1
|
Arora J, Kinjo Y, Šobotník J, Buček A, Clitheroe C, Stiblik P, Roisin Y, Žifčáková L, Park YC, Kim KY, Sillam-Dussès D, Hervé V, Lo N, Tokuda G, Brune A, Bourguignon T. The functional evolution of termite gut microbiota. MICROBIOME 2022; 10:78. [PMID: 35624491 PMCID: PMC9137090 DOI: 10.1186/s40168-022-01258-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.
Collapse
Affiliation(s)
- Jigyasa Arora
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Yukihiro Kinjo
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Aleš Buček
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Crystal Clitheroe
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Petr Stiblik
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Yves Roisin
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Lucia Žifčáková
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Yung Chul Park
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Ki Yoon Kim
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| | - David Sillam-Dussès
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, LEEC, UR 4443, Villetaneuse, France
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gaku Tokuda
- Tropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Thomas Bourguignon
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
de la Fuente G, Yañez-Ruiz DR, Seradj AR, Balcells J, Belanche A. Methanogenesis in animals with foregut and hindgut fermentation: a review. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methane is the main greenhouse-gas contributor to global warming in the livestock sector; it is generated by anaerobic fermentation in the different sections of the gut, and the methane concentration differs significantly among species. Methane is produced only by certain types of microorganisms called methanogens. The species composition of methanogenic archaea population is largely affected by the diet, geographical location, host and the section of the gut. Consequently, methane production, either measured as total grams emitted per day or per bodyweight mass, differs greatly among animal species. The main difference in methanogenic activity among different gut sections and animal species is the substrate fermented and the metabolic pathway to complete anaerobic fermentation of plant material. The three main substrates used by methanogens are CO2, acetate and compounds containing methyl groups. The three dominant orders of methanogens in gut environments are Methanomicrobiales, Methanobacteriales and Methanosarcinales. They normally are present in low numbers (below 3% of total microbiome). The present review will describe the main metabolic pathways and methanogens involved in CH4 production in the gut of different host-animal species, as well as discuss general trends that influence such emissions, such as geographical distribution, feed composition, section of the gut, host age and diurnal and season variation. Finally, the review will describe animal species (large and small domestic ruminants, wild ruminants, camelids, pigs, rabbits, horses, macropods, termites and humans) specificities in the methanogen diversity and their effects on methane emission.
Collapse
|
3
|
Brune A. Methanogens in the Digestive Tract of Termites. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2018. [DOI: 10.1007/978-3-319-98836-8_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
4
|
Affiliation(s)
- Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
5
|
Abdul Rahman N, Parks DH, Willner DL, Engelbrektson AL, Goffredi SK, Warnecke F, Scheffrahn RH, Hugenholtz P. A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. MICROBIOME 2015; 3:5. [PMID: 25830022 PMCID: PMC4379614 DOI: 10.1186/s40168-015-0067-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 01/02/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Termites and their microbial gut symbionts are major recyclers of lignocellulosic biomass. This important symbiosis is obligate but relatively open and more complex in comparison to other well-known insect symbioses such as the strict vertical transmission of Buchnera in aphids. The relative roles of vertical inheritance and environmental factors such as diet in shaping the termite gut microbiome are not well understood. RESULTS The gut microbiomes of 66 specimens representing seven higher and nine lower termite genera collected in Australia and North America were profiled by small subunit (SSU) rRNA amplicon pyrosequencing. These represent the first reported culture-independent gut microbiome data for three higher termite genera: Tenuirostritermes, Drepanotermes, and Gnathamitermes; and two lower termite genera: Marginitermes and Porotermes. Consistent with previous studies, bacteria comprise the largest fraction of termite gut symbionts, of which 11 phylotypes (6 Treponema, 1 Desulfarculus-like, 1 Desulfovibrio, 1 Anaerovorax-like, 1 Sporobacter-like, and 1 Pirellula-like) were widespread occurring in ≥50% of collected specimens. Archaea are generally considered to comprise only a minority of the termite gut microbiota (<3%); however, archaeal relative abundance was substantially higher and variable in a number of specimens including Macrognathotermes, Coptotermes, Schedorhinotermes, Porotermes, and Mastotermes (representing up to 54% of amplicon reads). A ciliate related to Clevelandella was detected in low abundance in Gnathamitermes indicating that protists were either reacquired after protists loss in higher termites or persisted in low numbers across this transition. Phylogenetic analyses of the bacterial communities indicate that vertical inheritance is the primary force shaping termite gut microbiota. The effect of diet is secondary and appears to influence the relative abundance, but not membership, of the gut communities. CONCLUSIONS Vertical inheritance is the primary force shaping the termite gut microbiome indicating that species are successfully and faithfully passed from one generation to the next via trophallaxis or coprophagy. Changes in relative abundance can occur on shorter time scales and appear to be an adaptive mechanism for dietary fluctuations.
