1
|
Favoino G, Krink N, Schwanemann T, Wierckx N, Nikel PI. Enhanced biosynthesis of poly(3-hydroxybutyrate) in engineered strains of Pseudomonas putida via increased malonyl-CoA availability. Microb Biotechnol 2024; 17:e70044. [PMID: 39503721 PMCID: PMC11539682 DOI: 10.1111/1751-7915.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
Malonyl-coenzyme A (CoA) is a key precursor for the biosynthesis of multiple value-added compounds by microbial cell factories, including polyketides, carboxylic acids, biofuels, and polyhydroxyalkanoates. Owing to its role as a metabolic hub, malonyl-CoA availability is limited by competition in several essential metabolic pathways. To address this limitation, we modified a genome-reduced Pseudomonas putida strain to increase acetyl-CoA carboxylation while limiting malonyl-CoA utilization. Genes involved in sugar catabolism and its regulation, the tricarboxylic acid (TCA) cycle, and fatty acid biosynthesis were knocked-out in specific combinations towards increasing the malonyl-CoA pool. An enzyme-coupled biosensor, based on the rppA gene, was employed to monitor malonyl-CoA levels in vivo. RppA is a type III polyketide synthase that converts malonyl-CoA into flaviolin, a red-colored polyketide. We isolated strains displaying enhanced malonyl-CoA availability via a colorimetric screening method based on the RppA-dependent red pigmentation; direct flaviolin quantification identified four engineered strains had a significant increase in malonyl-CoA levels. We further modified these strains by adding a non-canonical pathway that uses malonyl-CoA as precursor for poly(3-hydroxybutyrate) biosynthesis. These manipulations led to increased polymer accumulation in the fully engineered strains, validating our general strategy to boost the output of malonyl-CoA-dependent pathways in P. putida.
Collapse
Affiliation(s)
- Giusi Favoino
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Nicolas Krink
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Tobias Schwanemann
- Institute of Bio‐ and GeosciencesIBG‐1: Biotechnology, Forschungszentrum Jülich GmbHJülichGermany
| | - Nick Wierckx
- Institute of Bio‐ and GeosciencesIBG‐1: Biotechnology, Forschungszentrum Jülich GmbHJülichGermany
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
2
|
Park S, Roh S, Yoo J, Ahn JH, Gong G, Lee SM, Um Y, Han SO, Ko JK. Tailored polyhydroxyalkanoate production from renewable non-fatty acid carbon sources using engineered Cupriavidus necator H16. Int J Biol Macromol 2024; 263:130360. [PMID: 38387639 DOI: 10.1016/j.ijbiomac.2024.130360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
As thermoplastic, nontoxic, and biocompatible polyesters, polyhydroxyalkanoates (PHAs) are considered promising biodegradable plastic candidates for diverse applications. Short-chain-length/medium-chain-length (SCL/MCL) PHA copolymers are flexible and versatile PHAs that are typically produced from fatty acids, which are expensive and toxic. Therefore, to achieve the sustainable biosynthesis of SCL/MCL-PHAs from renewable non-fatty acid carbon sources (e.g., sugar or CO2), we used the lithoautotrophic bacterium Cupriavidus necator H16 as a microbial platform. Specifically, we synthesized tailored PHA copolymers with varying MCL-3-hydroxyalkanoate (3HA) compositions (10-70 mol%) from fructose by rewiring the MCL-3HA biosynthetic pathways, including (i) the thioesterase-mediated free fatty acid biosynthetic pathway coupled with the beta-oxidation cycle and (ii) the hydroxyacyl transferase-mediated fatty acid de novo biosynthetic pathway. In addition to sugar-based feedstocks, engineered strains are also promising platforms for the lithoautotrophic production of SCL/MCL-PHAs from CO2. The set of engineered C. necator strains developed in this study provides greater opportunities to produce customized polymers with controllable monomer compositions from renewable resources.
