1
|
Filimonova E, Abdaev M, Vasilenko I, Kubetskij Y, Prokhorov O, Rzaev J. White matter spinal tracts impairment in patients with degenerative cervical myelopathy evaluated with the magnetization transfer saturation MRI technique. Spinal Cord 2024; 62:590-596. [PMID: 39191861 DOI: 10.1038/s41393-024-01025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
STUDY DESIGN Prospective case-control study. OBJECTIVES We investigated the use of the magnetization transfer saturation (MTsat) technique to assess the structural integrity of the spinal cord tracts in individuals with clinically significant degenerative cervical myelopathy (DCM) and associated disability. SETTING Novosibirsk Neurosurgery Centre, Russia. METHODS A total of 53 individuals diagnosed with DCM and 41 patients with cervical radiculopathy underwent high-resolution MRI of the cervical spinal cord via the magnetization transfer technique. The MRI data were processed using the Spinal Cord Toolbox (v5.5), with MTsat values determined for each spinal tract and compared between the two groups. Furthermore, associations between MTsat values and the clinical disability rates of patients were investigated. RESULTS A significant decrease in the MTsat of the ventral spinocerebellar tract was observed in the DCM group compared to the control group (adjusted p < 0.001). There was a trend towards lower MTsat values in the rubrospinal tract in the DCM group (adjusted p = 0.08). Additionally, a decrease in MTsat values in the lateral funiculi of the spinal cord was found in patients with DCM (adjusted p < 0.01). Furthermore, a trend toward a positive correlation was observed between the JOA score and the MTsat values within the ventral spinocerebellar tract (R = 0.33, adjusted p = 0.051). CONCLUSIONS The findings of our study indicate that demyelination in patients with DCM affects mainly the ventral spinocerebellar and rubrospinal tracts, and the extent of changes in the ventral spinocerebellar tract is related to the severity of the condition.
Collapse
Affiliation(s)
- Elena Filimonova
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia.
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia.
| | - Mars Abdaev
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
| | - Ivan Vasilenko
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
| | | | - Oleg Prokhorov
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Jamil Rzaev
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Filimonova E, Abdaev M, Vasilenko I, Kubetskij Y, Prokhorov O, Rzaev J. Evaluation of the structural integrity of different spinal cord tracts with magnetization transfer ratio in degenerative cervical myelopathy. Neuroradiology 2024; 66:839-846. [PMID: 38441573 DOI: 10.1007/s00234-024-03327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 04/21/2024]
Abstract
PURPOSE Degenerative cervical myelopathy (DCM) is a common cause of spinal cord dysfunction. In this study, we explored the potential of magnetization transfer ratio (MTR) for evaluating the structural integrity of spinal cord tracts in patients with clinically significant DCM. METHODS Fifty-three patients with DCM and 41 patients with cervical radiculopathy were evaluated using high-resolution cervical spinal cord magnetic resonance imaging (MRI), which included the magnetization transfer technique. MRI data were analyzed with the Spinal Cord Toolbox (v5.5); MTR values in each spinal tract were calculated and compared between groups after correction for patient age and sex. Correlations between MTR values and patients' clinical disability rate were also evaluated. RESULTS A statistically significant reduction in the average MTR of the spinal cord white matter, as well as the MTR of the ventral columns and lateral funiculi, was revealed in the DCM group (adjusted p < 0.01 for all comparisons). Furthermore, reductions in MTR values in the fasciculus cuneatus, spinocerebellar, rubrospinal, and reticulospinal tracts were found in patients with DCM (adjusted p < 0.01 for all comparisons). Positive correlations between the JOA score and the MTR within the ventral columns of the spinal cord (R = 0.38, adjusted p < 0.05) and the ventral spinocerebellar tract (R = 0.41, adjusted p < 0.05) were revealed. CONCLUSION The findings of our study indicate that demyelination in patients with DCM primarily affects the spinal tracts of the extrapyramidal system, and the extent of these changes is related to the severity of the condition.
Collapse
Affiliation(s)
- Elena Filimonova
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia.
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia.
| | - Mars Abdaev
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
| | - Ivan Vasilenko
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
| | | | | | - Jamil Rzaev
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
3
|
Fang Y, Li S, Wang J, Zhang Z, Jiang W, Wang C, Jiang Y, Guo H, Han X, Tian W. Diagnostic efficacy of tract-specific diffusion tensor imaging in cervical spondylotic myelopathy with electrophysiological examination validation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1230-1244. [PMID: 38286908 DOI: 10.1007/s00586-023-08111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/02/2023] [Accepted: 12/17/2023] [Indexed: 01/31/2024]
Abstract
PURPOSE This study aimed to investigate the effectiveness of tract-specific diffusion tensor imaging (DTI) metrics in identifying the responsible segments for neurological dysfunction in cervical spondylotic myelopathy (CSM). METHODS The study encompassed nineteen participants diagnosed with CSM, including 10 males and 9 females. Additionally, a control group consisting of ten healthy caregivers (5 males and 5 females) were recruited with no symptoms and no compressions on magnetic resonance imaging (MRI). All participants underwent a comprehensive physical examination, MRI assessment, and DTI examination conducted by a senior chief physician. Several parameters were collected from the MR images, including the aspect ratio (defined as the anteroposterior diameter / the transverse diameter of the corresponding segment's spinal cord), transverse ratio (defined as the transverse diameter of the corresponding segment's spinal cord / the transverse diameter of the spinal cord at C2/3), and T2 high signal of the spinal cord. Furthermore, quantitative DTI metrics, such as axial diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD), and fractional anisotropy (FA), were calculated using automatic region-of-interest (ROI) analysis for both whole spinal cord column and dorsal column. Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic efficacy of the aspect ratio, transverse ratio, and DTI parameters. The area under the curve (AUC), sensitivity, and specificity were calculated. Intraoperative spinal cord electrophysiological examination was performed as the objective measure of spinal cord function during surgery. RESULTS As determined by electrophysiological examination, neurological dysfunction was found in 2 patients due to C3/4 compression, in 10 patients due to C4/5 compression, in 6 patients due to C5/6 compression, and in 1 patient due to C6/7 compression. The modified Japanese Orthopedic Association scale (mJOA) was 12.71 ± 1.55 in the CSM group, with 4.87 ± 0.72 for sensory nerve function and 5.05 ± 1.35 for motor nerve function. For the control group, none of the volunteers had neurological dysfunction. T2 high signal was found at the most stenotic segment in 13 patients of the CSM group. Considering all the cervical segments, the aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) was more capable of determining the responsible segment than transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). AD, MD, and RD were significantly higher while FA was significantly lower in the responsible segment than in the irresponsible segment (P < 0.05). The AUC of DTI-Dorsal column parameters (AD, MD, RD, FA) was larger than the corresponding parameters of the DTI (Whole spinal cord). AD of DTI-Dorsal Column possessed the greatest efficacy (AUC = 0.823, sensitivity = 84.21%, specificity = 77.32%) to determine the responsible segment, larger than AD of DTI-Whole spinal cord (AUC = 0.822, P = 0.001, Sensitivity = 89.47%, Specificity = 77.32%), aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) and transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). Subgroup analysis revealed that the diagnostic efficacy of DTI and MRI parameters was influenced by cervical spine segment. CONCLUSIONS When considering all cervical segments, AD from the DTI-Dorsal Column exhibited the most significant potential in identifying responsible segments. This potential was found to be superior to that of DTI-Whole spinal cord, aspect ratio, the most stenotic segment, T2 high signals, transverse ratio, motor nerve dysfunction, and sensory nerve dysfunction. The diagnostic effectiveness of both DTI and MRI parameters was notably influenced by the specific cervical spine segment.
