1
|
Hu D, Gao C, Li J, Tong P, Sun Y. The preparation methods and types of cell sheets engineering. Stem Cell Res Ther 2024; 15:326. [PMID: 39334404 PMCID: PMC11438047 DOI: 10.1186/s13287-024-03937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cell therapy has emerged as a viable approach for treating damaged organs or tissues, particularly with advancements in stem cell research and regenerative medicine. The innovative technique of cell sheet engineering offers the potential to create a cell-dense lamellar structure that preserves the extracellular matrix (ECM) secreted by cells, along with the cell-matrix and intercellular junctions formed during in vitro cultivation. In recent years, significant progress has been made in developing cell sheet engineering technology. A variety of novel materials and methods were utilized for enzyme-free cell detachment during the cell sheet formation process. The complexity of cell sheet structures increased to meet advanced usage demands. This review aims to provide an overview of the preparation methods and types of cell sheets, thereby enhancing the understanding of this rapidly evolving technology and offering a fresh perspective on the development and future application of cell sheet engineering.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hangzhou Chexmed Technology Co., Ltd, Hangzhou, China
| | - Ce Gao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Pei Tong
- Hunan Guangxiu Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, China.
- Hunan Guangxiu Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
2
|
Santos LF, Silva AS, Mano JF. Magnetic-Based Strategies for Regenerative Medicine and Tissue Engineering. Adv Healthc Mater 2023; 12:e2300605. [PMID: 37543723 DOI: 10.1002/adhm.202300605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/03/2023] [Indexed: 08/07/2023]
Abstract
The fabrication of biological substitutes to repair, replace, or enhance tissue- and organ-level functions is a long-sought goal of tissue engineering (TE). However, the clinical translation of TE is hindered by several challenges, including the lack of suitable mechanical, chemical, and biological properties in one biomaterial, and the inability to generate large, vascularized tissues with a complex structure of native tissues. Over the past decade, a new generation of "smart" materials has revolutionized the conventional medical field, transforming TE into a more accurate and sophisticated concept. At the vanguard of scientific development, magnetic nanoparticles (MNPs) have garnered extensive attention owing to their significant potential in various biomedical applications owing to their inherent properties such as biocompatibility and rapid remote response to magnetic fields. Therefore, to develop functional tissue replacements, magnetic force-based TE (Mag-TE) has emerged as an alternative to conventional TE strategies, allowing for the fabrication and real-time monitoring of tissues engineered in vitro. This review addresses the recent studies on the use of MNPs for TE, emphasizing the in vitro, in vivo, and clinical applications. Future perspectives of Mag-TE in the fields of TE and regenerative medicine are also discussed.
Collapse
Affiliation(s)
- Lúcia F Santos
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ana S Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
3
|
Seo JY, Park SB, Kim SY, Seo GJ, Jang HK, Lee TJ. Acoustic and Magnetic Stimuli-Based Three-Dimensional Cell Culture Platform for Tissue Engineering. Tissue Eng Regen Med 2023; 20:563-580. [PMID: 37052782 PMCID: PMC10313605 DOI: 10.1007/s13770-023-00539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
In a conventional two-dimensional (2D) culture method, cells are attached to the bottom of the culture dish and grow into a monolayer. These 2D culture methods are easy to handle, cost-effective, reproducible, and adaptable to growing many different types of cells. However, monolayer 2D cell culture conditions are far from those of natural tissue, indicating the need for a three-dimensional (3D) culture system. Various methods, such as hanging drop, scaffolds, hydrogels, microfluid systems, and bioreactor systems, have been utilized for 3D cell culture. Recently, external physical stimulation-based 3D cell culture platforms, such as acoustic and magnetic forces, were introduced. Acoustic waves can establish acoustic radiation force, which can induce suspended objects to gather in the pressure node region and aggregate to form clusters. Magnetic targeting consists of two components, a magnetically responsive carrier and a magnetic field gradient source. In a magnetic-based 3D cell culture platform, cells are aggregated by changing the magnetic force. Magnetic fields can manipulate cells through two different methods: positive magnetophoresis and negative magnetophoresis. Positive magnetophoresis is a way of imparting magnetic properties to cells by labeling them with magnetic nanoparticles. Negative magnetophoresis is a label-free principle-based method. 3D cell structures, such as spheroids, 3D network structures, and cell sheets, have been successfully fabricated using this acoustic and magnetic stimuli-based 3D cell culture platform. Additionally, fabricated 3D cell structures showed enhanced cell behavior, such as differentiation potential and tissue regeneration. Therefore, physical stimuli-based 3D cell culture platforms could be promising tools for tissue engineering.
Collapse
Affiliation(s)
- Ju Yeon Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Song Bin Park
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Seo Yeon Kim
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Gyeong Jin Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Tae-Jin Lee
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
4
|
Hautefort I, Poletti M, Papp D, Korcsmaros T. Everything You Always Wanted to Know About Organoid-Based Models (and Never Dared to Ask). Cell Mol Gastroenterol Hepatol 2022; 14:311-331. [PMID: 35643188 PMCID: PMC9233279 DOI: 10.1016/j.jcmgh.2022.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Homeostatic functions of a living tissue, such as the gastrointestinal tract, rely on highly sophisticated and finely tuned cell-to-cell interactions. These crosstalks evolve and continuously are refined as the tissue develops and give rise to specialized cells performing general and tissue-specific functions. To study these systems, stem cell-based in vitro models, often called organoids, and non-stem cell-based primary cell aggregates (called spheroids) appeared just over a decade ago. These models still are evolving and gaining complexity, making them the state-of-the-art models for studying cellular crosstalk in the gastrointestinal tract, and to investigate digestive pathologies, such as inflammatory bowel disease, colorectal cancer, and liver diseases. However, the use of organoid- or spheroid-based models to recapitulate in vitro the highly complex structure of in vivo tissue remains challenging, and mainly restricted to expert developmental cell biologists. Here, we condense the founding knowledge and key literature information that scientists adopting the organoid technology for the first time need to consider when using these models for novel biological questions. We also include information that current organoid/spheroid users could use to add to increase the complexity to their existing models. We highlight the current and prospective evolution of these models through bridging stem cell biology with biomaterial and scaffold engineering research areas. Linking these complementary fields will increase the in vitro mimicry of in vivo tissue, and potentially lead to more successful translational biomedical applications. Deepening our understanding of the nature and dynamic fine-tuning of intercellular crosstalks will enable identifying novel signaling targets for new or repurposed therapeutics used in many multifactorial diseases.