Collapse
Affiliation(s)
- Soyoung Park
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soonjong Roh
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jin Yoo
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
3
|
β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited. Appl Microbiol Biotechnol 2023; 107:1863-1874. [PMID: 36763117 PMCID: PMC10006253 DOI: 10.1007/s00253-023-12413-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Pseudomonas putida KT2440 is a well-known model organism for the medium-chain-length (mcl) polyhydroxyalkanoate (PHA) accumulation. (R)-Specific enoyl-coenzyme A hydratase (PhaJ) was considered to be the main supplier of monomers for PHA synthesis by converting the β-oxidation intermediate, trans-2-enoyl-CoA to (R)-3-hydroxyacyl-CoA when fatty acids (FA) are used. Three PhaJ homologues, PhaJ1, PhaJ4 and MaoC, are annotated in P. putida KT2440. To investigate the relationship of fatty acids-PHA metabolism and the role of each PhaJ in PHA biosynthesis in P. putida KT2440, a series of P. putida KT2440 knockouts was obtained. PHA content and monomer composition in wild type (WT) and mutants under different growth conditions were analysed. PhaJ4 was the main monomer supplier for PHA synthesis with FA as sole carbon and energy source, with preference towards C8 and C10 substrate, whereas PhaJ1 showed preference for the C6 substrate. However, when all three PhaJ homologues were deleted, the mutant still accumulated PHA up to 10.7% of the cell dry weight (CDW). The deletion of (R)-3-hydroxydecanoyl-ACP:CoA transacylase (PhaG), which connects de novo FA and PHA synthesis pathways, while causing a further 1.8-fold decrease in PHA content, did not abolish PHA accumulation. Further proteome analysis revealed quinoprotein alcohol dehydrogenases PedE and PedH as potential monomer suppliers, but when these were deleted, the PHA level remained at 2.2-14.8% CDW depending on the fatty acid used and whether nitrogen limitation was applied. Therefore, it is likely that some other non-specific dehydrogenases supply monomers for PHA synthesis, demonstrating the redundancy of PHA metabolism. KEY POINTS: • β-oxidation intermediates are converted to PHA monomers by hydratases PhaJ1, PhaJ4 and MaoC in Pseudomonas putida KT2440. • When these are deleted, the PHA level decreases, but it is not abolished. • PHA non-specific enzyme(s) also contributes to PHA metabolism in KT2440.
Collapse
|
4
|
Qin R, Zhu Y, Ai M, Jia X. Reconstruction and optimization of a Pseudomonas putida-Escherichia coli microbial consortium for mcl-PHA production from lignocellulosic biomass. Front Bioeng Biotechnol 2022; 10:1023325. [PMID: 36338139 PMCID: PMC9626825 DOI: 10.3389/fbioe.2022.1023325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
The demand for non-petroleum-based, especially biodegradable plastics has been on the rise in the last decades. Medium-chain-length polyhydroxyalkanoate (mcl-PHA) is a biopolymer composed of 6–14 carbon atoms produced from renewable feedstocks and has become the focus of research. In recent years, researchers aimed to overcome the disadvantages of single strains, and artificial microbial consortia have been developed into efficient platforms. In this work, we reconstructed the previously developed microbial consortium composed of engineered Pseudomonas putida KT∆ABZF (p2-a-J) and Escherichia coli ∆4D (ACP-SCLAC). The maximum titer of mcl-PHA reached 3.98 g/L using 10 g/L glucose, 5 g/L octanoic acid as substrates by the engineered P. putida KT∆ABZF (p2-a-J). On the other hand, the maximum synthesis capacity of the engineered E. coli ∆4D (ACP-SCLAC) was enhanced to 3.38 g/L acetic acid and 0.67 g/L free fatty acids (FFAs) using 10 g/L xylose as substrate. Based on the concept of “nutrient supply-detoxification,” the engineered E. coli ∆4D (ACP-SCLAC) provided nutrient for the engineered P. putida KT∆ABZF (p2-a-J) and it acted to detoxify the substrates. Through this functional division and rational design of the metabolic pathways, the engineered P. putida-E. coli microbial consortium could produce 1.30 g/L of mcl-PHA from 10 g/L glucose and xylose. Finally, the consortium produced 1.02 g/L of mcl-PHA using lignocellulosic hydrolysate containing 10.50 g/L glucose and 10.21 g/L xylose as the substrate. The consortium developed in this study has good potential for mcl-PHA production and provides a valuable reference for the production of high-value biological products using inexpensive carbon sources.