Collapse
Affiliation(s)
- Yanming Fang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Sisi Li
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Jinchao Wang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhenzhen Zhang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Neurological Electrophysiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Wen Jiang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Radiology Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Chao Wang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China
| | - Yuancheng Jiang
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Xiao Han
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China.
| | - Wei Tian
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Filimonova E, Letyagin V, Zaitsev B, Kubetsky Y, Rzaev J. Application of the T1w/T2w mapping technique for spinal cord assessment in patients with degenerative cervical myelopathy. Spinal Cord 2024; 62:6-11. [PMID: 37919382 DOI: 10.1038/s41393-023-00941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
STUDY DESIGN Retrospective case-control study. OBJECTIVES To investigate signal changes on T1w/T2w signal intensity ratio maps within cervical cord in patients with degenerative cervical myelopathy (DCM). SETTING Novosibirsk Neurosurgery Center, Russia. METHODS A total of 261 patients with DCM and 42 age- and sex-matched healthy controls were evaluated using the T1w/T2w mapping method and spinal cord automatic morphometry. The T1w/T2w signal intensity ratio, which reflects white matter integrity, and the spinal cord cross-sectional area (CSA) were calculated and compared between the patients and the controls. In patients with DCM, the correlations between these parameters and neurological scores were also evaluated. RESULTS The regional T1w/T2w ratio values from the cervical spinal cord at the level of maximal compression in patients with DCM were significantly lower than those in healthy controls (p < 0.001), as were the regional CSA values (p < 0.001). There was a positive correlation between the regional values of the T1w/T2w ratio and the values of the CSA at the level of maximal spinal cord compression. CONCLUSIONS T1w/T2w mapping revealed that spinal cord tissue damage exists at the level of maximal compression in patients with DCM in association with spinal cord atrophy according to automatic morphometry. These changes were correlated with each other.
Collapse
Affiliation(s)
- Elena Filimonova
- Federal Center of Neurosurgery Novosibirsk, Novosibirsk, Russia.
- Novosibirsk State Medical University, Novosibirsk, Russia.
| | | | - Boris Zaitsev
- Federal Center of Neurosurgery Novosibirsk, Novosibirsk, Russia
| | - Yulij Kubetsky
- Federal Center of Neurosurgery Novosibirsk, Novosibirsk, Russia
| | - Jamil Rzaev
- Federal Center of Neurosurgery Novosibirsk, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Filimonova E, Vasilenko I, Kubetsky Y, Prokhorov O, Abdaev M, Rzaev J. Brainstem and subcortical regions volume loss in patients with degenerative cervical myelopathy and its association with spinal cord compression severity. Clin Neurol Neurosurg 2023; 233:107943. [PMID: 37634395 DOI: 10.1016/j.clineuro.2023.107943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND In recent years, structural and functional reorganization of the brain and changes in brainstem structural connectivity have been shown in patients with degenerative cervical myelopathy (DCM). We hypothesized that volume loss in the basal ganglia, thalami, and brainstem structures exists and is associated with spinal cord compression severity in patients with DCM. METHODS Forty-seven patients with DCM and 25 patients with cervical radiculopathy were evaluated using cervical spinal cord and brain magnetic resonance imaging (MRI). Brainstem structures, basal ganglia, and thalami volumes were evaluated with FreeSurfer and compared between groups with correction for individual intracranial volume, as well as patient age and sex. Additionally, spinal cord MRI data were analysed with the Spinal Cord Toolbox, and cross-sectional area (CSA) and fractional anisotropy (FA) values were calculated. Correlations between MR-morphometry data and spinal cord structural changes, as well as disease duration, were also evaluated in patients with DCM. RESULTS A statistically significant reduction in the volume of the whole brainstem was revealed in the DCM group compared to the radiculopathy group (p < 0.01, FDR-corrected). Additionally, reductions in medulla oblongata, pons and midbrain volumes were found in patients with DCM (p < 0.01, p < 0.01 and p < 0.05, respectively, FDR-corrected). Additionally, a trend in the loss of volume of the left putamen was found (p = 0.087, FDR-corrected). Furthermore, medulla oblongata volume was correlated with spinal cord compression severity (R = 0.54, adjusted p < 0.001) and white matter damage (R = 0.46, adjusted p < 0.05) in patients with DCM. Negative correlations between the duration of the disease and the severity of spinal cord compression (R = -0.42, adjusted p < 0.05) and white matter damage (R = -0.49, adjusted p < 0.05) were also revealed, as well as a trend toward a negative association between the duration of the disease and the volume of the medulla oblongata (R = -0.35; adjusted p < 0.1). CONCLUSIONS We revealed a reduction in the volume of brainstem structures in patients with DCM compared to patients with radiculopathy. Moreover, we found that these changes are associated with cord compression severity.
Collapse
Affiliation(s)
- Elena Filimonova
- Federal Center of Neurosurgery Novosibirsk, Nemirovich-Danchenko Str. 132/1, Novosibirsk 630087, Russia; Novosibirsk State Medical University, Krasny Prospect St. 52, Novosibirsk 630091, Russia.
| | - Ivan Vasilenko
- Federal Center of Neurosurgery Novosibirsk, Nemirovich-Danchenko Str. 132/1, Novosibirsk 630087, Russia
| | - Yulij Kubetsky
- Federal Center of Neurosurgery Novosibirsk, Nemirovich-Danchenko Str. 132/1, Novosibirsk 630087, Russia
| | - Oleg Prokhorov
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Pirogov Str. 1, Novosibirsk 630090, Russia
| | - Mars Abdaev
- Federal Center of Neurosurgery Novosibirsk, Nemirovich-Danchenko Str. 132/1, Novosibirsk 630087, Russia
| | - Jamil Rzaev
- Federal Center of Neurosurgery Novosibirsk, Nemirovich-Danchenko Str. 132/1, Novosibirsk 630087, Russia; Novosibirsk State Medical University, Krasny Prospect St. 52, Novosibirsk 630091, Russia; Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Pirogov Str. 1, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Manan AA, Yahya N, Idris Z, Manan HA. The Utilization of Diffusion Tensor Imaging as an Image-Guided Tool in Brain Tumor Resection Surgery: A Systematic Review. Cancers (Basel) 2022; 14:2466. [PMID: 35626069 PMCID: PMC9139820 DOI: 10.3390/cancers14102466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The diffusion tensor imaging technique has been recognized as a neuroimaging tool for in vivo visualization of white matter tracts. However, DTI is not a routine procedure for preoperative planning for brain tumor resection. Our study aimed to systematically evaluate the effectiveness of DTI and the outcomes of surgery. The electronic databases, PubMed/MEDLINE and Scopus, were searched for relevant studies. Studies were systematically reviewed based on the application of DTI in pre-surgical planning, modification of operative planning, re-evaluation of preoperative DTI data intraoperatively, and the outcome of surgery decisions. Seventeen studies were selected based on the inclusion and exclusion criteria. Most studies agreed that preoperative planning using DTI improves postoperative neuro-deficits, giving a greater resection yield and shortening the surgery time. The results also indicate that the re-evaluation of preoperative DTI intraoperatively assists in a better visualization of white matter tract shifts. Seven studies also suggested that DTI modified the surgical decision of the initial surgical approach and the rate of the GTR in tumor resection surgery. The utilization of DTI may give essential information on white matter tract pathways, for a better surgical approach, and eventually reduce the risk of neurologic deficits after surgery.
Collapse
Affiliation(s)
- Aiman Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300, Malaysia;
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Penang 16150, Malaysia;
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
- Department of Radiology and Intervensy, Hospital Pakar Kanak-Kanak (HPKK), Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Morales-Guadarrama A, Salgado-Ceballos H, Grijalva I, Morales-Corona J, Hernández-Godínez B, Ibáñez-Contreras A, Ríos C, Diaz-Ruiz A, Cruz GJ, Olayo MG, Sánchez-Torres S, Mondragón-Lozano R, Alvarez-Mejia L, Fabela-Sánchez O, Olayo R. Evolution of Spinal Cord Transection of Rhesus Monkey Implanted with Polymer Synthesized by Plasma Evaluated by Diffusion Tensor Imaging. Polymers (Basel) 2022; 14:polym14050962. [PMID: 35267785 PMCID: PMC8912689 DOI: 10.3390/polym14050962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
In spinal cord injury (SCI) there is damage to the nervous tissue, due to the initial damage and pathophysiological processes that are triggered subsequently. There is no effective therapeutic strategy for motor functional recovery derived from the injury. Several studies have demonstrated neurons growth in cell cultures on polymers synthesized by plasma derived from pyrrole, and the increased recovery of motor function in rats by implanting the polymer in acute states of the SCI in contusion and transection models. In the process of transferring these advances towards humans it is recommended to test in mayor species, such as nonhuman primates, prioritizing the use of non-invasive techniques to evaluate the injury progression with the applied treatments. This work shows the ability of diffusion tensor imaging (DTI) to evaluate the evolution of the SCI in nonhuman primates through the fraction of anisotropy (FA) analysis and the diffusion tensor tractography (DTT) calculus. The injury progression was analysed up to 3 months after the injury day by FA and DTT. The FA recovery and the DTT re-stabilization were observed in the experimental implanted subject with the polymer, in contrast with the non-implanted subject. The parameters derived from DTI are concordant with the histology and the motor functional behaviour.
