular cells were identified, 179 of which were expressed in both the PCOS and non-PCOS groups. Twenty-six of the 179 intrafollicle-specific sEV-linked miRNA were predicted to target 1537 genes. Functional analysis suggested that these genes were involved in pathways related to folliculogenesis, including the MAPK, and PI3K-Akt signalling pathways. Quantitative real-time polymerase chain reaction analysis showed that the expression of seven intrafollicle-specific sEV-linked miRNA was significantly higher in follicular fluid-derived sEV in women with PCOS than in women without it. These miRNA and their corresponding target genes were identified as being involved in the MAPK signalling pathway and oocyte meiosis. CONCLUSIONS The data suggest that the aberrantly expressed miRNA and their target genes might be associated with PCOS, providing novel insights into the molecular mechanisms underlying regulation of folliculogenesis and oocyte maturation in PCOS.
Collapse
Affiliation(s)
- Chenchen Cui
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Jie Wang
- Women & Infant Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Xiao Han
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Qian Wang
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Shan Zhang
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Department of Reproductive Medicine Center, Henan Provincial People's Hospital Affiliated to Xinxiang Medical College, Zhengzhou, Henan, China
| | - Shoujing Liang
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Huan Li
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Li Meng
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China.
| | - Huanhuan Chen
- Department of Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China; Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou Henan Province, China.
| |
Collapse
|
29
|
Asaadi A, Dolatabad NA, Atashi H, Raes A, Van Damme P, Hoelker M, Hendrix A, Pascottini OB, Van Soom A, Kafi M, Pavani KC. Extracellular Vesicles from Follicular and Ampullary Fluid Isolated by Density Gradient Ultracentrifugation Improve Bovine Embryo Development and Quality. Int J Mol Sci 2021; 22:E578. [PMID: 33430094 PMCID: PMC7826877 DOI: 10.3390/ijms22020578] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) have been isolated from follicular (FF) and ampullary oviduct fluid (AOF), using different isolation methods. However, it is not clear whether different purification methods can affect the functionality of resulting EVs. Here, we compared two methods (OptiPrep™ density gradient ultracentrifugation (ODG UC) and single-step size exclusion chromatography (SEC) (qEV IZON™ single column)) for the isolation of EVs from bovine FF and AOF. Additionally, we evaluated whether the addition of EVs derived either by ODG UC or SEC from FF or AOF during oocyte maturation would yield extra benefits for embryo developmental competence. The characterization of EVs isolated using ODG UC or SEC from FF and AOF did not show any differences in terms of EV sizes (40-400 nm) and concentrations (2.4 ± 0.2 × 1012-1.8 ± 0.2 × 1013 particles/mL). Blastocyst yield and quality was higher in groups supplemented with EVs isolated from FF and AOF by ODG UC, with higher total cell numbers and a lower apoptotic cell ratio compared with the other groups (p < 0.05). Supplementing in vitro maturation media with EVs derived by ODG UC from AOF was beneficial for bovine embryo development and quality.
Collapse
Affiliation(s)
- Anise Asaadi
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University, Shiraz 7196484334, Iran;
| | - Nima Azari Dolatabad
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Hadi Atashi
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
- Department of Animal Science, Shiraz University, Shiraz 7144165186, Iran
| | - Annelies Raes
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Petra Van Damme
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Michael Hoelker
- Department of Animal Breeding and Husbandry, University of Bonn, 53012 Bonn, Germany;
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium;
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
- Department of Veterinary Sciences, Gamete Research Center, University of Antwerp, 2610 Antwerp, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Mojtaba Kafi
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University, Shiraz 7196484334, Iran;
| | - Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| |
Collapse
|
30
|
Lee SH, Saadeldin IM. Exosomes as a Potential Tool for Supporting Canine Oocyte Development. Animals (Basel) 2020; 10:E1971. [PMID: 33121043 PMCID: PMC7693116 DOI: 10.3390/ani10111971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/27/2022] Open
Abstract
The canine oviduct is a unique reproductive organ where the ovulated immature oocytes complete their maturation, while the other mammals ovulate matured gametes. Due to their peculiar reproductive characteristics, the in vitro maturation of dog oocytes is still not wellestablished compared with other mammals. Investigations of the microenvironment conditions in the oviductal canal are required to establish a reliable in vitro maturation system in the dog. Previous studies have suggested that the oviduct and its derivatives play a key role in improving fertilization as well as embryo development. In particular, the biological function of oviduct-derived exosomes on sperm and early embryo development has been investigated in porcine, bovine, and murine species. However, the information about their functions on canine cumulus-oocyte complexes is still elusive. Recent canine reproductive studies demonstrated how oviduct-derived extracellular vesicles such as microvesicles and exosomes interact with oocyte-cumulus complexes and how they can play roles in regulating canine cumulus/oocyte communications. In this review, we summarize the physiological characteristics of canine oviduct-derived exosomes and their potential effects on cumulus cells development as well as oocyte in vitro maturation via molecular signaling pathways.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Islam M. Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 44511, Saudi Arabia;
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
31
|
Matsuno Y, Maruyama N, Fujii W, Naito K, Sugiura K. Effects of oocyte-derived paracrine factors on release of extracellular vesicles by murine mural granulosa cells in vitro. Anim Sci J 2020; 91:e13385. [PMID: 32515535 PMCID: PMC7378952 DOI: 10.1111/asj.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Both oocytes and extracellular vesicles (EV) have emerged as critical regulators of mammalian follicular development; however, the possible interaction between the oocyte‐derived paracrine factor (ODPF) and EV signals has never been examined. Therefore, to explore the possibility of an interaction between oocyte and EV signals, the effects of ODPFs on the biogenesis of EVs as well as the expression levels of transcripts related to EV biogenesis in mural granulosa cells (MGCs) were examined using mice. The results showed that, while oocyte coculture has some effects on the expression levels of transcripts related to EV biogenesis, the number of EV particles present in the conditioned medium were not significantly different between ODPF‐treated and non‐treated MGCs. Therefore, oocytes have no effects on the EV biogenesis by MGCs, at least with respect to the numbers of EV particles.
