1
|
Kim DE, Oh HJ, Kim HJ, Kim YB, Kim ST, Yim H. Synergistic two-step inhibition approach using a combination of trametinib and onvansertib in KRAS and TP53-mutated colorectal adenocarcinoma. Biomed Pharmacother 2025; 182:117796. [PMID: 39731938 DOI: 10.1016/j.biopha.2024.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
Colorectal malignancies associated with KRAS and TP53 mutations led us to investigate the effects of combination therapy targeting KRAS, MEK1, or PLK1 in colorectal cancer. MEK1 is downstream of RAS in the MAPK pathway, whereas PLK1 is a mitotic kinase of the cell cycle activated by MAPK and regulated by p53. Bioinformatics analysis revealed that patients with colorectal cancer had a high expression of MAP2K1 and PLK1. Furthermore, PLK1 and MEK1 activity in human colorectal adenocarcinoma (COAD) tissues was found to be highly upregulated compared to healthy tissues. To determine the sensitivity of KRAS or/and TP53-mutated cancer to KRAS, MEK1, or PLK1-targeted therapy, the inhibitors salirasib, trametinib, volasertib, and onvansertib were used in COAD cells with different KRAS and TP53 status. The results showed that combinations with trametinib and PLK1 inhibitors were more potent than combinations with salirasib. A combination of MEK1 and PLK1 inhibitors exhibited significant therapeutic effects on KRAS or/and TP53-mutated COAD cells. Notably, the combination of trametinib and onvansertib effectively suppressed tumor growth in a xenograft mouse model of KRAS and TP53-mutated COAD. This treatment induced G1 and G2/M arrest, respectively, and showed the strongest synergistic effect in KRAS and TP53-mutated SW48 cells expressing mutant KRASG13D and transduced with TP53 shRNA, ultimately leading to apoptotic cell death. These effects are attributed to two-step inhibition mechanism that blocks the MAPK signaling pathway and disrupts mitosis in KRAS and TP53-mutated COAD cells.
Collapse
Affiliation(s)
- Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seung-Tae Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
2
|
Poyil PK, Siraj AK, Padmaja D, Parvathareddy SK, Alobaisi K, Thangavel S, Begum R, Diaz R, Al-Dayel F, Al-Kuraya KS. Polo-like Kinase 1 Predicts Lymph Node Metastasis in Middle Eastern Colorectal Cancer Patients; Its Inhibition Reverses 5-Fu Resistance in Colorectal Cancer Cells. Cells 2024; 13:1700. [PMID: 39451218 PMCID: PMC11506015 DOI: 10.3390/cells13201700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine-protein kinase essential for regulating multiple stages of cell cycle progression in mammals. Aberrant regulation of PLK1 has been observed in numerous human cancers and is linked to poor prognoses. However, its role in the pathogenesis of colorectal cancer (CRC) in the Middle East remains unexplored. PLK1 overexpression was noted in 60.3% (693/1149) of CRC cases and was significantly associated with aggressive clinico-pathological parameters and p-ERK1/2 overexpression. Intriguingly, multivariate logistic regression analysis identified PLK1 as an independent predictor of lymph node metastasis. Our in vitro experiments demonstrated that CRC cells with high PLK1 levels were resistant to 5-Fu treatment, while those with low PLK1 expression were sensitive. To investigate PLK1's role in chemoresistance, we used the specific inhibitor volasertib, which effectively reversed 5-Fu resistance. Interestingly, forced PLK1 expression activated the CRAF-MEK-ERK signaling cascade, while its inhibition suppressed this cascade. PLK1 knockdown reduced epithelial-to-mesenchymal transition (EMT) progression and stem cell-like traits in 5-Fu-resistant cells, implicating PLK1 in EMT induction and stemness in CRC. Moreover, silencing ERK1/2 significantly mitigated chemoresistance, EMT, and stemness properties in CRC cell lines that express PLK1. Furthermore, the knockdown of Zeb1 attenuated EMT and stemness, suggesting a possible link between EMT activation and the maintenance of stemness in CRC. Our findings underscore the pivotal role of PLK1 in mediating chemoresistance and suggest that PLK1 inhibition may represent a potential therapeutic strategy for the management of aggressive colorectal cancer subtypes.