Collapse
Affiliation(s)
- Axayacatl Morales-Guadarrama
- Centro Nacional de Investigación en Imagenología e Instrumentación Médica, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Axapusco 52750, Mexico; (G.J.C.); (M.G.O.)
| | - Hermelinda Salgado-Ceballos
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
| | - Israel Grijalva
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
| | - Juan Morales-Corona
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
| | - Braulio Hernández-Godínez
- Investigación Biomédica Aplicada S.A.S. de C.V., CDMX, Mexico City 14240, Mexico; (B.H.-G.); (A.I.-C.)
| | | | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., CDMX, Mexico City 14269, Mexico; (C.R.); (A.D.-R.)
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., CDMX, Mexico City 14269, Mexico; (C.R.); (A.D.-R.)
| | - Guillermo Jesus Cruz
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Axapusco 52750, Mexico; (G.J.C.); (M.G.O.)
| | - María Guadalupe Olayo
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Axapusco 52750, Mexico; (G.J.C.); (M.G.O.)
| | - Stephanie Sánchez-Torres
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
| | - Rodrigo Mondragón-Lozano
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
- Catedrático CONACyT-Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico
| | - Laura Alvarez-Mejia
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., CDMX, Mexico City 14269, Mexico; (C.R.); (A.D.-R.)
| | - Omar Fabela-Sánchez
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Departamento de Química Macromoléculas y Nanomateriales, Centro de Investigación en Química Aplicada, Saltillo 25294, Mexico
| | - Roberto Olayo
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Correspondence:
| |
Collapse
|
8
|
Ren X, Zhang W, Mo J, Qin J, Chen Y, Han J, Feng X, Han L, Feng S, Liang H, Cen L, Wu X, Huang C, Deng H, Cao Z, Yao H, Lan R, Wang X, Ren S. Partial Restoration of Spinal Cord Neural Continuity via Sural Nerve Transplantation Using a Technique of Spinal Cord Fusion. Front Neurosci 2022; 16:808983. [PMID: 35237120 PMCID: PMC8882688 DOI: 10.3389/fnins.2022.808983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) can cause paralysis and serious chronic morbidity, and there is no effective treatment. Based on our previous experimental results of spinal cord fusion (SCF) in mice, rats, beagles, and monkeys, we developed a surgical protocol of SCF for paraplegic human patients. We designed a novel surgical procedure of SCF, called sural nerve transplantation (SNT), for human patients with lower thoracic SCI and distal cord dysfunction. METHODS We conducted a clinical trial (ChiCTR2000030788) and performed SNT in 12 fully paraplegic patients due to SCI between T1 and T12. We assessed pre- and postoperative central nerve pain, motor function, sensory function, and autonomic nerve function. Conduction of action potentials across the sural nerve transplant was evaluated. Neural continuity was also examined by diffusion tensor imaging (DTI). RESULTS Among the 12 paraplegic patients enrolled in this clinical trial, seven patients demonstrated improved autonomic nerve functions. Seven patients had clinically significant relief of their symptoms of cord central pain. One patient, however, developed postoperative cord central pain (VAS: 4). Five patients had varying degrees of recovered sensory and/or motor functions below the single neurologic level 1 month after surgery. One patient showed recovery of electrophysiologic, motor-evoked potentials 6 months after the operation. At 6 months after surgery, DTI indicated fusion and nerve connections of white cord and sural nerves in seven patients. CONCLUSION SNT was able to fuse the axonal stumps of white cord and sural nerve and at least partially improve the cord central pain in most patients. Although SNT did not restore the spinal cord continuity in white matter in some patients, SNT could restore spinal cord continuity in the cortico-trunco-reticulo-propriospinal pathway, thereby restoring in part some motor and sensory functions. SNT may therefore be a safe, feasible, and effective method to treat paraplegic patients with SCI. Future clinical trials should be performed to optimize the type/technique of nerve transplantation, reduce surgical damage, and minimize postoperative scar formation and adhesion, to avoid postoperative cord central pain. CLINICAL TRIAL REGISTRATION [http://www.chictr.org.cn/showproj.aspx?proj=50526], identifier [ChiCTR2000030788].
Collapse
Affiliation(s)
- Xiaoping Ren
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Global Initiative to Cure Paralysis (GICUP), Columbus, OH, United States
| | - Weihua Zhang
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Global Initiative to Cure Paralysis (GICUP), Columbus, OH, United States
| | - Jian Mo
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Qin
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yi Chen
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Han
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xinjian Feng
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Linxuan Han
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Sitan Feng
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Haibo Liang
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Liangjue Cen
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaofei Wu
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Chunxing Huang
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Haixuan Deng
- Department of Imaging, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zhenbin Cao
- Department of Imaging, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Huihui Yao
- Department of Electrophysiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Rongyu Lan
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaogang Wang
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Shuai Ren
- Global Initiative to Cure Paralysis (GICUP), Columbus, OH, United States
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Omar MKM, Abd Allah AEKH, Maghrabi MG, Mohamed MZ. The value of quantitative diffusion tensor imaging indices of spinal cord disorders. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Different lesions affecting the spinal cord can lead to myelopathy. Diffusion tensor imaging (DTI) is widely used to predict the degree of spinal cord microstructure affection and to assess axonal integrity and diffusion directionality. We hypothesized that not all DTI parameters have the same affection with different spinal cord pathologies. The purpose of this study is to assess the value of the quantitative diffusion tensor imaging indices in different spinal cord lesions.
Results
There is highly statistically significant difference of the fractional anisotropy (FA), relative anisotropy (RA), volume ratio (VR) and secondary eigenvector values (E2 and E3) between various studied cord lesions and control levels. There is no statistically significant difference of the apparent diffusion coefficient (ADC) and the primary eigenvector value (E1) (ANOVA test). The ROC curve analysis showed the higher sensitivity and accuracy were ‘88% and 62.5%, respectively,’ with FA cutoff value about 0.380.
Conclusion
The resulted quantitative DTI indices ‘fractional anisotropy, relative anisotropy, volume ratio and secondary eigenvalues’ work as a numerical in vivo marker of overall tissue injury in different pathologies affecting the spinal cord.
Collapse
|
10
|
Alkadeem RMDEAA, El-Shafey MHR, Eldein AEMS, Nagy HA. Magnetic resonance diffusion tensor imaging of acute spinal cord injury in spinal trauma. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00450-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
It was important to develop a non-invasive imaging technique for early evaluation of spinal cord integrity after injury; MRI was the method of choice for evaluation of any cord abnormalities. However, some patients have symptoms with no detectable abnormalities by MRI. The purpose of our study was to assess the role of diffusion tensor MRI in evaluating the integrity of spinal cord fibers in case of spinal trauma.
Results
Out of the studied 30 patients, conventional MRI revealed abnormalities in the spinal cord in 23 patients (76.67%), diffusion tensor tractography revealed abnormalities in the spinal cord in 27 patients (90%), the mean FA value at the level of injury (0.326±0.135) was less than the mean FA value (0.532 ± 0.074) in control group (p value < 0.001), and the mean ADC value at the level of injury (1.319 ± 0.378) was less than the mean ADC value (1.734 ± 0.768) in the control group. FA was sensitive than ADC in the detection of the spinal cord abnormalities with a sensitivity of 93.33% versus 67.66% respectively.
Conclusion
DTI can be used to detect structural changes of spinal cord white matter fibers in acute spinal cord injury. A significant decrease of fractional anisotropy and apparent diffusion coefficient has been found at the site of spinal cord injury.