Collapse
Affiliation(s)
- Yuta Matsuno
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
de Ávila ACFCM, da Silveira JC. Role of extracellular vesicles during oocyte maturation and early embryo development. Reprod Fertil Dev 2020; 32:56-64. [PMID: 32188558 DOI: 10.1071/rd19389] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The follicle is a dynamic microenvironment in the ovary where the oocyte develops. Intercellular communication between somatic cells and the oocyte inside the follicle is essential to generate a competent gamete. Extracellular vesicles are nanoparticles secreted by cells that mediate cell-to-cell communication in the follicle microenvironment and can be obtained from the follicular fluid. These extracellular vesicles have been studied as biomarkers and supplementation tools to mimic physiological conditions during assisted reproductive techniques because they are vehicles of bioactive molecules. Therefore, this paper reviews the importance of changes in the ovarian follicle and the effects of extracellular vesicles from follicular fluid during oocyte maturation and early embryo development. Finally, we propose that is important to consider the source of the extracellular vesicles to improve diagnostic methods and to increase invitro embryo production.
Collapse
Affiliation(s)
- A C F C M de Ávila
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - J C da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte 225, 13635-900 Pirassununga, São Paulo, Brazil; and Corresponding author.
| |
Collapse
|
33
|
Characterization of mRNA profiles of the exosome-like vesicles in porcine follicular fluid. PLoS One 2019; 14:e0217760. [PMID: 31188849 PMCID: PMC6561635 DOI: 10.1371/journal.pone.0217760] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles such as exosomes contain several types of transcripts, including mRNAs and micro RNAs (miRNAs), and have emerged as important mediators of cell-to-cell communication. Exosome-like vesicles were identified in the ovarian follicles of several mammalian species. Although the miRNA contents have been extensively characterized, the detailed investigation of their mRNA profiles is lacking. Here, we characterize the mRNA profiles of exosome-like vesicles in ovarian follicles in a pig model. The mRNA contents of the exosome-like vesicles isolated from porcine follicular fluid were analyzed and compared with those from mural granulosa cells (MGCs) using the Illumina HiSeq platform. Bioinformatics studies suggested that the exosomal mRNAs are enriched in those encoding proteins involved in metabolic, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) -protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) pathways. While the mRNA profile of the exosome-like vesicles resembled that of MGCs, the vesicles contained mRNAs barely detectable in MGCs. Thus, while the majority of the vesicles are likely to be secreted from MGCs, some may originate from other cell types, including theca cells and oocytes, as well as the cells of non-ovarian organs/tissues. Therefore, the mRNA profiles unveiled several novel characteristics of the exosome-like vesicles in ovarian follicles.