Collapse
Affiliation(s)
- Isabelle Hautefort
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom
| | - Martina Poletti
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Diana Papp
- Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom; Imperial College London, Department of Metabolism, Digestion and Reproduction, London, United Kingdom.
| |
Collapse
|
5
|
Santos LF, Patrício SG, Silva AS, Mano JF. Freestanding Magnetic Microtissues for Tissue Engineering Applications. Adv Healthc Mater 2022; 11:e2101532. [PMID: 34921719 DOI: 10.1002/adhm.202101532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Indexed: 02/06/2023]
Abstract
A long-sought goal in tissue engineering (TE) is the development of tissues able to recapitulate the complex architecture of the native counterpart. Microtissues, by resembling the functional units of living structures, can be used to recreate tissues' architecture. Howbeit, microfabrication methodologies fail to reproduce cell-based tissues with uniform shape. At the macroscale, complex tissues are already produced by magnetic-TE using solely magnetized cells as building materials. The enhanced extracellular matrix (ECM) deposition guaranties the conservation of tissues' architecture, leading to a successful cellular engraftment. Following the same rational, now the combination of a versatile microfabrication-platform is proposed with magnetic-TE to generate robust micro-tissues with complex architecture for TE purposes. Small tissue units with circle, square, and fiber-like shapes are designed with high fidelity acting as building blocks for engineering complex tissues. Notably, freestanding microtissues maintain their geometry after 7 days post-culturing, overcoming the challenges of microtissues fabrication. Lastly, the ability of microtissues in invading distinct tissue models while releasing trophic factors is substantiated in methacryloyl laminarin (LAM) and platelet lysates (PLMA) hydrogels. By simply using cells as building units and such microfabrication-platform, the fabrication of complex multiscale and multifunctional tissues with clinical relevance is envisaged, including for therapies or disease models.
Collapse
Affiliation(s)
- Lúcia F. Santos
- Department of Chemistry CICECO–Aveiro Institute of Materials University of Aveiro Aveiro 3810‐193 Portugal
| | - Sónia G. Patrício
- Department of Chemistry CICECO–Aveiro Institute of Materials University of Aveiro Aveiro 3810‐193 Portugal
| | - Ana Sofia Silva
- Department of Chemistry CICECO–Aveiro Institute of Materials University of Aveiro Aveiro 3810‐193 Portugal
| | - João F. Mano
- Department of Chemistry CICECO–Aveiro Institute of Materials University of Aveiro Aveiro 3810‐193 Portugal
| |
Collapse
|
6
|
Novel therapies using cell sheets engineered from allogeneic mesenchymal stem/stromal cells. Emerg Top Life Sci 2021; 4:677-689. [PMID: 33231260 PMCID: PMC7939697 DOI: 10.1042/etls20200151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 01/05/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) have long been recognized to help regenerate tissues, by exploiting their intrinsic potentials for differentiation and secretion of therapeutic paracrine factors together with feasibility for cell banking. These unique MSC properties are attractive to provide effective new cell-based therapies for unmet medical needs. Currently, the infusion of suspended MSCs is accepted as a promising therapy to treat systemic inflammatory diseases. However, low cell engraftment/retention in target organs and off-target entrapment using conventional cell infusion must be improved to provide reliable localized disease treatments. Cell sheet technology offers an alternative: three-dimensional (3D) tissue-like structures can be harvested from culture using mild temperature reduction, and transplanted directly onto target tissue sites without suturing, yielding stable cell engraftment and prolonged cell retention in situ without off-target losses. Engineered MSC sheets directly address two major cell therapy strategies based on their therapeutic benefits: (1) tissue replacements based on mult-ilineage differentiation capacities, focusing on cartilage regeneration in this review, and (2) enhancement of tissue recovery via paracrine signaling, employing their various secreted cytokines to promote neovascularization. MSCs also have production benefits as a promising allogeneic cell source by exploiting their reliable proliferative capacity to facilitate expansion and sustainable cell banking for off-the-shelf therapies. This article reviews the advantages of both MSCs as allogeneic cell sources in contrast with autologous cell sources, and allogeneic MSC sheets engineered on thermo-responsive cell dishes as determined in basic studies and clinical achievements, indicating promise to provide robust new cell therapies to future patients.
Collapse
|
7
|
Lou Y, Wang H, Ye G, Li Y, Liu C, Yu M, Ying B. Periosteal Tissue Engineering: Current Developments and Perspectives. Adv Healthc Mater 2021; 10:e2100215. [PMID: 33938636 DOI: 10.1002/adhm.202100215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Periosteum, a highly vascularized bilayer connective tissue membrane plays an indispensable role in the repair and regeneration of bone defects. It is involved in blood supply and delivery of progenitor cells and bioactive molecules in the defect area. However, sources of natural periosteum are limited, therefore, there is a need to develop tissue-engineered periosteum (TEP) mimicking the composition, structure, and function of natural periosteum. This review explores TEP construction strategies from the following perspectives: i) different materials for constructing TEP scaffolds; ii) mechanical properties and surface topography in TEP; iii) cell-based strategies for TEP construction; and iv) TEP combined with growth factors. In addition, current challenges and future perspectives for development of TEP are discussed.
Collapse
Affiliation(s)
- Yiting Lou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Guanchen Ye
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Yongzheng Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Chao Liu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, 395 Yan'an road, Hangzhou, Zhejiang, 310003, China
| | - Binbin Ying
- Department of Stomatology, The Ningbo Hospital of Zhejiang University, and Ningbo First Hospital, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
8
|
Correia CR, Bjørge IM, Nadine S, Mano JF. Minimalist Tissue Engineering Approaches Using Low Material-Based Bioengineered Systems. Adv Healthc Mater 2021; 10:e2002110. [PMID: 33709572 DOI: 10.1002/adhm.202002110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Indexed: 12/14/2022]
Abstract
From an "over-engineering" era in which biomaterials played a central role, now it is observed to the emergence of "developmental" tissue engineering (TE) strategies which rely on an integrative cell-material perspective that paves the way for cell self-organization. The current challenge is to engineer the microenvironment without hampering the spontaneous collective arrangement ability of cells, while simultaneously providing biochemical, geometrical, and biophysical cues that positively influence tissue healing. These efforts have resulted in the development of low-material based TE strategies focused on minimizing the amount of biomaterial provided to the living key players of the regenerative process. Through a "minimalist-engineering" approach, the main idea is to fine-tune the spatial balance occupied by the inanimate region of the regenerative niche toward maximum actuation of the key living components during the healing process.