Collapse
|
11
|
Dauleac C, Bannier E, Cotton F, Frindel C. Effect of distortion corrections on the tractography quality in spinal cord diffusion-weighted imaging. Magn Reson Med 2021; 85:3241-3255. [PMID: 33475180 DOI: 10.1002/mrm.28665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To assess the impact of a different distortion correction (DC) method and patient geometry (sagittal balance) on the quality of spinal cord tractography rendering according to different tractography approaches. METHODS Forty-four adults free of spinal cord diseases underwent cervical diffusion-weighted imaging. The phase-encoding direction was head→foot. Sequence with opposed polarities (foot→head) was acquired to perform DC. Eddy-current, motion effects, and susceptibility artifact correction methods were used for DC, and two deterministic and one probabilistic tractography approaches were evaluated using MRtrix and DSI Studio tractography software. Fiber length and number of fibers were extracted to evaluate the quality of the tractography rendering. For each subject, cervical lordosis was measured to assess patient geometry. The angle between the main direction of the spinal cord and the orientation of the acquisition box were computed at each spine level to assess acquisition geometry and define an angle threshold for which a tractography of good quality is no longer possible. RESULTS There was a significant improvement in tractography quality after performing DC with susceptibility artifact correction using a deterministic approach based on tensor. Before DC, the angle threshold was defined at C6 (15.2°) compared with C7 (21.9°) after corrections, demonstrating the importance of spinal cord angulation for DC. CONCLUSION The impact of DC on tractography quality is greatly impacted by acquisition geometry. To obtain a good-quality tractography, we propose as a future perspective to adapt the acquisition geometry to that of the patient by automatically adjusting the acquisition box.
Collapse
Affiliation(s)
- Corentin Dauleac
- Department of Neurosurgery, Hôpital neurologique et neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon I, Lyon, France.,Laboratoire CREATIS, CNRS UMR5220, INSA-Lyon, Université de Lyon I, Inserm U1206, Lyon, France
| | - Elise Bannier
- Université de Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn, France.,Department of Radiology, CHU de Rennes, Rennes, France
| | - François Cotton
- Université de Lyon, Université Claude Bernard Lyon I, Lyon, France.,Laboratoire CREATIS, CNRS UMR5220, INSA-Lyon, Université de Lyon I, Inserm U1206, Lyon, France.,Department of Radiology, Centre Hospitalier de Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Carole Frindel
- Université de Lyon, Université Claude Bernard Lyon I, Lyon, France.,Laboratoire CREATIS, CNRS UMR5220, INSA-Lyon, Université de Lyon I, Inserm U1206, Lyon, France
| |
Collapse
|
12
|
Magnetic-Resonance Diffusion-Tensor Tractography in the Diagnosis of Tumefactive Spinal-Cord Lesions in Neuromyelitis Optica. Diagnostics (Basel) 2020; 10:diagnostics10060401. [PMID: 32545605 PMCID: PMC7344653 DOI: 10.3390/diagnostics10060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022] Open
Abstract
Magnetic-resonance (MR) imaging is the modality of choice for the evaluation of spinal-cord lesions. However, challenges persist in discriminating demyelinating processes from neoplastic lesions using conventional MR sequences. Consequently, an invasive spinal-cord biopsy is likely for most patients. MR diffusion-tensor imaging is an emerging noninvasive and powerful method for characterizing changes in tissue microstructure associated with spinal disorders. We currently present the case of a middle-aged woman suffering from neuromyelitis optica, and highlight that MR diffusion-tensor tractography can be helpful in the identification of tumefactive spinal-cord lesions.
Collapse
|
13
|
Dauleac C, Frindel C, Mertens P, Jacquesson T, Cotton F. Overcoming challenges of the human spinal cord tractography for routine clinical use: a review. Neuroradiology 2020; 62:1079-1094. [DOI: 10.1007/s00234-020-02442-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
|
14
|
Noguerol TM, Barousse R, Amrhein TJ, Royuela-del-Val J, Montesinos P, Luna A. Optimizing Diffusion-Tensor Imaging Acquisition for Spinal Cord Assessment: Physical Basis and Technical Adjustments. Radiographics 2020; 40:403-427. [DOI: 10.1148/rg.2020190058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Teodoro Martín Noguerol
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| | - Rafael Barousse
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| | - Timothy J. Amrhein
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| | - Javier Royuela-del-Val
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| | - Paula Montesinos
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| | - Antonio Luna
- From the MRI Section, Department of Radiology, SERCOSA, Health Time, Carmelo Torres 2, 23007, Jaén, Spain (T.M.N., A.L.); Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina (R.B.); Department of Radiology, Duke University Medical Center, Durham, N.C. (T.J.A.); RESSALTA, Health Time, Córdoba, Spain (J.R.d.V.); and Philips Iberia, Madrid, Spain (P.M.)
| |
Collapse
|
15
|
A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. Cell Stem Cell 2019; 22:941-950.e6. [PMID: 29859175 DOI: 10.1016/j.stem.2018.05.014] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022]
Abstract
We tested the feasibility and safety of human-spinal-cord-derived neural stem cell (NSI-566) transplantation for the treatment of chronic spinal cord injury (SCI). In this clinical trial, four subjects with T2-T12 SCI received treatment consisting of removal of spinal instrumentation, laminectomy, and durotomy, followed by six midline bilateral stereotactic injections of NSI-566 cells. All subjects tolerated the procedure well and there have been no serious adverse events to date (18-27 months post-grafting). In two subjects, one to two levels of neurological improvement were detected using ISNCSCI motor and sensory scores. Our results support the safety of NSI-566 transplantation into the SCI site and early signs of potential efficacy in three of the subjects warrant further exploration of NSI-566 cells in dose escalation studies. Despite these encouraging secondary data, we emphasize that this safety trial lacks statistical power or a control group needed to evaluate functional changes resulting from cell grafting.
Collapse
|
16
|
Kim LH, Lee EH, Galvez M, Aksoy M, Skare S, O’Halloran R, Edwards MSB, Holdsworth SJ, Yeom KW. Reduced field of view echo-planar imaging diffusion tensor MRI for pediatric spinal tumors. J Neurosurg Spine 2019; 31:607-615. [PMID: 31277060 PMCID: PMC6942637 DOI: 10.3171/2019.4.spine19178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/01/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Spine MRI is a diagnostic modality for evaluating pediatric CNS tumors. Applying diffusion-weighted MRI (DWI) or diffusion tensor imaging (DTI) to the spine poses challenges due to intrinsic spinal anatomy that exacerbates various image-related artifacts, such as signal dropouts or pileups, geometrical distortions, and incomplete fat suppression. The zonal oblique multislice (ZOOM)-echo-planar imaging (EPI) technique reduces geometric distortion and image blurring by reducing the field of view (FOV) without signal aliasing into the FOV. The authors hypothesized that the ZOOM-EPI method for spine DTI in concert with conventional spinal MRI is an efficient method for augmenting the evaluation of pediatric spinal tumors. METHODS Thirty-eight consecutive patients (mean age 8 years) who underwent ZOOM-EPI spine DTI for CNS tumor workup were retrospectively identified. Patients underwent conventional spine MRI and ZOOM-EPI DTI spine MRI. Two blinded radiologists independently reviewed two sets of randomized images: conventional spine MRI without ZOOM-EPI DTI, and conventional spine MRI with ZOOM-EPI DTI. For both image sets, the reviewers scored the findings based on lesion conspicuity and diagnostic confidence using a 5-point Likert scale. The reviewers also recorded presence of tumors. Quantitative apparent diffusion coefficient (ADC) measurements of various spinal tumors were extracted. Tractography was performed in a subset of patients undergoing presurgical evaluation. RESULTS Sixteen patients demonstrated spinal tumor lesions. The readers were in moderate agreement (kappa = 0.61, 95% CI 0.30-0.91). The mean scores for conventional MRI and combined conventional MRI and DTI were as follows, respectively: 3.0 and 4.0 for lesion conspicuity (p = 0.0039), and 2.8 and 3.9 for diagnostic confidence (p < 0.001). ZOOM-EPI DTI identified new lesions in 3 patients. In 3 patients, tractography used for neurosurgical planning showed characteristic fiber tract projections. The mean weighted ADCs of low- and high-grade tumors were 1201 × 10-6 and 865 × 10-6 mm2/sec (p = 0.002), respectively; the mean minimum weighted ADCs were 823 × 10-6 and 474 × 10-6 mm2/sec (p = 0.0003), respectively. CONCLUSIONS Diffusion MRI with ZOOM-EPI can improve the detection of spinal lesions while providing quantitative diffusion information that helps distinguish low- from high-grade tumors. By adding a 2-minute DTI scan, quantitative diffusion information and tract profiles can reliably be obtained and serve as a useful adjunct to presurgical planning for pediatric spinal tumors.