Collapse
Affiliation(s)
- Ruolin Qin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mingmei Ai
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- *Correspondence: Xiaoqiang Jia,
| |
Collapse
|
5
|
Mezzina MP, Manoli MT, Prieto MA, Nikel PI. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnol J 2020; 16:e2000165. [PMID: 33085217 DOI: 10.1002/biot.202000165] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Growing environmental concern sparks renewed interest in the sustainable production of (bio)materials that can replace oil-derived goods. Polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in the central metabolism of producer bacteria, as they act as dynamic reservoirs of carbon and reducing equivalents. PHAs continue to attract industrial attention as a starting point toward renewable, biodegradable, biocompatible, and versatile thermoplastic and elastomeric materials. Pseudomonas species have been known for long as efficient biopolymer producers, especially for medium-chain-length PHAs. The surge of synthetic biology and metabolic engineering approaches in recent years offers the possibility of exploiting the untapped potential of Pseudomonas cell factories for the production of tailored PHAs. In this article, an overview of the metabolic and regulatory circuits that rule PHA accumulation in Pseudomonas putida is provided, and approaches leading to the biosynthesis of novel polymers (e.g., PHAs including nonbiological chemical elements in their structures) are discussed. The potential of novel PHAs to disrupt existing and future market segments is closer to realization than ever before. The review is concluded by pinpointing challenges that currently hinder the wide adoption of bio-based PHAs, and strategies toward programmable polymer biosynthesis from alternative substrates in engineered P. putida strains are proposed.
Collapse
Affiliation(s)
- Mariela P Mezzina
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - María Tsampika Manoli
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - M Auxiliadora Prieto
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - Pablo I Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| |
Collapse
|
6
|
Kihara T, Hiroe A, Ishii-Hyakutake M, Mizuno K, Tsuge T. Bacillus cereus-type polyhydroxyalkanoate biosynthetic gene cluster contains R-specific enoyl-CoA hydratase gene. Biosci Biotechnol Biochem 2017; 81:1627-1635. [PMID: 28532241 DOI: 10.1080/09168451.2017.1325314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bacillus cereus and Bacillus megaterium both accumulate polyhydroxyalkanoate (PHA) but their PHA biosynthetic gene (pha) clusters that code for proteins involved in PHA biosynthesis are different. Namely, a gene encoding MaoC-like protein exists in the B. cereus-type pha cluster but not in the B. megaterium-type pha cluster. MaoC-like protein has an R-specific enoyl-CoA hydratase (R-hydratase) activity and is referred to as PhaJ when involved in PHA metabolism. In this study, the pha cluster of B. cereus YB-4 was characterized in terms of PhaJ's function. In an in vitro assay, PhaJ from B. cereus YB-4 (PhaJYB4) exhibited hydration activity toward crotonyl-CoA. In an in vivo assay using Escherichia coli as a host for PHA accumulation, the recombinant strain expressing PhaJYB4 and PHA synthase led to increased PHA accumulation, suggesting that PhaJYB4 functioned as a monomer supplier. The monomer composition of the accumulated PHA reflected the substrate specificity of PhaJYB4, which appeared to prefer short chain-length substrates. The pha cluster from B. cereus YB-4 functioned to accumulate PHA in E. coli; however, it did not function when the phaJYB4 gene was deleted. The B. cereus-type pha cluster represents a new example of a pha cluster that contains the gene encoding PhaJ.
Collapse
Affiliation(s)
- Takahiro Kihara
- a Department of Materials Science and Engineering, Tokyo Institute of Technology , Midori-ku, Yokohama , Japan.,b Department of Innovative and Engineered Materials, Tokyo Institute of Technology , Midori-ku, Yokohama , Japan
| | - Ayaka Hiroe
- a Department of Materials Science and Engineering, Tokyo Institute of Technology , Midori-ku, Yokohama , Japan.,b Department of Innovative and Engineered Materials, Tokyo Institute of Technology , Midori-ku, Yokohama , Japan
| | - Manami Ishii-Hyakutake
- c Bioplastic Research Team, RIKEN Biomass Engineering Program , Wako-shi, Saitama , Japan
| | - Kouhei Mizuno
- d Department of Creative Engineering , National Institute of Technology, Kitakyushu College , Kitakyushu , Japan
| | - Takeharu Tsuge
- a Department of Materials Science and Engineering, Tokyo Institute of Technology , Midori-ku, Yokohama , Japan
| |
Collapse
|
7
|
Kim J, Kim KJ. Crystal structure and biochemical characterization of a 3-ketoacyl-CoA thiolase from Ralstoniaeutropha H16. Int J Biol Macromol 2015; 82:425-31. [PMID: 26499087 DOI: 10.1016/j.ijbiomac.2015.10.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
The protein ReH16_B0759 from Ralstoniaeutropha is a 3-ketoacyl-coenzyme A (CoA) thiolase that catalyzes the fourth step of the β-oxidation degradative pathways by converting 3-ketoacyl-CoAto acyl-CoA. The crystal structures of ReH16_B0759 in its apo form and as a complex with its CoA substrate have been determined. Although ReH16_B0759 exhibited an overall structure similar to the ReH16_A1887 isozyme, the proteindoes not make a complex for β-oxidation. Similar to other degradative thiolases, ReH16_B0759 functions as a dimer, and the monomer comprises three subdomains. Unlike ReH16_A1887, a substantial structural change was not observed upon the binding of the CoA substrate in ReH16_B0759. Exceptionally, the Arg220 residue moved about 5.00Å to make room for the binding of the adenosine ring. Several charged residues including Arg220 are involved in the stabilization of CoA through hydrogen bond interactions. At the active site of ReH16_B0759, highly conserved residues such as Cys89, His347, and Cys377 were located near the thiol-group of CoA, suggesting that ReH16_B0759 may catalyze the thiolase reaction in a manner similar to that of other degradative thiolases. The residues involved in substrate binding and enzyme catalysis were further confirmed by site-directed mutagenesis.