Collapse
Affiliation(s)
- Clara R. Correia
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Isabel M. Bjørge
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Sara Nadine
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
9
|
Cui J, Wang HP, Shi Q, Sun T. Pulsed Microfluid Force-Based On-Chip Modular Fabrication for Liver Lobule-Like 3D Cellular Models. CYBORG AND BIONIC SYSTEMS 2021; 2021:9871396. [PMID: 36285127 PMCID: PMC9494728 DOI: 10.34133/2021/9871396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
In vitro three-dimensional (3D) cellular models with native tissue-like architectures and functions have potential as alternatives to human tissues in regenerative medicine and drug discovery. However, it is difficult to replicate liver constructs that mimic in vivo microenvironments using current approaches in tissue engineering because of the vessel-embedded 3D structure and complex cell distribution of the liver. This paper reports a pulsed microflow-based on-chip 3D assembly method to construct 3D liver lobule-like models that replicate the spatial structure and functions of the liver lobule. The heterogeneous cell-laden assembly units with hierarchical cell distribution are fabricated through multistep photopatterning of different cell-laden hydrogels. Through fluid force interaction by pulsed microflow, the hierarchical assembly units are driven to a stack, layer by layer, and thus spatially assemble into 3D cellular models in the closed liquid chamber of the assembly chip. The 3D models with liver lobule-like hexagonal morphology and radial cell distribution allow the dynamic perfusion culture to maintain high cell viability and functional expression during long-term culture in vitro. These results demonstrate that the fabricated 3D liver lobule-like models are promising for drug testing and the study of individual diagnoses and treatments.
Collapse
Affiliation(s)
- J. Cui
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - H. P. Wang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Q. Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - T. Sun
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
10
|
Taymour R, Kilian D, Ahlfeld T, Gelinsky M, Lode A. 3D bioprinting of hepatocytes: core-shell structured co-cultures with fibroblasts for enhanced functionality. Sci Rep 2021; 11:5130. [PMID: 33664366 PMCID: PMC7933206 DOI: 10.1038/s41598-021-84384-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
With the aim of understanding and recapitulating cellular interactions of hepatocytes in their physiological microenvironment and to generate an artificial 3D in vitro model, a co-culture system using 3D extrusion bioprinting was developed. A bioink based on alginate and methylcellulose (algMC) was first shown to be suitable for bioprinting of hepatocytes; the addition of Matrigel to algMC enhanced proliferation and morphology of them in monophasic scaffolds. Towards a more complex system that allows studying cellular interactions, we applied core-shell bioprinting to establish tailored 3D co-culture models for hepatocytes. The bioinks were specifically functionalized with natural matrix components (based on human plasma, fibrin or Matrigel) and used to co-print fibroblasts and hepatocytes in a spatially defined, coaxial manner. Fibroblasts acted as supportive cells for co-cultured hepatocytes, stimulating the expression of certain biomarkers of hepatocytes like albumin. Furthermore, matrix functionalization positively influenced both cell types in their respective compartments by enhancing their adhesion, viability, proliferation and function. In conclusion, we established a functional co-culture model with independently tunable compartments for different cell types via core-shell bioprinting. This provides the basis for more complex in vitro models allowing co-cultivation of hepatocytes with other liver-specific cell types to closely resemble the liver microenvironment.
Collapse
Affiliation(s)
- Rania Taymour
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Gonçalves RC, Banfi A, Oliveira MB, Mano JF. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 2020; 269:120628. [PMID: 33412374 DOI: 10.1016/j.biomaterials.2020.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022]
Abstract
The maintenance of a healthy vascular system is essential to ensure the proper function of all organs of the human body. While macrovessels have the main role of blood transportation from the heart to all tissues, microvessels, in particular capillaries, are responsible for maintaining tissues' functionality by providing oxygen, nutrients and waste exchanges. Occlusion of blood vessels due to atherosclerotic plaque accumulation remains the leading cause of mortality across the world. Autologous vein and artery grafts bypassing are the current gold standard surgical procedures to substitute primarily obstructed vascular structures. Ischemic scenarios that condition blood supply in downstream tissues may arise from blockage phenomena, as well as from other disease or events leading to trauma. The (i) great demand for new vascular substitutes, arising from both the limited availability of healthy autologous vessels, as well as the shortcomings associated with small-diameter synthetic vascular grafts, and (ii) the challenging induction of the formation of adequate and stable microvasculature are current driving forces for the growing interest in the development of bioinspired strategies to ensure the proper function of vasculature in all its dimensional scales. Here, a critical review of well-established technologies and recent biotechnological advances to substitute or regenerate the vascular system is provided.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland; Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
12
|
Santos LF, Sofia Silva A, Mano JF. Complex-shaped magnetic 3D cell-based structures for tissue engineering. Acta Biomater 2020; 118:18-31. [PMID: 33039596 DOI: 10.1016/j.actbio.2020.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022]
Abstract
The use of cells as building blocks for tissue engineering purposes has been a matter of research in the recent years. Still, the fabrication of complex-shaped 3D-like constructs using living-based materials is hampered through the difficulty in recapitulating the mechanical properties of the native tissues. In an attempt to develop robust tissue-like constructs, it is herein proposed the fabrication of complex-shaped magnetic cell sheets (CSs) with improved mechanical properties for bone TE. Hence, magnetic CSs with versatile shapes and enhanced mechanical performance are fabricated using a pre-osteoblast cell line (MC3T3-E1) through an universal approach that relies on the design of the substrate, cell density and magnetic force. Results show that such magnetic CSs exhibit a Young's modulus similar to those encountered in the soft tissues. The construction of stratified CSs is also explored using MC3T3-E1 and adipose-derived stromal cells (ASCs). The role of the pre-osteoblast cell line on ASCs osteogenesis is herein investigated for the first time in layered scaffold-free structures. After 21 days, the level of osteogenic markers in the heterotypic CS (MC3T3-E1:ASCs) is significantly higher than in the homotypic one (ASCs:ASCs), even in the absence of osteogenic differentiation factors. These evidences open new prospects for the creation of mechanically robust, complex, higher-ordered and completely functional 3D cell-based materials that better resemble the native environment of in vivo tissues.