Collapse
|
34
|
Mobarak H, Heidarpour M, Lolicato F, Nouri M, Rahbarghazi R, Mahdipour M. Physiological impact of extracellular vesicles on female reproductive system; highlights to possible restorative effects on female age-related fertility. Biofactors 2019; 45:293-303. [PMID: 30788863 DOI: 10.1002/biof.1497] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/03/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
An alternative mechanism of cell-to-cell communication via extracellular vesicles (EVs) has recently raised increasing attention. EVs are spherical structures comprising exosomes and microvesicles, capable of transferring regulatory molecules and genetic information from one cell to another. EVs act as modulators which can alter a wide spectrum of functions at the cellular level in the recipient cells, taking part in a variety of biological processes in both physiological and pathological conditions. Alteration in EVs content, notably exosomes, was reported during cellular senescence and in patients with age-related diseases. Most studies reported regulating the impacts of exosomes on fertility and pregnancy outcomes via their capability in carrying developmental signaling molecules like proteins, RNA cargos, influencing gene expressions, affecting growth, and development of embryos during aging. Alterations in the exosomal content and functions can influence the reproductive performance in human and animals as conveyors of senescence signals from outside of the cells. This review aimed to summarize evidence on the role of EVs on modulating fertility, early embryonic development, maternal-embryo crosstalk for the recognition, and maintenance of pregnancy during maternal aging. Advanced clinical studies are required to strengthen the findings that the benefit of exosomes can be extended to subjects undergoing reproductive aging. © 2019 BioFactors, 45(3):293-303, 2019.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Francesca Lolicato
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Ranjbaran A, Latifi Z, Nejabati HR, Abroon S, Mihanfar A, Sadigh AR, Fattahi A, Nouri M, Raffel N. Exosome‐based intercellular communication in female reproductive microenvironments. J Cell Physiol 2019; 234:19212-19222. [DOI: 10.1002/jcp.28668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Ali Ranjbaran
- Women's Reproductive Health Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Sina Abroon
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine Urmia University of Medical Sciences Urmia Iran
| | - Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Nouri
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Nathalie Raffel
- Department of Obstetrics and Gynecology Erlangen University Hospital, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
36
|
Rodrigues TA, Tuna KM, Alli AA, Tribulo P, Hansen PJ, Koh J, Paula-Lopes FF. Follicular fluid exosomes act on the bovine oocyte to improve oocyte competence to support development and survival to heat shock. Reprod Fertil Dev 2019; 31:888-897. [DOI: 10.1071/rd18450] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Addition of follicular fluid to oocyte maturation medium can affect cumulus cell function, increase competence of the oocytes to be fertilised and develop to the blastocyst stage and protect the oocyte from heat shock. Here, it was tested whether exosomes in follicular fluid are responsible for the effects of follicular fluid on the function of the cumulus–oocyte complex (COC). This was accomplished by culturing COCs during oocyte maturation at 38.5°C (body temperature of the cow) or 41°C (heat shock) with follicular fluid or exosomes derived from follicular fluid and evaluating various aspects of function of the oocyte and the embryo derived from it. Negative effects of heat shock on cleavage and blastocyst development, but not cumulus expansion, were reduced by follicular fluid and exosomes. The results support the idea that exosomes in follicular fluid play important roles during oocyte maturation to enhance oocyte function and protect it from stress.
Collapse
|
37
|
Di F, Liu J, Li S, Yao G, Hong Y, Chen ZJ, Li W, Du Y. ATF4 Contributes to Ovulation via Regulating COX2/PGE2 Expression: A Potential Role of ATF4 in PCOS. Front Endocrinol (Lausanne) 2018; 9:669. [PMID: 30498475 PMCID: PMC6249970 DOI: 10.3389/fendo.2018.00669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022] Open
Abstract
Ovulatory disorder is common in patients with hyperprolactinemia or polycystic ovary syndrome (PCOS). Previous studies have shown that ATF4 plays critical role in apoptosis and glucose homeostasis, but its role in regulating reproductive function was not explored. The present study investigated the role of ATF4 in ovarian ovulatory function. Human granulosa cells (hGCs) from 48 women newly diagnosed with PCOS and 37 controls were used to determine ATF4 expression. In vitro cultured hGCs were used to detect the upstream and downstream genes of ATF4. A shRNA- Atf4 lentiviral vector (shAtf4) was injected into rat ovaries to establish an in vivo gene knockdown model to further assess the in vivo relevance of the results from PCOS women. We found that ATF4 expression was lower in hGCs from PCOS patients than in hGCs from non-PCOS women. Many pivotal transcripts involved in cumulus-oocyte complex (COC) expansion, extracellular matrix (ECM) remodeling, and progesterone production were significantly down-regulated after ATF4 knockdown. ChIP-qPCR assays indicated that ATF4 could directly bind to the COX2 promoter and that ATF4 knockdown could attenuate human chorionic gonadotropin (hCG)-induced COX2 expression and PGE2 production. The in vivo study showed that shRNA-lentivirus mediated Atf4 knockdown in rat ovaries led to reduced number of retrieved oocytes. Collectively, these findings suggested previously unknown roles of ATF4 in ovulation. Furthermore, ATF4 malfunction in PCOS patients may impact the ovulation process, which could contribute, in part, to the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Fangfang Di
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiansheng Liu
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Shang Li
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Guangxin Yao
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yan Hong
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Weiping Li
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yanzhi Du
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- *Correspondence: Yanzhi Du
| |
Collapse
|