Collapse
Affiliation(s)
- Jieun Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, South Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, South Korea.
| |
Collapse
|
8
|
Kim J, Kim KJ. Purification, crystallization and preliminary X-ray diffraction analysis of 3-ketoacyl-CoA thiolase A1887 from Ralstonia eutropha H16. Acta Crystallogr F Struct Biol Commun 2015; 71:758-62. [PMID: 26057808 PMCID: PMC4461343 DOI: 10.1107/s2053230x15007888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/21/2015] [Indexed: 11/10/2022] Open
Abstract
The gene product of A1887 from Ralstonia eutropha (ReH16_A1887) has been annotated as a 3-ketoacyl-CoA thiolase, an enzyme that catalyzes the fourth step of β-oxidation degradative pathways by converting 3-ketoacyl-CoA to acyl-CoA. ReH16_A1887 was overexpressed and purified to homogeneity by affinity and size-exclusion chromatography. The degradative thiolase activity of the purified ReH16_A1887 was measured and enzyme-kinetic parameters for the protein were obtained, with Km, Vmax and kcat values of 158 µM, 32 mM min(-1) and 5 × 10(6) s(-1), respectively. The ReH16_A1887 protein was crystallized in 17% PEG 8K, 0.1 M HEPES pH 7.0 at 293 K and a complete data set was collected to 1.4 Å resolution. The crystal belonged to space group P4(3)2(1)2, with unit-cell parameters a = b = 129.52, c = 114.13 Å, α = β = γ = 90°. The asymmetric unit contained two molecules, with a solvent content of 58.9%.
Collapse
Affiliation(s)
- Jieun Kim
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| |
Collapse
|
9
|
Kim J, Kim KJ. Crystal structure and biochemical properties of ReH16_A1887, the 3-ketoacyl-CoA thiolase from Ralstonia eutropha H16. Biochem Biophys Res Commun 2015; 459:547-52. [PMID: 25749345 DOI: 10.1016/j.bbrc.2015.02.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/25/2015] [Indexed: 11/25/2022]
Abstract
ReH16_A1887 from Ralstonia eutropha is an enzyme annotated as a 3-ketoacyl-CoA thiolase, and it catalyzes the fourth step of β-oxidation degradative pathways by converting 3-ketoacyl-CoA to acyl-CoA. We determined the crystal structures of ReH16_A1887 in the apo-form and in complex with its CoA substrate. ReH16_A1887 functions as a dimer, and the monomer of ReH16_A1887 comprises three subdomains (I, II, and III). The structural comparison between the apo-form and the CoA-bound form revealed that ReH16_A1887 undergoes a structural change in the lid-subdomain (subdomain III) upon the binding of the CoA substrate. The CoA molecule was stabilized by hydrogen bonding with positively charged residues such as Lys18, Arg210, and Arg217, and residues Thr213 and Gln151 aid its binding as well. At the active site of ReH16_A1887, highly conserved residues such as Cys91, His348, and Cys378 were located near the thiol-group of CoA, indicating that ReH16_A1887 might catalyze the thiolase reaction in a way similar to other thiolases. Moreover, in the vicinity of the covalent nucleophile Cys91, a hydrophobic hole that might serve as a binding site for the acyl-group of 3-ketoacyl-CoA was observed. The residues involved in enzyme catalysis and substrate-binding were further confirmed by site-directed mutagenesis experiments.