Collapse
|
13
|
Sarigil O, Anil-Inevi M, Firatligil-Yildirir B, Unal YC, Yalcin-Ozuysal O, Mese G, Tekin HC, Ozcivici E. Scaffold-free biofabrication of adipocyte structures with magnetic levitation. Biotechnol Bioeng 2020; 118:1127-1140. [PMID: 33205833 DOI: 10.1002/bit.27631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold-based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold-free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label-free magnetic levitation technique was used to form three-dimensional (3D) scaffold-free adipocyte structures with various fabrication strategies in a microcapillary-based setup. Adipogenic-differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.
Collapse
Affiliation(s)
- Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Muge Anil-Inevi
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | - Yagmur Ceren Unal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| |
Collapse
|
14
|
Zhang C, Cai YZ, Lin XJ, Wang Y. Magnetically Actuated Manipulation and Its Applications for Cartilage Defects: Characteristics and Advanced Therapeutic Strategies. Front Cell Dev Biol 2020; 8:526. [PMID: 32695782 PMCID: PMC7338659 DOI: 10.3389/fcell.2020.00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
For the fact that articular cartilage is a highly organized and avascular tissue, cartilage defects are limited to spontaneously heal, which would subsequently progress to osteoarthritis. Many methods have been developed to enhance the ability for cartilage regeneration, among which magnetically actuated manipulation has attracted interests due to its biocompatibility and non-invasive manipulation. Magnetically actuated manipulation that can be achieved by introducing magnetic nanoparticles and magnetic field. This review summarizes the cutting-edge research on the chondrogenic enhancements via magnetically actuated manipulation, including cell labeling, cell targeting, cell assembly, magnetic seeding and tissue engineering strategies.
Collapse
Affiliation(s)
- Chi Zhang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Zhi Cai
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Jin Lin
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Kandarakov OF, Demin AM, Popenko VI, Leonova OG, Kopantseva EE, Krasnov VP, Belyavsky AV. Factors Affecting the Labeling of NIH 3T3 Cells with Magnetic Nanoparticles. Mol Biol 2020. [DOI: 10.1134/s0026893320010070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Silva AS, Santos LF, Mendes MC, Mano JF. Multi-layer pre-vascularized magnetic cell sheets for bone regeneration. Biomaterials 2019; 231:119664. [PMID: 31855623 DOI: 10.1016/j.biomaterials.2019.119664] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
The lack of effective strategies to produce vascularized 3D bone transplants in vitro, hampers the development of thick-constructed bone, limiting the translational of lab-based engineered system to clinical practices. Cell sheet (CS) engineering techniques provide an excellent microenvironment for vascularization since the technique can maintain the intact cell matrix, crucial for angiogenesis. In an attempt to develop hierarchical vascularized 3D cellular constructs, we herein propose the construction of stratified magnetic responsive heterotypic CSs by making use of iron oxide nanoparticles previously internalized within cells. Magnetic force-based CS engineering allows for the construction of thick cellular multilayers. Results show that osteogenesis is achieved due to a synergic effect of human umbilical vein endothelial cells (HUVECs) and adipose-derived stromal cells (ASCs), even in the absence of osteogenic differentiating factors. Increased ALP activity, matrix mineralization, osteopontin and osteocalcin detection were achieved over a period of 21 days for the heterotypic CS conformation (ASCs/HUVECs/ASCs), over the homotypic one (ASCs/ASCs), corroborating our findings. Moreover, the validated crosstalk between BMP-2 and VEGF releases triggers not only the recruitment of blood vessels, as demonstrated in an in vivo CAM assay, as well as the osteogenesis of the 3D cell construct. The in vivo angiogenic profile also demonstrated preserved human vascular structures and human cells showed the ability to migrate and integrate within the chick vasculature.
Collapse
Affiliation(s)
- Ana S Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Lúcia F Santos
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria C Mendes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Lu Y, Zhang W, Wang J, Yang G, Yin S, Tang T, Yu C, Jiang X. Recent advances in cell sheet technology for bone and cartilage regeneration: from preparation to application. Int J Oral Sci 2019; 11:17. [PMID: 31110170 PMCID: PMC6527566 DOI: 10.1038/s41368-019-0050-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/08/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
Bone defects caused by trauma, tumour resection, infection and congenital deformities, together with articular cartilage defects and cartilage-subchondral bone complex defects caused by trauma and degenerative diseases, remain great challenges for clinicians. Novel strategies utilising cell sheet technology to enhance bone and cartilage regeneration are being developed. The cell sheet technology has shown great clinical potential in regenerative medicine due to its effective preservation of cell-cell connections and extracellular matrix and its scaffold-free nature. This review will first introduce several widely used cell sheet preparation systems, including traditional approaches and recent improvements, as well as their advantages and shortcomings. Recent advances in utilising cell sheet technology to regenerate bone or cartilage defects and bone-cartilage complex defects will be reviewed. The key challenges and future research directions for the application of cell sheet technology in bone and cartilage regeneration will also be discussed.
Collapse
Affiliation(s)
- Yuezhi Lu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jie Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shi Yin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunhua Yu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
18
|
Ito A, Teranishi R, Kamei K, Yamaguchi M, Ono A, Masumoto S, Sonoda Y, Horie M, Kawabe Y, Kamihira M. Magnetically triggered transgene expression in mammalian cells by localized cellular heating of magnetic nanoparticles. J Biosci Bioeng 2019; 128:355-364. [PMID: 30962099 DOI: 10.1016/j.jbiosc.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
To develop a remote control system of transgene expression through localized cellular heating of magnetic nanoparticles, a heat-inducible transgene expression system was introduced into mammalian cells. Cells were labeled with magnetic nanoparticles and exposed to an alternating magnetic field. The magnetically labeled cells expressed the transgene in a monolayer and multilayered cell sheets in which cells were heated around the magnetic nanoparticles without an apparent temperature increase in the culture medium. Magnetic cells were also generated by genetically engineering with a ferritin gene, and transgene expression could be induced by exposure to an alternating magnetic field. This approach may be applicable to the development of novel gene therapies in cell-based medicine.