Collapse
Affiliation(s)
- Lily H. Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford
| | - Edward H. Lee
- Department of Electrical Engineering, Stanford University, Stanford, California
| | - Michelle Galvez
- Department of Radiology, Stanford University School of Medicine, Stanford
| | - Murat Aksoy
- Department of Radiology, Stanford University School of Medicine, Stanford
| | - Stefan Skare
- Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rafael O’Halloran
- Hyperfine Research Inc., Guilford, Connecticut; University of Auckland, New Zealand
| | | | - Samantha J. Holdsworth
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Kristen W. Yeom
- Department of Radiology, Stanford University School of Medicine, Stanford
| |
Collapse
|
17
|
Wang-Leandro A, Hobert MK, Kramer S, Rohn K, Stein VM, Tipold A. The role of diffusion tensor imaging as an objective tool for the assessment of motor function recovery after paraplegia in a naturally-occurring large animal model of spinal cord injury. J Transl Med 2018; 16:258. [PMID: 30223849 PMCID: PMC6142343 DOI: 10.1186/s12967-018-1630-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022] Open
Abstract
Background Traumatic spinal cord injury (SCI) results in sensory and motor function impairment and may cause a substantial social and economic burden. For the implementation of novel treatment strategies, parallel development of objective tools evaluating spinal cord (SC) integrity during motor function recovery (MFR) is needed. Diffusion tensor imaging (DTI) enables in vivo microstructural assessment of SCI. Methods In the current study, temporal evolvement of DTI metrics during MFR were examined; therefore, values of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured in a population of 17 paraplegic dogs with naturally-occurring acute SCI showing MFR within 4 weeks after surgical decompression and compared to 6 control dogs. MRI scans were performed preoperatively and 12 weeks after MFR was observed. DTI metrics were obtained at the lesion epicentre and one SC segment cranially and caudally. Variance analyses were performed to compare values between evaluated localizations in affected dogs and controls and between time points. Correlations between DTI metrics and clinical scores at follow-up examinations were assessed. Results Before surgery, FA values at epicentres were higher than caudally (p = 0.0014) and control values (p = 0.0097); ADC values were lower in the epicentre compared to control values (p = 0.0035) and perilesional (p = 0.0448 cranially and p = 0.0433 caudally). In follow-up examinations, no significant differences could be found between DTI values from dogs showing MFR and control dogs. Lower ADC values at epicentres correlated with neurological deficits at follow-up examinations (r = − 0.705; p = 0.0023). Conclusions Findings suggest that a tendency to the return of DTI values to the physiological situation after surgical decompression accompanies MFR after SCI in paraplegic dogs. DTI may represent a useful and objective clinical tool for follow-up studies examining in vivo SC recovery in treatment studies. Electronic supplementary material The online version of this article (10.1186/s12967-018-1630-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriano Wang-Leandro
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany. .,Centre of Systems Neuroscience, Hannover, Lower Saxony, Germany. .,Department of Diagnostics and Clinical Services, Clinic for Diagnostic Imaging, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland.
| | - Marc K Hobert
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Sabine Kramer
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Karl Rohn
- Institute of Biometry, Epidemiology, and Information Processing, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Veronika M Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany.,Division of Clinical Neurology, Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany.,Centre of Systems Neuroscience, Hannover, Lower Saxony, Germany
| |
Collapse
|
18
|
Jiang W, Han X, Guo H, Ma XD, Wang J, Cheng X, Yu A, Song Q, Shi K, Dai J. Usefulness of conventional magnetic resonance imaging, diffusion tensor imaging and neurite orientation dispersion and density imaging in evaluating postoperative function in patients with cervical spondylotic myelopathy. J Orthop Translat 2018; 15:59-69. [PMID: 30310766 PMCID: PMC6176747 DOI: 10.1016/j.jot.2018.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022] Open
Abstract
Objective The objective of this study was to evaluate the usefulness of T2 high signal intensity (T2-HSI) and decreased anteroposterior diameter (APD), diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) in evaluating postoperative cervical cord function. Methods The study included 57 postoperative cervical spondylotic myelopathy patients. Clinical evaluation and functional recovery assessments were performed using the modified Japanese Orthopaedic Association (mJOA) score and recovery rate. The presence of T2-HSI and decreased APD was recorded for exploring the relevance. Spearman correlation was applied to investigate the relationships between DTI and NODDI metrics and mJOA score. Multiple comparisons of T2 signal intensity, APD and diffusion metrics were evaluated by using multiple linear regression. Results Only the recovery rate was significantly different between T2-HSI and non-T2-HSI (nT2-HSI) patients (χ2 = 4.466, p = 0.045). Significant differences were not observed between cervical cords with and without decreased APD. Diffusion metrics, including fractional anisotropy (p = 0.0005), mean diffusivity (p = 0.0008), radial diffusivity (p = 0.0003) and intracellular volume fraction (p = 0.001), were significantly correlated with mJOA score. The ability of T2 signal intensity (p = 0.421) and APD (p = 0.420) to evaluate the postoperative function was inferior to that of fractional anisotropy (p = 0.002), mean diffusivity (p = 0.001), radial diffusivity (p = 0.001) and intracellular volume fraction (p = 0.004). Conclusion Conventional magnetic resonance imaging signs could be considered as a reference to make an approximate assessment, whereas DTI and NODDI could be better quantitative tools for evaluating the postoperative function and may help in interpreting residual symptoms. The translational potential of this article DTI and NODDI could provide reliable postoperative evaluation and analysis for cervical spondylotic myelopathy patients.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Radiology, Beijing Tian Tan Hospital, Capital Medical University, No. 6 Tiantanxili, Dongcheng District, Beijing, China
| | - Xiao Han
- Department of Spine Surgery, Beijing Jishuitan Hospital, No. 31 Xinjiekoudongjie, Xicheng District, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiao Dong Ma
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jinchao Wang
- Department of Spine Surgery, Beijing Jishuitan Hospital, No. 31 Xinjiekoudongjie, Xicheng District, Beijing, China
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, No. 31 Xinjiekoudongjie, Xicheng District, Beijing, China
| | - Aihong Yu
- Department of Radiology, Beijing Jishuitan Hospital, No. 31 Xinjiekoudongjie, Xicheng District, Beijing, China
| | - Qingpeng Song
- Department of Spine Surgery, Beijing Jishuitan Hospital, No. 31 Xinjiekoudongjie, Xicheng District, Beijing, China
| | - Kaining Shi
- Integrated Solution Center, Philips Healthcare China, 16-2-7, Tianzelu, Chaoyang District, Beijing, China
| | - Jianping Dai
- Department of Radiology, Beijing Tian Tan Hospital, Capital Medical University, No. 6 Tiantanxili, Dongcheng District, Beijing, China
| |
Collapse
|
19
|
Zhao J, McMahon B, Fox M, Gregersen H. The esophagiome: integrated anatomical, mechanical, and physiological analysis of the esophago-gastric segment. Ann N Y Acad Sci 2018; 1434:5-20. [DOI: 10.1111/nyas.13869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jingbo Zhao
- GIOME Academy, Department of Clinical Medicine; Aarhus University; Aarhus Denmark
| | - Barry McMahon
- Trinity Academic Gastroenterology Group; Tallaght Hospital and Trinity College; Dublin Ireland
| | - Mark Fox
- Abdominal Center: Gastroenterology; St. Claraspital Basel Switzerland
- Neurogastroenterology and Motility Research Group; University Hospital Zürich; Zürich Switzerland
| | - Hans Gregersen
- GIOME, Department of Surgery; Prince of Wales Hospital and Chinese University of Hong Kong; Shatin Hong Kong SAR
- California Medical Innovations Institute; San Diego California
| |
Collapse
|
20
|
Thapa B, Sapkota N, Lee Y, Jeong K, Rose J, Shah LM, Bisson E, Jeong EK. Ultra-high-b radial diffusion-weighted imaging (UHb-rDWI) of human cervical spinal cord. J Magn Reson Imaging 2018; 49:204-211. [PMID: 29707845 DOI: 10.1002/jmri.26169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Injury in the cervical spinal cord (CSC) can lead to varying degrees of neurologic deficit and persistent disability. Diffusion tensor imaging (DTI) is a promising method to evaluate white matter integrity and pathology. However, the conventional DTI results are limited with respect to the specific details of neuropathology and microstructural architecture. In this study we used ultrahigh-b radial-DWI (UHb-rDWI) with b-values ranging from 0 to ∼7500 s/mm2 and calculated decay constant (DH ) at the high b-values, which gives much deeper insight about the microscopic environment of CSC white matter. PURPOSE To evaluate a novel diffusion MRI, UHb-rDWI technique for imaging of the CSC. STUDY TYPE Longitudinal. SUBJECTS Four healthy controls, each scanned twice. FIELD STRENGTH/SEQUENCE 3T/2D single shot diffusion-weighted stimulated echo planar imaging with reduced field of view. ASSESSMENT The signal from each pixel of b0 (b = 0) and b-value (b ≠ 0) images were fitted to a biexponential function and normalized. The signal-b curve is obtained by dividing the latter curve by the former. DH was obtained from the curve at b >4000 s/mm2 . A Monte-Carlo Simulation (MCS) was performed to investigate how DH changes upon the increased water-exchange at the CSC. RESULTS The signal-b curves plotted at multiple levels of healthy CSC are almost identical on two successive scans and show a biexponential decay behavior: fast exponential decay at lower b-values and much slower decay at UHb-values. The mean values of DH were measured as (0.0607 ± 0.02531) ×10-3 and (0.0357 ± 0.02072) ×10-3 s/mm2 at the lateral funiculus and posterior column, respectively. MCS of diffusion MRI shows that the DH is elevated by increased water exchange between the intra- and extraaxonal spaces. DATA CONCLUSION UHb-rDWI signal-b plots of the normal CSC were highly reproducible on successive scans and their biexponential decay behavior can be used to characterize normal spinal white matter. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:204-211.