Collapse
Affiliation(s)
- Jieun Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea.
| |
Collapse
|
10
|
Agrawal T, Kotasthane AS, Kushwah R. Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability. 3 Biotech 2015; 5:45-60. [PMID: 28324359 PMCID: PMC4327755 DOI: 10.1007/s13205-014-0198-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/30/2014] [Indexed: 11/06/2022] Open
Abstract
A diverse and versatile spectrum of metabolic activities among isolates of fluorescent Pseudomonas putida indicates their adaptability to various niches. These polyhydroxybutyrate producing and phosphate solubilizing isolates showed a high level of functional and genetic versatility among themselves. One of the potential P. putida isolate P132 can contribute as a candidate agent for both biocontrol and PGPR applications. Identified as one of the most efficient PHB producer and phosphate solubilizer, in vitro detection of P132 showed the presence of genes for phenazine, pyrrolnitrin, pyoluteorin and 2,4 diacetylphloroglucinol along with polyhydroxyalkanoate.
Collapse
Affiliation(s)
- Toshy Agrawal
- Department of Plant Molecular Biology & Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur, 492006, Chattisgarh, India.
| | - Anil S Kotasthane
- Department of Plant Molecular Biology & Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur, 492006, Chattisgarh, India
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur, 492006, Chattisgarh, India
| | - Renu Kushwah
- Department of Plant Molecular Biology & Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur, 492006, Chattisgarh, India
| |
Collapse
|
11
|
Proteomic analysis of the purple sulfur bacterium Candidatus “Thiodictyon syntrophicum” strain Cad16T isolated from Lake Cadagno. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2013.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
3-oxoacyl-ACP reductase from Schistosoma japonicum: integrated in silico-in vitro strategy for discovering antischistosomal lead compounds. PLoS One 2013; 8:e64984. [PMID: 23762275 PMCID: PMC3676400 DOI: 10.1371/journal.pone.0064984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 04/18/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Schistosomiasis is a disease caused by parasitic worms and more than 200 million people are infected worldwide. The emergence of resistance to the most commonly used drug, praziquantel (PZQ), makes the development of novel drugs an urgent task. 3-oxoacyl-ACP reductase (OAR), a key enzyme involved in the fatty acid synthesis pathway, has been identified as a potential drug target against many pathogenic organisms. However, no research on Schistosoma japonicum OAR (SjOAR) has been reported. The characterization of the SjOAR protein will provide new strategies for screening antischistosomal drugs that target SjOAR. METHODOLOGY/PRINCIPAL FINDINGS After cloning the SjOAR gene, recombinant SjOAR protein was purified and assayed for enzymatic activity. The tertiary structure of SjOAR was obtained by homology modeling and 27 inhibitor candidates were identified from 14,400 compounds through molecular docking based on the structure. All of these compounds were confirmed to be able to bind to the SjOAR protein by BIAcore analysis. Two compounds exhibited strong antischistosomal activity and inhibitory effects on the enzymatic activity of SjOAR. In contrast, these two compounds showed relatively low toxicity towards host cells. CONCLUSIONS/SIGNIFICANCE The work presented here shows the feasibility of isolation of new antischistosomal compounds using a combination of virtual screening and experimental validation. Based on this strategy, we successfully identified 2 compounds that target SjOAR with strong antischistosomal activity but relatively low cytotoxicity to host cells.
Collapse
|
13
|
Kawakoshi A, Nakazawa H, Fukada J, Sasagawa M, Katano Y, Nakamura S, Hosoyama A, Sasaki H, Ichikawa N, Hanada S, Kamagata Y, Nakamura K, Yamazaki S, Fujita N. Deciphering the genome of polyphosphate accumulating actinobacterium Microlunatus phosphovorus. DNA Res 2012; 19:383-94. [PMID: 22923697 PMCID: PMC3473371 DOI: 10.1093/dnares/dss020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Polyphosphate accumulating organisms (PAOs) belong mostly to Proteobacteria and Actinobacteria and are quite divergent. Under aerobic conditions, they accumulate intracellular polyphosphate (polyP), while they typically synthesize polyhydroxyalkanoates (PHAs) under anaerobic conditions. Many ecological, physiological, and genomic analyses have been performed with proteobacterial PAOs, but few with actinobacterial PAOs. In this study, the whole genome sequence of an actinobacterial PAO, Microlunatus phosphovorus NM-1T (NBRC 101784T), was determined. The number of genes for polyP metabolism was greater in M. phosphovorus than in other actinobacteria; it possesses genes for four polyP kinases (ppks), two polyP-dependent glucokinases (ppgks), and three phosphate transporters (pits). In contrast, it harbours only a single ppx gene for exopolyphosphatase, although two copies of ppx are generally present in other actinobacteria. Furthermore, M. phosphovorus lacks the phaABC genes for PHA synthesis and the actP gene encoding an acetate/H+ symporter, both of which play crucial roles in anaerobic PHA accumulation in proteobacterial PAOs. Thus, while the general features of M. phosphovorus regarding aerobic polyP accumulation are similar to those of proteobacterial PAOs, its anaerobic polyP use and PHA synthesis appear to be different.