Collapse
Affiliation(s)
- Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryoji Teranishi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Kamei
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaki Yamaguchi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiko Ono
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinya Masumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Sonoda
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanobu Horie
- Division of Biochemical Engineering, Radioisotope Research Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
19
|
Cui J, Wang H, Zheng Z, Shi Q, Sun T, Huang Q, Fukuda T. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures. Biofabrication 2018; 11:015016. [DOI: 10.1088/1758-5090/aaf3c9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Yaman S, Anil-Inevi M, Ozcivici E, Tekin HC. Magnetic Force-Based Microfluidic Techniques for Cellular and Tissue Bioengineering. Front Bioeng Biotechnol 2018; 6:192. [PMID: 30619842 PMCID: PMC6305723 DOI: 10.3389/fbioe.2018.00192] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 01/21/2023] Open
Abstract
Live cell manipulation is an important biotechnological tool for cellular and tissue level bioengineering applications due to its capacity for guiding cells for separation, isolation, concentration, and patterning. Magnetic force-based cell manipulation methods offer several advantages, such as low adverse effects on cell viability and low interference with the cellular environment. Furthermore, magnetic-based operations can be readily combined with microfluidic principles by precisely allowing control over the spatiotemporal distribution of physical and chemical factors for cell manipulation. In this review, we present recent applications of magnetic force-based cell manipulation in cellular and tissue bioengineering with an emphasis on applications with microfluidic components. Following an introduction of the theoretical background of magnetic manipulation, components of magnetic force-based cell manipulation systems are described. Thereafter, different applications, including separation of certain cell fractions, enrichment of rare cells, and guidance of cells into specific macro- or micro-arrangements to mimic natural cell organization and function, are explained. Finally, we discuss the current challenges and limitations of magnetic cell manipulation technologies in microfluidic devices with an outlook on future developments in the field.
Collapse
|
21
|
Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HES. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine 2018; 13:5637-5655. [PMID: 30288038 PMCID: PMC6161712 DOI: 10.2147/ijn.s153758] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering (TE) is an interdisciplinary field integrating engineering, material science and medical biology that aims to develop biological substitutes to repair, replace, retain, or enhance tissue and organ-level functions. Current TE methods face obstacles including a lack of appropriate biomaterials, ineffective cell growth and a lack of techniques for capturing appropriate physiological architectures as well as unstable and insufficient production of growth factors to stimulate cell communication and proper response. In addition, the inability to control cellular functions and their various properties (biological, mechanical, electrochemical and others) and issues of biomolecular detection and biosensors, all add to the current limitations in this field. Nanoparticles are at the forefront of nanotechnology and their distinctive size-dependent properties have shown promise in overcoming many of the obstacles faced by TE today. Despite tremendous progress in the use of nanoparticles over the last 2 decades, the full potential of the applications of nanoparticles in solving TE problems has yet to be realized. This review presents an overview of the diverse applications of various types of nanoparticles in TE applications and challenges that need to be overcome for nanotechnology to reach its full potential.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar,
| | - Mahboob Morshed
- School of Life Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
22
|
Qiu F, Chen Y, Tang C, Zhao X. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Int J Nanomedicine 2018; 13:5003-5022. [PMID: 30214203 PMCID: PMC6128269 DOI: 10.2147/ijn.s166403] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Designer self-assembling peptides are a category of emerging nanobiomaterials which have been widely investigated in the past decades. In this field, amphiphilic peptides have received special attention for their simplicity in design and versatility in application. This review focuses on recent progress in designer amphiphilic peptides, trying to give a comprehensive overview about this special type of self-assembling peptides. By exploring published studies on several typical types of amphiphilic peptides in recent years, herein we discuss in detail the basic design, self-assembling behaviors and the mechanism of amphiphilic peptides, as well as how their nanostructures are affected by the peptide characteristics or environmental parameters. The applications of these peptides as potential nanomaterials for nanomedicine and nanotechnology are also summarized.
Collapse
Affiliation(s)
- Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu 610041, China, .,Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| | - Yongzhu Chen
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengkang Tang
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| |
Collapse
|
23
|
Sakai Y, Koike M, Kawahara D, Hasegawa H, Murai T, Yamanouchi K, Soyama A, Hidaka M, Takatsuki M, Fujita F, Kuroki T, Eguchi S. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities. J Biosci Bioeng 2018. [DOI: 10.1016/j.jbiosc.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Vajanthri KY, Yadav P, Poddar S, Mahto SK. Development of optically sensitive liver cells. Tissue Cell 2018; 52:129-134. [DOI: 10.1016/j.tice.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
|
25
|
Yajima Y, Lee CN, Yamada M, Utoh R, Seki M. Development of a perfusable 3D liver cell cultivation system via bundling-up assembly of cell-laden microfibers. J Biosci Bioeng 2018; 126:111-118. [PMID: 29502942 DOI: 10.1016/j.jbiosc.2018.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/10/2018] [Accepted: 01/31/2018] [Indexed: 01/20/2023]
Abstract
Although the reconstruction of functional 3D liver tissue models in vitro presents numerous challenges, it is in great demand for drug development, regenerative medicine, and physiological studies. Here we propose a new approach to perform perfusion cultivation of liver cells by assembling cell-laden hydrogel microfibers. HepG2 cells were densely packed into the core of sandwich-type anisotropic microfibers, which were produced using microfluidic devices. The obtained microfibers were bundled up and packed into a perfusion chamber, and perfusion cultivation was performed. We evaluated cell viability and functions, and also monitored the oxygen consumption. Furthermore, fibers covered with vascular endothelial cells were united during the perfusion culture, to form vascular network-like conduits between fibers. The presented technique can structurally mimic the hepatic lobule in vivo and could prove to be a useful model for various biomedical research applications.
Collapse
Affiliation(s)
- Yuya Yajima
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Chu Ning Lee
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
26
|
WAKU T, KANAMARU K, HIROYAMA Y, SASAKI R, MORIMOTO N, TANAKA N. Preparation of Nanoparticles Composed of Egg White Protein and their Application for Cell Adhesion Control. KOBUNSHI RONBUNSHU 2018. [DOI: 10.1295/koron.2017-0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tomonori WAKU
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Kaori KANAMARU
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Yoshinori HIROYAMA
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Ruriho SASAKI
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Naoya MORIMOTO
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Naoki TANAKA
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| |
Collapse
|
27
|
Cell sheet-based multilayered liver tumor models for anti-cancer drug screening. Biotechnol Lett 2017; 40:427-435. [PMID: 29159512 DOI: 10.1007/s10529-017-2476-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To fabricate in vitro cell-dense, three-dimensional (3D) tumor models by employing a cell sheet technology for testing anti-cancer drug efficacy. RESULTS The stratified liver tumor models were fabricated by stacking contiguous HepG2 cell sheets. Triple-layer (3L), double-layer (2L), single-layer (1L) cell sheet-based liver tumor models (CSLTMs) demonstrated 106, 96, 85% cell viability, respectively, after 3 days treatment of 10 µM doxorubicin hydrochloride (DOX), while cell viability in two-dimensional (2D) conventional culture (control) was 27%. After 7 days of DOX treatment, the viabilities of 3L, 2L, 1L, control were 24, 14, 3 and 4%, respectively. Probable explanations were blocked diffusion of DOX by the intact and multilayered structure and also hypoxia in the bottom of multilayered cell sheets. CONCLUSION CSLTMs showed a thickness-dependent cytotoxic efficacy of DOX and greater drug resistance than the control, thereby providing useful information toward the development of improved biomimetic tumor models.