Collapse
Affiliation(s)
- Bijaya Thapa
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - Nabraj Sapkota
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - YouJung Lee
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Kyle Jeong
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | | | - Lubdha M Shah
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Erica Bisson
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Eun-Kee Jeong
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
21
|
Kushchayev SV, Glushko T, Jarraya M, Schuleri KH, Preul MC, Brooks ML, Teytelboym OM. ABCs of the degenerative spine. Insights Imaging 2018; 9:253-274. [PMID: 29569215 PMCID: PMC5893484 DOI: 10.1007/s13244-017-0584-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
Degenerative changes in the spine have high medical and socioeconomic significance. Imaging of the degenerative spine is a frequent challenge in radiology. The pathogenesis of this degenerative process represents a biomechanically related continuum of alterations, which can be identified with different imaging modalities. The aim of this article is to review radiological findings involving the intervertebral discs, end plates, bone marrow changes, facet joints and the spinal canal in relation to the pathogenesis of degenerative changes in the spine. Findings are described in association with the clinical symptoms they may cause, with a brief review of the possible treatment options. The article provides an illustrated review on the topic for radiology residents. TEACHING POINTS • The adjacent vertebrae, intervertebral disc, ligaments and facet joints constitute a spinal unit. • Degenerative change is a response to insults, such as mechanical or metabolic injury. • Spine degeneration is a biomechanically related continuum of alterations evolving over time.
Collapse
Affiliation(s)
- Sergiy V. Kushchayev
- Department of Radiology, Mercy Catholic Medical Center, 1500 Lansdowne Ave, Darby, PA 19023 USA
| | - Tetiana Glushko
- Department of Radiology, Mercy Catholic Medical Center, 1500 Lansdowne Ave, Darby, PA 19023 USA
| | - Mohamed Jarraya
- Department of Radiology, Mercy Catholic Medical Center, 1500 Lansdowne Ave, Darby, PA 19023 USA
| | - Karl H. Schuleri
- Department of Radiology, Mercy Catholic Medical Center, 1500 Lansdowne Ave, Darby, PA 19023 USA
| | - Mark C. Preul
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 West Thomas Rd, Phoenix, AZ USA
| | - Michael L. Brooks
- Department of Radiology, Mercy Catholic Medical Center, 1500 Lansdowne Ave, Darby, PA 19023 USA
| | - Oleg M. Teytelboym
- Department of Radiology, Mercy Catholic Medical Center, 1500 Lansdowne Ave, Darby, PA 19023 USA
| |
Collapse
|
22
|
Abstract
MRI techniques and systems have evolved dramatically over recent years. These advances include higher field strengths, new techniques, faster gradients, improved coil technology, and more robust sequence protocols. This article reviews the most commonly used advanced MRI techniques, including diffusion-weighted imaging, magnetic resonance spectrography, diffusion tensor imaging, and cerebrospinal fluid flow tracking.
Collapse
|
23
|
Wang-Leandro A, Hobert MK, Alisauskaite N, Dziallas P, Rohn K, Stein VM, Tipold A. Spontaneous acute and chronic spinal cord injuries in paraplegic dogs: a comparative study of in vivo diffusion tensor imaging. Spinal Cord 2017; 55:1108-1116. [DOI: 10.1038/sc.2017.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022]
|
24
|
Ren J, Zeng G, Ma YJ, Chen N, Chen Z, Ling F, Zhang HQ. Pediatric thoracic SCIWORA after back bend during dance practice: a retrospective case series and analysis of trauma mechanisms. Childs Nerv Syst 2017; 33:1191-1198. [PMID: 28378287 DOI: 10.1007/s00381-017-3407-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 03/29/2017] [Indexed: 11/24/2022]
Abstract
PURPOSE The purpose of the study was to describe a unique type of low-energy traumatic pediatric thoracic spinal cord injury without radiographic abnormality (SCIWORA) after a back bend during dance practice and analyze the trauma mechanisms and treatment protocols. METHODS This was a retrospective case series from September 2007 to August 2016. The study was conducted at a tertiary medical center in Beijing, China (Xuanwu Hospital, China International Neuroscience Institute [China-INI], Capital Medical University). A total of 12 pediatric patients who had a clear traumatic history after back bend movements and had been diagnosed with thoracic SCIWORA were included. Clinical and imaging data were obtained for each patient. The follow-up data was analyzed. The traumatic mechanisms were investigated by analyzing the patients' medical history, spinal diffusion tensor imaging (DTI) and fiber tractography data. RESULTS Of the 12 patients, 11 (91.7%) were younger than 8 years old. The mean age of the patients was 6.6 years. All patients had a clear traumatic history of severe thoracic spinal cord injury after performing back bend movements. The mean follow-up time was 36.5 months. During the follow-up period, 1 patient (8.3%) recovered completely, and 11 patients (91.7%) had unfavorable prognoses, including 4 (33.3%) with incomplete recovery and 7 (58.3%) with no change. Two patients underwent spinal DTI, which showed rupture of the nerve fiber bundle in the section of the injury. CONCLUSIONS Back bend movements performed during dance practice may cause pediatric thoracic SCIWORA, particularly in children younger than 8 years old. We suggest that the mechanism of primary injury is the longitudinal distraction of the thoracic spine during back bend movements, which leads to violent distraction of the spinal cord and blunt injury of nerve axons, nerve cells, and small vessels. Spinal DTI may facilitate the diagnosis and prognostic evaluation of SCIWORA.