Collapse
Affiliation(s)
- Akatsuki Kawakoshi
- Biological Resource Center, National Institute of Technology and Evaluation, 2-10-49 Nishihara, Tokyo 151-0066, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Characterization and functional analyses of R-specific enoyl coenzyme A hydratases in polyhydroxyalkanoate-producing Ralstonia eutropha. Appl Environ Microbiol 2011; 78:493-502. [PMID: 22081565 DOI: 10.1128/aem.06937-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genome survey of polyhydroxyalkanoate (PHA)-producing Ralstonia eutropha H16 detected the presence of 16 orthologs of R-specific enoyl coenzyme A (enoyl-CoA) hydratase, among which three proteins shared high homologies with the enzyme specific to enoyl-CoAs of medium chain length encoded by phaJ4 from Pseudomonas aeruginosa (phaJ4(Pa)). The recombinant forms of the three proteins, termed PhaJ4a(Re) to PhaJ4c(Re), actually showed enoyl-CoA hydratase activity with R specificity, and the catalytic efficiencies were elevated as the substrate chain length increased from C(4) to C(8). PhaJ4a(Re) and PhaJ4b(Re) showed >10-fold-higher catalytic efficiency than PhaJ4c(Re). The functions of the new PhaJ4 proteins were investigated using previously engineered R. eutropha strains as host strains; these strains are capable of synthesizing poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)] from soybean oil. Deletion of phaJ4a(Re) from the chromosome resulted in significant decrease of 3HHx composition in the accumulated copolyester, whereas no change was observed with deletion of phaJ4b(Re) or phaJ4c(Re), indicating that only PhaJ4a(Re) was one of the major enzymes supplying the (R)-3HHx-CoA monomer through β-oxidation. Introduction of phaJ4a(Re) or phaJ4b(Re) into the R. eutropha strains using a broad-host-range vector enhanced the 3HHx composition of the copolyesters, but the introduction of phaJ4c(Re) did not. The two genes were then inserted into the pha operon on chromosome 1 of the engineered R. eutropha by homologous recombination. These modifications enabled the biosynthesis of P(3HB-co-3HHx) composed of a larger 3HHx fraction without a negative impact on cell growth and PHA production on soybean oil, especially when phaJ4a(Re) or phaJ4b(Re) was tandemly introduced with phaJ(Ac) from Aeromonas caviae.
Collapse
|
15
|
Sato S, Kanazawa H, Tsuge T. Expression and characterization of (R)-specific enoyl coenzyme A hydratases making a channeling route to polyhydroxyalkanoate biosynthesis in Pseudomonas putida. Appl Microbiol Biotechnol 2011; 90:951-9. [DOI: 10.1007/s00253-011-3150-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 11/29/2022]
|
16
|
Brigham CJ, Budde CF, Holder JW, Zeng Q, Mahan AE, Rha C, Sinskey AJ. Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression. J Bacteriol 2010; 192:5454-64. [PMID: 20709892 PMCID: PMC2950501 DOI: 10.1128/jb.00493-10] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/26/2010] [Indexed: 12/30/2022] Open
Abstract
Ralstonia eutropha H16 is capable of growth and polyhydroxyalkanoate production on plant oils and fatty acids. However, little is known about the triacylglycerol and fatty acid degradation pathways of this bacterium. We compare whole-cell gene expression levels of R. eutropha H16 during growth and polyhydroxyalkanoate production on trioleate and fructose. Trioleate is a triacylglycerol that serves as a model for plant oils. Among the genes of note, two potential fatty acid β-oxidation operons and two putative lipase genes were shown to be upregulated in trioleate cultures. The genes of the glyoxylate bypass also exhibit increased expression during growth on trioleate. We observed that single β-oxidation operon deletion mutants of R. eutropha could grow using palm oil or crude palm kernel oil as the sole carbon source, regardless of which operon was present in the genome, but a double mutant was unable to grow under these conditions. A lipase deletion mutant did not exhibit a growth defect in emulsified oil cultures but did exhibit a phenotype in cultures containing nonemulsified oil. Mutants of the glyoxylate shunt gene for isocitrate lyase were able to grow in the presence of oils, while a malate synthase (aceB) deletion mutant grew more slowly than wild type. Gene expression under polyhydroxyalkanoate storage conditions was also examined. Many findings of this analysis confirm results from previous studies by our group and others. This work represents the first examination of global gene expression involving triacylglycerol and fatty acid catabolism genes in R. eutropha.