Collapse
|
28
|
Yajima Y, Yamada M, Utoh R, Seki M. Collagen Microparticle-Mediated 3D Cell Organization: A Facile Route to Bottom-up Engineering of Thick and Porous Tissues. ACS Biomater Sci Eng 2017; 3:2144-2154. [DOI: 10.1021/acsbiomaterials.7b00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yuya Yajima
- Department of Applied Chemistry
and Biotechnology, Graduate School of Engineering, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry
and Biotechnology, Graduate School of Engineering, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Rie Utoh
- Department of Applied Chemistry
and Biotechnology, Graduate School of Engineering, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry
and Biotechnology, Graduate School of Engineering, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
29
|
Helvenstein M, Hambÿe S, Blankert B. Hepatocyte-based flow analytical bioreactor for online xenobiotics metabolism bioprediction. Nanobiomedicine (Rij) 2017; 4:1849543517702898. [PMID: 29942392 PMCID: PMC6009796 DOI: 10.1177/1849543517702898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/25/2017] [Indexed: 11/23/2022] Open
Abstract
The research for new in vitro screening tools for predictive metabolic profiling of drug candidates is of major interest in the pharmaceutical field. The main motivation is to avoid late rejection in drug development and to deliver safer drugs to the market. Thanks to the superparamagnetic properties of iron oxide nanoparticles, a flow bioreactor has been developed which is able to perform xenobiotic metabolism studies. The selected cell line (HepaRG) maintained its metabolic competencies once iron oxide nanoparticles were internalized. Based on magnetically trapped cells in a homemade immobilization chamber, through which a flow of circulating phase was injected to transport nutrients and/or the studied xenobiotic, off-line and online (when coupled to a high-performance liquid chromatography chain) metabolic assays were developed using diclofenac as a reference compound. The diclofenac demonstrated a similar metabolization profile chromatogram, both with the newly developed setup and with the control situation. Highly versatile, this pioneering and innovative instrumental design paves the way for a new approach in predictive metabolism studies.
Collapse
Affiliation(s)
- M Helvenstein
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - S Hambÿe
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - B Blankert
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| |
Collapse
|
30
|
Matsuura K, Sugimoto I, Kuroda Y, Kadowaki K, Matsusaki M, Akashi M. Development of Microfluidic Systems for Fabricating Cellular Multilayers. ANAL SCI 2016; 32:1171-1176. [PMID: 27829621 DOI: 10.2116/analsci.32.1171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We designed a microfluidic system comprising microfluidic channels, pumps, and valves to enable the fabrication of cellular multilayers in order to reduce labor inputs for coating extracellular matrices onto adhesive cells (e.g., centrifugation). Our system was used to fabricate nanometer-sized, layer-by-layer films of the extracellular matrices on a monolayer of C2C12 myoblasts. The use of this microfluidic system allowed the fabrication of cellular multilayers in designed microfluidic channels and on commercial culture dishes. The thickness of the fabricated multilayer using this microfluidic system was higher than that of the multilayer that was formed by centrifugation. Because cellular multilayer fabrication is less laborious and the mechanical force to the cell is reduced, this novel system can be applied to tissue modeling for cell biology studies, pharmaceutical assays, and quantitative analyses of mechanical or chemical stimuli applied to multilayers.
Collapse
Affiliation(s)
- Koji Matsuura
- Research Core for Interdisciplinary Sciences, Okayama University
| | | | | | | | | | | |
Collapse
|
31
|
Magnetic stromal layers for enhanced and unbiased recovery of co-cultured hematopoietic cells. Anal Biochem 2016; 509:146-155. [DOI: 10.1016/j.ab.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/15/2022]
|
32
|
Lee HW, Kook YM, Lee HJ, Park H, Koh WG. A three-dimensional co-culture of HepG2 spheroids and fibroblasts using double-layered fibrous scaffolds incorporated with hydrogel micropatterns. RSC Adv 2014. [DOI: 10.1039/c4ra12269k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Nano-labelled cells-a functional tool in biomedical applications. Curr Opin Pharmacol 2014; 18:84-90. [PMID: 25271175 DOI: 10.1016/j.coph.2014.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/30/2014] [Accepted: 09/13/2014] [Indexed: 01/04/2023]
Abstract
Nanotechnology offers an unprecedented number of opportunities for biomedical research, utilizing the unusual functionalities of nanosized materials. Here we describe the recent advances in fabrication and utilization of nanoparticle-labelled cells. We present a brief overview of the most promising techniques, namely layer-by-layer polyelectrolyte assembly on cells and intracellular and extracellular labelling with magnetic nanoparticles. Several important practical application of nanofucntionalized cells, including tissue engineering and tumour therapy, are reviewed.
Collapse
|
34
|
Au SH, Chamberlain MD, Mahesh S, Sefton MV, Wheeler AR. Hepatic organoids for microfluidic drug screening. LAB ON A CHIP 2014; 14:3290-9. [PMID: 24984750 DOI: 10.1039/c4lc00531g] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We introduce the microfluidic organoids for drug screening (MODS) platform, a digital microfluidic system that is capable of generating arrays of individually addressable, free-floating, three-dimensional hydrogel-based microtissues (or 'organoids'). Here, we focused on liver organoids, driven by the need for early-stage screening methods for hepatotoxicity that enable a "fail early, fail cheaply" strategy in drug discovery. We demonstrate that arrays of hepatic organoids can be formed from co-cultures of HepG2 and NIH-3T3 cells embedded in hydrogel matrices. The organoids exhibit fibroblast-dependent contractile behaviour, and their albumin secretion profiles and cytochrome P450 3A4 activities are better mimics of in vivo liver tissue than comparable two-dimensional cell culture systems. As proof of principle for screening, MODS was used to generate and analyze the effects of a dilution series of acetaminophen on apoptosis and necrosis. With further development, we propose that the MODS platform may be a cost-effective tool in a "fail early, fail cheaply" paradigm of drug development.