Collapse
Affiliation(s)
- Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Gao Zeng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Yong-Jie Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Feng Ling
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Hong-Qi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (China-INI), Beijing, 100053, China.
| |
Collapse
|
25
|
Abdelgawad MS, Reda MIS, El-Maaboud NAEMA. Diffusion tensor MR fiber tractography in assessment of inflammatory processes and neoplasms of the cervical cord. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2017. [DOI: 10.1016/j.ejrnm.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
26
|
Wang-Leandro A, Siedenburg JS, Hobert MK, Dziallas P, Rohn K, Stein VM, Tipold A. Comparison of Preoperative Quantitative Magnetic Resonance Imaging and Clinical Assessment of Deep Pain Perception as Prognostic Tools for Early Recovery of Motor Function in Paraplegic Dogs with Intervertebral Disk Herniations. J Vet Intern Med 2017; 31:842-848. [PMID: 28440586 PMCID: PMC5435037 DOI: 10.1111/jvim.14715] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/25/2017] [Accepted: 03/16/2017] [Indexed: 01/12/2023] Open
Abstract
Background Prognostic tools to predict early postoperative motor function recovery (MFR) after thoracolumbar intervertebral disk herniation (IVDH) in paraplegic dogs represent an opportunity to timely implement novel therapies that could shorten recovery times and diminish permanent neurological dysfunctions. Hypothesis Fractional anisotropy (FA) values obtained using diffusion tensor imaging have a higher prognostic value than a lesion extension ratio in T2‐weighted images (T2W‐LER) and clinical assessment of deep pain perception (DPP) for MFR. Animals Thirty‐five paraplegic dogs with diagnosis of acute or subacute thoracolumbar IVDH. Methods Prospective, descriptive observational study. At admission, absence or presence of DPP, T2W‐LER, and FA values was evaluated. MFR was assessed within 4 weeks after decompressive surgery. Values of T2W‐LER and FA of dogs with and without MFR were compared using t‐tests. All 3 methods were evaluated for their sensitivity and specificity as a prognostic factor. Results No differences were found between groups regarding T2W‐LER. FA values differed statistically when measured caudally of lesion epicenter being higher in dogs without MFR compared to dogs with MFR (P = .023). Logistic regression analysis revealed significance in FA values measured caudally of the lesion epicenter (P = .033, area under the curve = 0.72). Using a cutoff value of FA = 0.660, the technique had a sensitivity of 80% and a specificity of 55%. Evaluation of DPP had a sensitivity of 73.3% and specificity of 75% (P = .007). Conclusions and Clinical Importance Evaluation of DPP showed a similar sensitivity and a better specificity predicting early MFR than quantitative magnetic resonance imaging.
Collapse
Affiliation(s)
- A Wang-Leandro
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany.,Centre of Systems Neuroscience, Hannover, Germany
| | - J S Siedenburg
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - M K Hobert
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - P Dziallas
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - K Rohn
- Institute of Biometry, Epidemiology, and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - V M Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - A Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany.,Centre of Systems Neuroscience, Hannover, Germany
| |
Collapse
|
27
|
Zhang Z, Yao S, Xie S, Wang X, Chang F, Luo J, Wang J, Fu J. Effect of hierarchically aligned fibrin hydrogel in regeneration of spinal cord injury demonstrated by tractography: A pilot study. Sci Rep 2017; 7:40017. [PMID: 28067245 PMCID: PMC5220328 DOI: 10.1038/srep40017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 12/01/2016] [Indexed: 12/26/2022] Open
Abstract
Some studies have reported that scaffold or cell-based transplantation may improve functional recovery following SCI, but no imaging information regarding regeneration has been provided to date. This study used tractography to show the regenerating process induced by a new biomaterial-aligned fibrin hydrogel (AFG). A total of eight canines subjected to SCI procedures were assigned to the control or the AFG group. AFG was implanted into the SCI lesion immediately after injury in 5 canines. A follow-up was performed at 12 weeks to evaluate the therapeutic effect including the hindlimb functional recovery, anisotropy and continuity of fibers on tractography. Using tractography, we found new fibers running across the SCI in three canines of the AFG group. Further histological examination confirmed limited glial scarring and regenerated nerve fibers in the lesions. Moreover, Repeated Measures Analysis revealed a significantly different change in fractional anisotropy (FA) between the two groups during the follow-up interval. An increase in FA during the post injury time interval was detected in the AFG group, indicating a beneficial effect of AFG in the rehabilitation of injured axons. Using tractography, AFG was suggested to be helpful in the restoration of fibers in SCI lesions, thus leading to promoted functional recovery.
Collapse
Affiliation(s)
- Zhenxia Zhang
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, BeiJing, 100029, China
| | - Shenglian Yao
- School of Materials Science and Engineering, Tsinghua University, BeiJing, 100084, China
| | - Sheng Xie
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, BeiJing, 100029, China
- Department of Radiology, China-Japan Friendship Hospital, BeiJing, 100029, China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, BeiJing, 100084, China
| | - Feiyan Chang
- Department of Radiology, China-Japan Friendship Hospital, BeiJing, 100029, China
| | - Jie Luo
- Department of Pathology, China-Japan Friendship Hospital, BeiJing, 100029, China
| | - Jingming Wang
- Department of orthopedics, PLA General Hospital, BeiJing, 100853, China
| | - Jun Fu
- Department of orthopedics, PLA General Hospital, BeiJing, 100853, China
| |
Collapse
|
28
|
Zhang BT, Li M, Yu LL, Dai YM, Yu SN, Jiang JL. Diffusion tensor imaging of spinal microstructure in healthy adults: improved resolution with the readout segmentation of long variable echo-trains. Neural Regen Res 2017; 12:2067-2070. [PMID: 29323047 PMCID: PMC5784356 DOI: 10.4103/1673-5374.221166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Diffusion tensor imaging plays an important role in the accurate diagnosis and prognosis of spinal cord diseases. However, because of technical limitations, the imaging sequences used in this technique cannot reveal the fine structure of the spinal cord with precision. We used the readout segmentation of long variable echo-trains (RESOLVE) sequence in this cross-sectional study of 45 healthy volunteers aged 20 to 63 years. We found that the RESOLVE sequence significantly increased the resolution of the diffusion images and improved the median signal-to-noise ratio of the middle (C4-6) and lower (C7-T1) cervical segments to the level of the upper cervical segment. In addition, the values of fractional anisotropy and radial diffusivity were significantly higher in white matter than in gray matter. Our study verified that the RESOLVE sequence could improve resolution of diffusion tensor imaging in clinical applications and provide accurate baseline data for the diagnosis and treatment of cervical spinal cord diseases.
Collapse
Affiliation(s)
- Bu-Tian Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Meng Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li-Li Yu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi-Meng Dai
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shao-Nan Yu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jin-Lan Jiang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
29
|
Liu X, Tian W, Chen H, LoStracco TA, Zhang J, Li MY, Germin B, Wang HZ. Advanced Neuroimaging in the Evaluation of Spinal Cord Tumors and Tumor Mimics: Diffusion Tensor and Perfusion-Weighted Imaging. Semin Ultrasound CT MR 2016; 38:163-175. [PMID: 28347419 DOI: 10.1053/j.sult.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spinal cord tumors are an important component of pathologic diseases involving the spinal cord. Conventional magnetic resonance (MR) imaging only provides anatomical information. MR diffusion tensor imaging (DTI) and MR perfusion-weighted imaging (PWI) may detect microstructure diffusion and hemodynamic changes in these tumors. We review recent application studies of MR DTI and PWI in spinal cord tumors. Overall, MR DTI and MR PWI are promising imaging tools that are especially useful in improving differential diagnosis between spinal cord tumors and tumor mimics, preoperative evaluation of resectability, and providing assistance in surgical navigation.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY.