Collapse
Affiliation(s)
- Christopher J. Brigham
- Department of Biology, Department of Chemical Engineering, Biomaterials Science and Engineering Laboratory, Division of Health Sciences Technology, Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, Broad Institute, Cambridge, Massachusetts 02139
| | - Charles F. Budde
- Department of Biology, Department of Chemical Engineering, Biomaterials Science and Engineering Laboratory, Division of Health Sciences Technology, Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, Broad Institute, Cambridge, Massachusetts 02139
| | - Jason W. Holder
- Department of Biology, Department of Chemical Engineering, Biomaterials Science and Engineering Laboratory, Division of Health Sciences Technology, Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, Broad Institute, Cambridge, Massachusetts 02139
| | - Qiandong Zeng
- Department of Biology, Department of Chemical Engineering, Biomaterials Science and Engineering Laboratory, Division of Health Sciences Technology, Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, Broad Institute, Cambridge, Massachusetts 02139
| | - Alison E. Mahan
- Department of Biology, Department of Chemical Engineering, Biomaterials Science and Engineering Laboratory, Division of Health Sciences Technology, Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, Broad Institute, Cambridge, Massachusetts 02139
| | - ChoKyun Rha
- Department of Biology, Department of Chemical Engineering, Biomaterials Science and Engineering Laboratory, Division of Health Sciences Technology, Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, Broad Institute, Cambridge, Massachusetts 02139
| | - Anthony J. Sinskey
- Department of Biology, Department of Chemical Engineering, Biomaterials Science and Engineering Laboratory, Division of Health Sciences Technology, Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, Broad Institute, Cambridge, Massachusetts 02139
| |
Collapse
|
17
|
FadD from Pseudomonas putida CA-3 is a true long-chain fatty acyl coenzyme A synthetase that activates phenylalkanoic and alkanoic acids. J Bacteriol 2009; 191:7554-65. [PMID: 19820085 DOI: 10.1128/jb.01016-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fatty acyl coenzyme A synthetase (FadD) from Pseudomonas putida CA-3 is capable of activating a wide range of phenylalkanoic and alkanoic acids. It exhibits the highest rates of reaction and catalytic efficiency with long-chain aromatic and aliphatic substrates. FadD exhibits higher k(cat) and K(m) values for aromatic substrates than for the aliphatic equivalents (e.g., 15-phenylpentadecanoic acid versus pentadecanoic acid). FadD is inhibited noncompetitively by both acrylic acid and 2-bromooctanoic acid. The deletion of the fadD gene from P. putida CA-3 resulted in no detectable growth or polyhydroxyalkanoate (PHA) accumulation with 10-phenyldecanoic acid, decanoic acid, and longer-chain substrates. The results suggest that FadD is solely responsible for the activation of long-chain phenylalkanoic and alkanoic acids. While the CA-3DeltafadD mutant could grow on medium-chain substrates, a decrease in growth yield and PHA accumulation was observed. The PHA accumulated by CA-3DeltafadD contained a greater proportion of short-chain monomers than did wild-type PHA. Growth of CA-3DeltafadD was unaffected, but PHA accumulation decreased modestly with shorter-chain substrates. The complemented mutant regained 70% to 90% of the growth and PHA-accumulating ability of the wild-type strain depending on the substrate. The expression of an extra copy of fadD in P. putida CA-3 resulted in increased levels of PHA accumulation (up to 1.6-fold) and an increase in the incorporation of longer-monomer units into the PHA polymer.
Collapse
|