Collapse
Affiliation(s)
- Sam H Au
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3G9, Canada.
| | | | | | | | | |
Collapse
|
35
|
Frasca G, Du V, Bacri JC, Gazeau F, Gay C, Wilhelm C. Magnetically shaped cell aggregates: from granular to contractile materials. SOFT MATTER 2014; 10:5045-5054. [PMID: 24710948 DOI: 10.1039/c4sm00202d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In recent decades, significant advances have been made in the description and modelling of tissue morphogenesis. By contrast, the initial steps leading to the formation of a tissue structure, through cell-cell adhesion, have so far been described only for small numbers of interacting cells. Here, through the use of remote magnetic forces, we succeeded at creating cell aggregates of half million cells, instantaneously and for several cell types, not only those known to form spheroids. This magnetic compaction gives access to the cell elasticity, found in the range of 800 Pa. The magnetic force can be removed at any time, allowing the cell mass to evolve spontaneously thereafter. The dynamics of contraction of these cell aggregates just after their formation (or, in contrast, their spreading for non-interacting monocyte cells) provides direct information on cell-cell interactions and allows retrieving the adhesion energy, in between 0.05 and 2 mJ m(-2), depending on the cell type tested, and in the case of cohesive aggregates. Thus, we show, by probing a large number of cell types, that cell aggregates behave like complex materials, undergoing a transition from a wet granular to contractile network, and that this transition is controlled by cell-cell interactions.
Collapse
Affiliation(s)
- G Frasca
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris 7, Paris, France.
| | | | | | | | | | | |
Collapse
|
36
|
Guo WM, Loh XJ, Tan EY, Loo JSC, Ho VHB. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening. Mol Pharm 2014; 11:2182-9. [PMID: 24842574 DOI: 10.1021/mp5000604] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three-dimensional (3D) cell culture has become increasingly adopted as a more accurate model of the complex in vivo microenvironment compared to conventional two-dimensional (2D) cell culture. Multicellular spheroids are important 3D cell culture models widely used in biological studies and drug screening. To facilitate simple spheroid manipulation, magnetic spheroids were generated from magnetically labeled cells using a scaffold-free approach. This method is applicable to a variety of cell types. The spheroids generated can be targeted and immobilized using magnetic field gradients, allowing media change or dilution to be performed with minimal disruption to the spheroids. Cells in magnetic spheroids showed good viability and displayed typical 3D morphology. Using this platform, a 28 day study was carried out using doxorubicin on magnetic MCF-7 spheroids. The results provided a proof-of-principle for using magnetic tumor spheroids in therapeutic studies. They can offer beneficial insights that help to bridge the gap between in vitro and in vivo models. Furthermore, this platform can be adapted for high-throughput screening in drug discovery.
Collapse
Affiliation(s)
- Wei Mei Guo
- Molecular Engineering Laboratory, A*STAR, Proteos , 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | |
Collapse
|
37
|
Yamaguchi M, Ito A, Ono A, Kawabe Y, Kamihira M. Heat-inducible gene expression system by applying alternating magnetic field to magnetic nanoparticles. ACS Synth Biol 2014; 3:273-9. [PMID: 24144205 DOI: 10.1021/sb4000838] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
By combining synthetic biology with nanotechnology, we demonstrate remote controlled gene expression using a magnetic field. Magnetite nanoparticles, which generate heat under an alternating magnetic field, have been developed to label cells. Magnetite nanoparticles and heat-induced therapeutic genes were introduced into tumor xenografts. The magnetically triggered gene expression resulted in tumor growth inhibition. This system shows great potential for controlling target gene expression in a space and time selective manner and may be used for remote control of cell functions via gene expression.
Collapse
Affiliation(s)
- Masaki Yamaguchi
- Department of Chemical Engineering,
Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Ito
- Department of Chemical Engineering,
Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiko Ono
- Department of Chemical Engineering,
Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering,
Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering,
Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
38
|
Control of extracellular microenvironments using polymer/protein nanofilms for the development of three-dimensional human tissue chips. Polym J 2014. [DOI: 10.1038/pj.2014.20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Liu W, Li Y, Feng S, Ning J, Wang J, Gou M, Chen H, Xu F, Du Y. Magnetically controllable 3D microtissues based on magnetic microcryogels. LAB ON A CHIP 2014; 14:2614-25. [PMID: 24736804 DOI: 10.1039/c4lc00081a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microtissues on the scale of several hundred microns are a promising cell culture configuration resembling the functional tissue units in vivo.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing, PR China
| | - Yaqian Li
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases
| | - Siyu Feng
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing, PR China
| | - Jia Ning
- Center for Biomedical Imaging Research & Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing, PR China
| | - Jingyu Wang
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing, PR China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- West China Medical School
- Sichuan University
- Chengdu, PR China
| | - Huijun Chen
- Center for Biomedical Imaging Research & Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing, PR China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an, PR China
| | - Yanan Du
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases
| |
Collapse
|
40
|
Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts. J Biosci Bioeng 2013; 116:761-7. [DOI: 10.1016/j.jbiosc.2013.05.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/11/2013] [Accepted: 05/27/2013] [Indexed: 01/20/2023]
|
41
|
Fayol D, Le Visage C, Ino J, Gazeau F, Letourneur D, Wilhelm C. Design of Biomimetic Vascular Grafts with Magnetic Endothelial Patterning. Cell Transplant 2013; 22:2105-18. [DOI: 10.3727/096368912x661300] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.
Collapse
Affiliation(s)
- Delphine Fayol
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| | - Catherine Le Visage
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Julia Ino
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| | - Didier Letourneur
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| |
Collapse
|
42
|
Rapid fabricating technique for multi-layered human hepatic cell sheets by forceful contraction of the fibroblast monolayer. PLoS One 2013; 8:e70970. [PMID: 23923035 PMCID: PMC3724772 DOI: 10.1371/journal.pone.0070970] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/27/2013] [Indexed: 01/20/2023] Open
Abstract
Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell) sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells) as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions.