Collapse
Affiliation(s)
- Nurdyana Abdul Rahman
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
| | - Donovan H Parks
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
| | - Dana L Willner
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
- />Current address: Department of Statistics, University of Illinois Urbana-Champaign, Champaign, IL USA
| | - Anna L Engelbrektson
- />DOE Joint Genome Institute, Walnut Creek, CA USA
- />Current address: Energy Biosciences Institute, University of California, Berkeley, CA USA
| | | | - Falk Warnecke
- />DOE Joint Genome Institute, Walnut Creek, CA USA
- />Jena School for Microbial Communication (JSMC) and Microbial Ecology Group, Friedrich Schiller University Jena, Jena, Germany
| | - Rudolf H Scheffrahn
- />Fort Lauderdale Research and Education Center, University of Florida, Davie, FL USA
| | - Philip Hugenholtz
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
- />DOE Joint Genome Institute, Walnut Creek, CA USA
| |
Collapse
|
6
|
Shi Y, Huang Z, Han S, Fan S, Yang H. Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages. J Basic Microbiol 2015; 55:1021-8. [DOI: 10.1002/jobm.201400678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/22/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Yu Shi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology; Institute of Entomology; School of Life Sciences; Central China Normal University; Wuhan P.R. China
| | - Zhou Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology; Institute of Entomology; School of Life Sciences; Central China Normal University; Wuhan P.R. China
| | - Shuai Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology; Institute of Entomology; School of Life Sciences; Central China Normal University; Wuhan P.R. China
| | - Shuo Fan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology; Institute of Entomology; School of Life Sciences; Central China Normal University; Wuhan P.R. China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology; Institute of Entomology; School of Life Sciences; Central China Normal University; Wuhan P.R. China
| |
Collapse
|
7
|
Inoue JI, Noda S, Hongoh Y, Ui S, Ohkuma M. Identification of Endosymbiotic Methanogen and Ectosymbiotic Spirochetes of Gut Protists of the Termite Coptotermes formosanus. Microbes Environ 2012; 23:94-7. [PMID: 21558694 DOI: 10.1264/jsme2.23.94] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prokaryotic associations with gut protists of the termite Coptotermes formosanus were investigated based on 16S rRNA gene sequences. An endosymbiotic methanogen of Spirotrichonympha leidyi phylogenetically grouped with endosymbionts of other gut protists in the genus Methanobrevibacter, seemed to be unrelated to the host protist phylogeny. Three different lineages of ectosymbiotic spirochetes in the genus Treponema were identified in single cells of Holomastigotoides mirabile, indicating their simultaneous occurrence. Although these symbionts represented mere minor populations in the gut, their phylogenetic assignments suggest a common symbiotic relationship involving H(2) metabolism.
Collapse
|
8
|
Husseneder C. Symbiosis in subterranean termites: a review of insights from molecular studies. ENVIRONMENTAL ENTOMOLOGY 2010; 39:378-388. [PMID: 20388266 DOI: 10.1603/en09006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The symbiotic relationship of termites and their eukaryotic and prokaryotic gut microbiota is a focal point of research because of the important roles symbionts play in termite nutrition. The use of molecular methods has recently provided valuable insights into the species diversity and the roles of microorganisms in the guts of termites. This paper provides a review of the current knowledge of symbiont species inventories, genome analysis, and gene expression in the guts of subterranean termites. Particular emphasis is given to the termite genera Reticulitermes and Coptotermes (Isoptera: Rhinotermitidae), because they contain pest species of global impact in their native and invasive range.
Collapse
Affiliation(s)
- Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences Bldg, Baton Rouge, LA 70803, USA.