| | - Wei Tian
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY
| | - Hongyan Chen
- Department of Radiology, Beijing TiantanHospital, Beijing, China
| | - Thomas A LoStracco
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY
| | - Jing Zhang
- GE Healthcare MR research center, Beijing, China
| | - Michael Yan Li
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY
| | - Barbara Germin
- (║)Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Henry Z Wang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
30
|
Wu W, Liang J, Ru N, Zhou C, Chen J, Wu Y, Yang Z. Microstructural Changes in Compressed Nerve Roots Are Consistent With Clinical Symptoms and Symptom Duration in Patients With Lumbar Disc Herniation. Spine (Phila Pa 1976) 2016; 41:E661-E666. [PMID: 26656057 DOI: 10.1097/brs.0000000000001354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective study. OBJECTIVE To investigate the association between microstructural nerve roots changes on diffusion tensor imaging (DTI) and clinical symptoms and their duration in patients with lumbar disc herniation. SUMMARY OF BACKGROUND DATA The ability to identify microstructural properties of the nervous system with DTI has been demonstrated in many studies. However, there are no data regarding the association between microstructural changes evaluated using DTI and symptoms assessed with the Oswestry Disability Index (ODI) and their duration. METHODS Forty consecutive patients with foraminal disc herniation affecting unilateral sacral 1 (S1) nerve roots were enrolled in this study. DTI with tractography was performed on the S1 nerve roots. Clinical symptoms were evaluated using an ODI questionnaire for each patient, and the duration of clinical symptoms was noted based on the earliest instance of leg pain and numbness. Mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were calculated from tractography images. RESULTS The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (P < 0.001). No notable difference in ADC was observed between compressed nerve roots and contralateral nerve roots (P = 0.517). In the compressed nerve roots, a significant negative association was observed between FA values and ODI and symptom duration. However, an obvious positive association was observed between ODI and ADC values and duration on the compressed side. CONCLUSION Significant changes in diffusion parameters were found in the compressed sacral nerves in patients with lumbar disc herniation and leg pain, indicating that the microstructure of the nerve root has been damaged. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Weifei Wu
- Department of Orthopedics, the People's Hospital of Three Gorges University, the First People's Hospital of Yichang, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Budrewicz S, Szewczyk P, Bladowska J, Podemski R, Koziorowska-Gawron E, Ejma M, Słotwiński K, Koszewicz M. The possible meaning of fractional anisotropy measurement of the cervical spinal cord in correct diagnosis of amyotrophic lateral sclerosis. Neurol Sci 2015; 37:417-21. [PMID: 26590991 PMCID: PMC4789300 DOI: 10.1007/s10072-015-2418-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
Diagnosis of amyotrophic lateral sclerosis (ALS) is based on clinical criteria and electrophysiological tests (electromyography, and transcranial magnetic stimulation). In the search for ALS biomarkers, the role of imaging procedures is currently emphasized, especially modern MR techniques. MR procedures were performed on 15 ALS patients and a sex- and age-matched control group. The MR examinations were performed with a 1.5-T MR unit, and the protocol consisted of sagittal T1-weighed images, sagittal and axial T2-weighed images, and sagittal T2-weighed FAT SAT images followed by an axial diffusion tensor imaging (DTI) sequence of the cervical spinal cord. FA values in individual segments of the cervical spinal cord were decreased in the ALS group in comparison with the control group. After comparing FA values for anterior, posterior, and lateral corticospinal columns, the greatest difference was observed between the C2 and C5 segments. Spinal cord assessment with the use of FA measurements allows for confirmation of the motor pathways lesion in ALS patients. The method, together with clinical criteria, could be helpful in ALS diagnosis, assessment of clinical course, or even the effects of new drugs. The results also confirmed the theory of the generalized character of ALS.
Collapse
Affiliation(s)
- Slawomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Pawel Szewczyk
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Bladowska
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland
| | - Ryszard Podemski
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Ewa Koziorowska-Gawron
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Krzysztof Słotwiński
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland.
| |
Collapse
|
32
|
Role of Diffusion Tensor MR Imaging in Degenerative Cervical Spine Disease: a Review of the Literature. Clin Neuroradiol 2015; 26:265-76. [DOI: 10.1007/s00062-015-0467-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022]
|
33
|
Lin E, Long H, Li G, Lei W. Does diffusion tensor data reflect pathological changes in the spinal cord with chronic injury. Neural Regen Res 2014; 8:3382-90. [PMID: 25206660 PMCID: PMC4146007 DOI: 10.3969/j.issn.1673-5374.2013.36.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/17/2013] [Indexed: 11/29/2022] Open
Abstract
Magnetic resonance diffusion tensor imaging has been shown to quantitatively measure the early pathological changes in chronic cervical spondylotic myelopathy. In this study, a novel spongy polyurethane material was implanted in the rat C3–5 epidural space to establish a rat model of chronic cervical spondylotic myelopathy. Diffusion tensor data were used to predict pathological changes. Results revealed that the fractional anisotropy value gradually decreased at 4, 24, and 72 hours and 1 week after injury in rat spinal cord, showing a time-dependent manner. Average diffusion coefficient increased at 72 hours and 1 week after implantation. Hematoxylin-eosin staining and Luxol-fast-blue staining exhibited that the number of neurons in the anterior horn of the spinal cord gray matter and the nerve fiber density of the white matter gradually reduced with prolonged compression time. Neuronal loss was most significant at 1 week after injury. Results verified that the fractional anisotropy value and average diffusion coefficient reflected the degree of pathological change in the site of compression in rat models at various time points after chronic spinal cord compression injury, which potentially has a reference value in the early diagnosis of chronic cervical spondylotic myelopathy.
Collapse
Affiliation(s)
- Erjian Lin
- Department of Radiology, the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, Guangdong Province, China
| | - Houqing Long
- Department of Spinal Surgery, Huangpu Branch, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510700, Guangdong Province, China
| | - Guangsheng Li
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Wanlong Lei
- Department of Human Anatomy and Histoembryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510086, Guangdong Province, China
| |
Collapse
|
34
|
Kelley BJ, Harel NY, Kim CY, Papademetris X, Coman D, Wang X, Hasan O, Kaufman A, Globinsky R, Staib LH, Cafferty WBJ, Hyder F, Strittmatter SM. Diffusion tensor imaging as a predictor of locomotor function after experimental spinal cord injury and recovery. J Neurotrauma 2014; 31:1362-73. [PMID: 24779685 DOI: 10.1089/neu.2013.3238] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases.
Collapse
Affiliation(s)
- Brian J Kelley
- 1 Department of Neurosurgery, Yale University School of Medicine , New Haven, Connecticut
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Usefulness of diffusion tensor MR imaging in the assessment of intramedullary changes of the cervical spinal cord in different stages of degenerative spine disease. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:1523-30. [PMID: 24816677 DOI: 10.1007/s00586-014-3323-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE The aim of this study was to evaluate the usefulness of diffusion tensor imaging (DTI) in the detection of cervical spinal cord integrity alterations in different stages of degenerative spine disease, as well as to compare DTI parameters with selected cervical spinal stenosis measurements. METHODS One hundred and thirty-two symptomatic patients (mean age 53.58 years) with different stages of cervical spondylosis and twenty-five control subjects (mean age 45.78 years) were enrolled in the study. DTI was performed with a 1.5 T MR scanner. Three hundred and forty-nine spine segments from C2/C3 to C5/C6 were evaluated and divided into five groups according to the degree of spinal cord compression. The values of fractional anisotropy (FA) and apparent diffusion coefficient at each level were calculated and their correlations with the degree of stenosis were analyzed. RESULTS FA values differed significantly (p < 0.0001) at all levels between the control group and patients with cervical degenerative disease, including subjects without spinal cord compression visible on plain MR images. A significant (p < 0.01) positive correlation between the mean FA values and anteroposterior diameter of the spinal canal as well as space available for the spinal cord index was demonstrated at all investigated levels. CONCLUSION DTI is capable of revealing impairment of the cervical spinal cord microstructure at the very early stage of degenerative spine disease, even prior to spinal cord compression visible on plain MR. Anteroposterior spinal canal diameter as well as space available for the cord index is well related to spinal cord tissue integrity defined by DTI.
Collapse
|
36
|
Miller TR, Mohan S, Choudhri AF, Gandhi D, Jindal G. Advances in multiple sclerosis and its variants: conventional and newer imaging techniques. Radiol Clin North Am 2014; 52:321-36. [PMID: 24582342 DOI: 10.1016/j.rcl.2013.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS) and its variants are inflammatory as well as neurodegenerative diseases that diffusely affect the central nervous system (CNS). There is a poor correlation between traditional imaging findings and symptoms in patients with MS. Current research in conventional magnetic resonance (MR) imaging of MS and related diseases includes optimization of hardware and pulse sequences and the development of automated and semiautomated techniques to measure and quantify disease burden. Advanced nonconventional MR techniques such as diffusion tensor and functional MR imaging probe the changes found in the CNS, and correlate these findings with clinical measures of disease.
Collapse
Affiliation(s)
- Timothy R Miller
- Neuroradiology Division, Department of Radiology, University of Maryland Medical Center, Baltimore, MD 21201, USA.
| | - Suyash Mohan
- Neuroradiology Division, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Asim F Choudhri
- Neuroradiology Division, Department of Radiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dheeraj Gandhi
- Neuroradiology Division, Department of Radiology, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Gaurav Jindal
- Neuroradiology Division, Department of Radiology, University of Maryland Medical Center, Baltimore, MD 21201, USA
| |
Collapse
|