Collapse
|
43
|
Schober A, Fernekorn U, Singh S, Schlingloff G, Gebinoga M, Hampl J, Williamson A. Mimicking the biological world: Methods for the 3D structuring of artificial cellular environments. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Andreas Schober
- Department of Nanobiosystem Technology, Institute of Micro- and Nanotechnologies MacroNano®; Ilmenau University of Technology; Ilmenau Germany
- Institute of Chemistry and Biotechnology; Ilmenau University of Technology; Ilmenau Germany
| | - Uta Fernekorn
- Department of Nanobiosystem Technology, Institute of Micro- and Nanotechnologies MacroNano®; Ilmenau University of Technology; Ilmenau Germany
- Institute of Chemistry and Biotechnology; Ilmenau University of Technology; Ilmenau Germany
| | - Sukhdeep Singh
- Department of Nanobiosystem Technology, Institute of Micro- and Nanotechnologies MacroNano®; Ilmenau University of Technology; Ilmenau Germany
- Institute of Chemistry and Biotechnology; Ilmenau University of Technology; Ilmenau Germany
| | - Gregor Schlingloff
- Department of Nanobiosystem Technology, Institute of Micro- and Nanotechnologies MacroNano®; Ilmenau University of Technology; Ilmenau Germany
- Institute of Chemistry and Biotechnology; Ilmenau University of Technology; Ilmenau Germany
| | - Michael Gebinoga
- Department of Nanobiosystem Technology, Institute of Micro- and Nanotechnologies MacroNano®; Ilmenau University of Technology; Ilmenau Germany
- Institute of Chemistry and Biotechnology; Ilmenau University of Technology; Ilmenau Germany
| | - Jörg Hampl
- Department of Nanobiosystem Technology, Institute of Micro- and Nanotechnologies MacroNano®; Ilmenau University of Technology; Ilmenau Germany
- Institute of Chemistry and Biotechnology; Ilmenau University of Technology; Ilmenau Germany
| | - Adam Williamson
- Department of Nanobiosystem Technology, Institute of Micro- and Nanotechnologies MacroNano®; Ilmenau University of Technology; Ilmenau Germany
- Institute of Chemistry and Biotechnology; Ilmenau University of Technology; Ilmenau Germany
| |
Collapse
|
44
|
Chan A, Orme RP, Fricker RA, Roach P. Remote and local control of stimuli responsive materials for therapeutic applications. Adv Drug Deliv Rev 2013; 65:497-514. [PMID: 22820529 DOI: 10.1016/j.addr.2012.07.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/28/2012] [Accepted: 07/06/2012] [Indexed: 12/25/2022]
Abstract
Materials offering the ability to change their characteristics in response to presented stimuli have demonstrated application in the biomedical arena, allowing control over drug delivery, protein adsorption and cell attachment to materials. Many of these smart systems are reversible, giving rise to finer control over material properties and biological interaction, useful for various therapeutic treatment strategies. Many smart materials intended for biological interaction are based around pH or thermo-responsive materials, although the use of magnetic materials, particularly in neural regeneration, has increased over the past decade. This review draws together a background of literature describing the design principles and mechanisms of smart materials. Discussion centres on recent literature regarding pH-, thermo-, magnetic and dual responsive materials, and their current applications for the treatment of neural tissue.
Collapse
|
45
|
Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources. Biomed Microdevices 2013; 14:947-54. [PMID: 22773161 DOI: 10.1007/s10544-012-9673-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Trapping of cells is essential to perform basic handling operations in cell-based microsystems, such as media exchange, concentration, cell isolation and cell sorting. Cell trapping by magnetophoresis typically requires cell labeling with magnetic nanoparticles. Here we report on endocytotic uptake of 100 nm magnetic nanoparticles by Human Embryonic Kidney 293 cells. The attraction of labeled cells by micro-magnet arrays characterised by very high magnetic field gradients (≤10⁶ T/m) was studied as a function of labeling conditions (nanoparticle concentration in the extracellular medium, incubation time). The threshold incubation conditions for effective magnetophoretic trapping were established. This simple technique may be exploited to minimise the quantity of magnetic nanoparticles needed for efficient cell trapping, thus reducing stress or nanoparticle-mediated toxicity. Nanoparticle internalization into cells was confirmed using both confocal and Transmission Electron Microscopy (TEM).
Collapse
|
46
|
Evaluation systems of generated forces of skeletal muscle cell-based bio-actuators. J Biosci Bioeng 2013; 115:115-21. [DOI: 10.1016/j.jbiosc.2012.08.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/20/2012] [Accepted: 08/31/2012] [Indexed: 11/20/2022]
|
47
|
Dzamukova MR, Naumenko EA, Lannik NI, Fakhrullin RF. Surface-modified magnetic human cells for scaffold-free tissue engineering. Biomater Sci 2013; 1:810-813. [DOI: 10.1039/c3bm60054h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Molecular Design and Applications of Self-Assembling Surfactant-Like Peptides. JOURNAL OF NANOMATERIALS 2013. [DOI: 10.1155/2013/469261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Self-assembling surfactant-like peptides have been explored as emerging nanobiomaterials in recent years. These peptides are usually amphiphilic, typically possessing a hydrophobic moiety and a hydrophilic moiety. The structural characteristics can promote many peptide molecules to self-assemble into various nanostructures. Furthermore, properties of peptide molecules such as charge distribution and geometrical shape could also alter the formation of the self-assembling nanostructures. Based on their diverse self-assembling behaviours and nanostructures, self-assembling surfactant-like peptides exhibit great potentials in many fields, including membrane protein stabilization, drug delivery, and tissue engineering. This review mainly focuses on recent advances in studying self-assembling surfactant-like peptides, introducing their designs and the potential applications in nanobiotechnology.
Collapse
|
49
|
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure. In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the key words such as liver failure, bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines, the incorporation of BAL with GS-HepG2 cells or alginate-encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functional hepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | |
Collapse
|
50
|
Radad K, Al-Shraim M, Moldzio R, Rausch WD. Recent advances in benefits and hazards of engineered nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:661-672. [PMID: 22964156 DOI: 10.1016/j.etap.2012.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/22/2012] [Accepted: 07/25/2012] [Indexed: 05/27/2023]
Abstract
Over recent decades, engineered nanoparticles are increasingly produced as the result of the rapid development in nanotechnology. They are currently used in a wide range of industrial and public sectors including healthcare, agriculture, transport, energy, materials, and information and communication technologies. As the result, an increasing concern has been raised over the potential impacts of engineered nanoparticles to human health. In the light of this, it is the purpose of the present review to discuss: (1) novel properties of engineered nanoparticles particularly in biomedical sciences, (2) most recently reported adverse effects of manufactured nanoparticles on human health and (3) different aspects of toxicological risk assessment of these nanoparticles.
Collapse
Affiliation(s)
- Khaled Radad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
| | | | | | | |
Collapse
|