| |
Collapse
|
9
|
Brune A. Methanogens in the Digestive Tract of Termites. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2010. [DOI: 10.1007/978-3-642-13615-3_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Noda S, Hongoh Y, Sato T, Ohkuma M. Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 2009; 9:158. [PMID: 19586555 PMCID: PMC2717939 DOI: 10.1186/1471-2148-9-158] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 07/09/2009] [Indexed: 12/03/2022] Open
Abstract
Background The microbial community in the gut of termites is responsible for the efficient decomposition of recalcitrant lignocellulose. Prominent features of this community are its complexity and the associations of prokaryotes with the cells of cellulolytic flagellated protists. Bacteria in the order Bacteroidales are involved in associations with a wide variety of gut protist species as either intracellular endosymbionts or surface-attached ectosymbionts. In particular, ectosymbionts exhibit distinct morphological patterns of the associations. Therefore, these Bacteroidales symbionts provide an opportunity to investigate not only the coevolutionary relationships with the host protists and their morphological evolution but also how symbiotic associations between prokaryotes and eukaryotes occur and evolve within a complex symbiotic community. Results Molecular phylogeny of 31 taxa of Bacteroidales symbionts from 17 protist genera in 10 families was examined based on 16S rRNA gene sequences. Their localization, morphology, and specificity were also examined by fluorescent in situ hybridizations. Although a monophyletic grouping of the ectosymbionts occurred in three related protist families, the symbionts of different protist genera were usually dispersed among several phylogenetic clusters unique to termite-gut bacteria. Similar morphologies of the associations occurred in multiple lineages of the symbionts. Nevertheless, the symbionts of congeneric protist species were closely related to one another, and in most cases, each host species harbored a unique Bacteroidales species. The endosymbionts were distantly related to the ectosymbionts examined so far. Conclusion The coevolutionary history of gut protists and their associated Bacteroidales symbionts is complex. We suggest multiple independent acquisitions of the Bacteroidales symbionts by different protist genera from a pool of diverse bacteria in the gut community. In this sense, the gut could serve as a reservoir of diverse bacteria for associations with the protist cells. The similar morphologies are considered a result of evolutionary convergence. Despite the complicated evolutionary history, the host-symbiont relationships are mutually specific, suggesting their cospeciations at the protist genus level with only occasional replacements.
Collapse
Affiliation(s)
- Satoko Noda
- Ecomolecular Biorecycling Science Research Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
11
|
Noda S, Kitade O, Inoue T, Kawai M, Kanuka M, Hiroshima K, Hongoh Y, Constantino R, Uys V, Zhong J, Kudo T, Ohkuma M. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol 2007; 16:1257-66. [PMID: 17391411 DOI: 10.1111/j.1365-294x.2006.03219.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A number of cophylogenetic relationships between two organisms namely a host and a symbiont or parasite have been studied to date; however, organismal interactions in nature usually involve multiple members. Here, we investigated the cospeciation of a triplex symbiotic system comprising a hierarchy of three organisms -- termites of the family Rhinotermitidae, cellulolytic protists of the genus Pseudotrichonympha in the guts of these termites, and intracellular bacterial symbionts of the protists. The molecular phylogeny was inferred based on two mitochondrial genes for the termites and nuclear small-subunit rRNA genes for the protists and their endosymbionts, and these were compared. Although intestinal microorganisms are generally considered to have looser associations with the host than intracellular symbionts, the Pseudotrichonympha protists showed almost complete codivergence with the host termites, probably due to strict transmissions by proctodeal trophallaxis or coprophagy based on the social behaviour of the termites. Except for one case, the endosymbiotic bacteria of the protists formed a monophyletic lineage in the order Bacteroidales, and the branching pattern was almost identical to those of the protists and the termites. However, some non-codivergent evolutionary events were evident. The members of this triplex symbiotic system appear to have cospeciated during their evolution with minor exceptions; the evolutionary relationships were probably established by termite sociality and the complex microbial community in the gut.
Collapse
Affiliation(s)
- S Noda
- Environmental Molecular Biology Laboratory, RIKEN, Wako, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Miyata R, Noda N, Tamaki H, Kinjyo K, Aoyagi H, Uchiyama H, Tanaka H. Phylogenetic Relationship of Symbiotic Archaea in the Gut of the Higher Termite Nasutitermes takasagoensis Fed with Various Carbon Sources. Microbes Environ 2007. [DOI: 10.1264/jsme2.22.157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ryo Miyata
- Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Naohiro Noda
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hideyuki Tamaki
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kazuhiko Kinjyo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus
| | - Hideki Aoyagi
- Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Hiroo Uchiyama
- Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Hideo Tanaka
- Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
13
|
Noda S, Iida T, Kitade O, Nakajima H, Kudo T, Ohkuma M. Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus. Appl Environ Microbiol 2006; 71:8811-7. [PMID: 16332877 PMCID: PMC1317455 DOI: 10.1128/aem.71.12.8811-8817.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.
Collapse
Affiliation(s)
- Satoko Noda
- PRESTO, Japan Science and Technology Agency (JST), Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Brune A, Stingl U. Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:39-60. [PMID: 16623388 DOI: 10.1007/3-540-28221-1_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Andreas Brune
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | |
Collapse
|
15
|
Noda S, Kawai M, Nakajima H, Kudo T, Ohkuma M. Identification and in situ Detection of Two Lineages of Bacteroidales Ectosymbionts Associated with a Termite Gut Protist, Oxymonas sp. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Satoko Noda
- PRESTO, Japan Science and Technology Agency (JST)
| | - Miho Kawai
- Environmental Molecular Biology Lab., RIKEN
- Graduate School of Integrated Science, Yokohama City University
| | - Hideaki Nakajima
- Environmental Molecular Biology Lab., RIKEN
- Department of Applied Chemistry, Toyo University
| | - Toshiaki Kudo
- Environmental Molecular Biology Lab., RIKEN
- Graduate School of Integrated Science, Yokohama City University
| | - Moriya Ohkuma
- PRESTO, Japan Science and Technology Agency (JST)
- Environmental Molecular Biology Lab., RIKEN
| |
Collapse
|
16
|
Hara K, Kakegawa T, Yamashiro K, Maruyama A, Ishibashi JI, Marumo K, Urabe T, Yamagishi A. Analysis of the archaeal sub-seafloor community at Suiyo Seamount on the Izu-Bonin Arc. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2005; 35:1634-42. [PMID: 16175703 DOI: 10.1016/j.asr.2005.04.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A sub-surface archaeal community at the Suiyo Seamount in the Western Pacific Ocean was investigated by 16S rRNA gene sequence and whole-cell in situ hybridization analyses. In this study, we drilled and cased holes at the hydrothermal area of the seamount to minimize contamination of the hydrothermal fluid in the sub-seafloor by penetrating seawater. PCR clone analysis of the hydrothermal fluid samples collected from a cased hole indicated the presence of chemolithoautotrophic primary biomass producers of Archaeoglobales and the Methanococcales-related archaeal HTE1 group, both of which can utilize hydrogen as an electron donor. We discuss the implication of the microbial community on the early history of life and on the search for extraterrestrial life.
Collapse
Affiliation(s)
- Kurt Hara
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hara K, Shinzato N, Oshima T, Yamagishi A. Endosymbiotic Methanobrevibacter species Living in Symbiotic Protists of the Termite Reticulitermes speratus Detected by Fluorescent In Situ Hybridization. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kurt Hara
- Department of Molecular Biology, School of Life Science, Tokyo University of Pharmacy and Life Science
| | - Naoya Shinzato
- Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tairo Oshima
- Department of Molecular Biology, School of Life Science, Tokyo University of Pharmacy and Life Science
| | - Akihiko Yamagishi
- Department of Molecular Biology, School of Life Science, Tokyo University of Pharmacy and Life Science
| |
Collapse
|
18
|
Deevong P, Hattori S, Yamada A, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T. Isolation and Detection of Methanogens from the Gut of Higher Termites. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.221] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Pinsurang Deevong
- Environmental Molecular Biology Laboratory, RIKEN
- Department of Microbiology, Kasetsart University
| | | | - Akinori Yamada
- Environmental Molecular Biology Laboratory, RIKEN
- Center for Ecological Research, Kyoto University
| | | | - Moriya Ohkuma
- Environmental Molecular Biology Laboratory, RIKEN
- PRESTO, Japan Science and Technology Agency
| | | | - Toshiaki Kudo
- Environmental Molecular Biology Laboratory, RIKEN
- Graduate School of Integrated Science, Yokohama City University
| |
Collapse
|
19
|
Ohkuma M. Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 2003; 61:1-9. [PMID: 12658509 DOI: 10.1007/s00253-002-1189-z] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Revised: 11/04/2002] [Accepted: 11/08/2002] [Indexed: 11/24/2022]
Abstract
Termites thrive in great abundance in terrestrial ecosystems and play important roles in biorecycling of lignocellulose. Together with their microbial symbionts, they efficiently decompose lignocellulose. In so-called lower termites, a dual decomposing system, consisting of the termite's own cellulases and those of its gut protists, was elucidated at the molecular level. Higher termites degrade cellulose apparently using only their own enzymes, because of the absence of symbiotic protists. Termite gut prokaryotes efficiently support lignocellulose degradation. However, culture-independent molecular studies have revealed that the majority of these gut symbionts have not yet been cultivated, and that the gut symbiotic community shows a highly structured spatial organization. In situ localization of individual populations and their functional interactions are important to understand the nature of symbioses in the gut. In contrast to cellulose, lignin degradation does not appear to be important in the gut of wood-feeding termites. Soil-feeding termites decompose humic substances in soil at least partly, but little is known about the decomposition. Fungus-growing termites are successful in the almost complete decomposition of lignocellulose in a sophisticated cooperation with basidiomycete fungi cultivated in their nest. A detailed understanding of efficient biorecycling systems, such as that for lignocellulose, and the symbioses that provide this efficiency will benefit applied microbiology and biotechnology.
Collapse
Affiliation(s)
- M Ohkuma
- Molecular Microbial Ecology Division, Bioscience Technology Center, RIKEN and ICORP, Japan Science and Technology Corporation, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
20
|
Hara K, Shinzato N, Seo M, Oshima T, Yamagishi A. Phylogenetic Analysis of Symbiotic Archaea Living in the Gut of Xylophagous Cockroaches. Microbes Environ 2002. [DOI: 10.1264/jsme2.17.185] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kurt Hara
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science
| | - Naoya Shinzato
- Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Masae Seo
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science
| | - Tairo Oshima
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science
| | - Akihiko Yamagishi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science
| |
Collapse
|