Collapse
Affiliation(s)
- Pratheesh Kumar Poyil
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Abdul K. Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Divya Padmaja
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Khadija Alobaisi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Saravanan Thangavel
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Rafia Begum
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Roxanne Diaz
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| |
Collapse
|
3
|
Aquino-Acevedo AN, Orengo-Orengo JA, Cruz-Robles ME, Saavedra HI. Mitotic kinases are emerging therapeutic targets against metastatic breast cancer. Cell Div 2024; 19:21. [PMID: 38886738 PMCID: PMC11184769 DOI: 10.1186/s13008-024-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
This review aims to outline mitotic kinase inhibitors' roles as potential therapeutic targets and assess their suitability as a stand-alone clinical therapy or in combination with standard treatments for advanced-stage solid tumors, including triple-negative breast cancer (TNBC). Breast cancer poses a significant global health risk, with TNBC standing out as the most aggressive subtype. Comprehending the role of mitosis is crucial for understanding how TNBC advances from a solid tumor to metastasis. Chemotherapy is the primary treatment used to treat TNBC. Some types of chemotherapeutic agents target cells in mitosis, thus highlighting the need to comprehend the molecular mechanisms governing mitosis in cancer. This understanding is essential for devising targeted therapies to disrupt these mitotic processes, prevent or treat metastasis, and improve patient outcomes. Mitotic kinases like Aurora kinase A, Aurora Kinase B, never in mitosis gene A-related kinase 2, Threonine-Tyrosine kinase, and Polo-kinase 1 significantly impact cell cycle progression by contributing to chromosome separation and centrosome homeostasis. When these kinases go awry, they can trigger chromosome instability, increase cell proliferation, and activate different molecular pathways that culminate in a transition from epithelial to mesenchymal cells. Ongoing clinical trials investigate various mitotic kinase inhibitors as potential biological treatments against advanced solid tumors. While clinical trials against mitotic kinases have shown some promise in the clinic, more investigation is necessary, since they induce severe adverse effects, particularly affecting the hematopoietic system.
Collapse
Affiliation(s)
- Alexandra N Aquino-Acevedo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Joel A Orengo-Orengo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Melanie E Cruz-Robles
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA.
| |
Collapse
|
4
|
Ahn DH, Barzi A, Ridinger M, Samuëlsz E, Subramanian RA, Croucher PJ, Smeal T, Kabbinavar FF, Lenz HJ. Onvansertib in Combination with FOLFIRI and Bevacizumab in Second-Line Treatment of KRAS-Mutant Metastatic Colorectal Cancer: A Phase Ib Clinical Study. Clin Cancer Res 2024; 30:2039-2047. [PMID: 38231047 PMCID: PMC11094418 DOI: 10.1158/1078-0432.ccr-23-3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
PURPOSE Onvansertib is a highly specific inhibitor of polo-like kinase 1 (PLK1), with demonstrated safety in solid tumors. We evaluated, preclinically and clinically, the potential of onvansertib in combination with chemotherapy as a therapeutic option for KRAS-mutant colorectal cancer. PATIENTS AND METHODS Preclinical activity of onvansertib was assessed (i) in vitro in KRAS wild-type and -mutant isogenic colorectal cancer cells and (ii) in vivo, in combination with irinotecan, in a KRAS-mutant xenograft model. Clinically, a phase Ib trial was conducted to investigate onvansertib at doses 12, 15, and 18 mg/m2 (days 1-5 and 14-19 of a 28-day cycle) in combination with FOLFIRI/bevacizumab (days 1 and 15) in patients with KRAS-mutant metastatic colorectal cancer who had prior oxaliplatin exposure. Safety, efficacy, and changes in circulating tumor DNA (ctDNA) were assessed. RESULTS In preclinical models, onvansertib displayed superior activity in KRAS-mutant than wild-type isogenic colorectal cancer cells and demonstrated potent antitumor activity in combination with irinotecan in vivo. Eighteen patients enrolled in the phase Ib study. Onvansertib recommended phase II dose was established at 15 mg/m2. Grade 3 and 4 adverse events (AE) represented 15% of all treatment-related AEs, with neutropenia being the most common. Partial responses were observed in 44% of patients, with a median duration of response of 9.5 months. Early ctDNA dynamics were predictive of treatment efficacy. CONCLUSIONS Onvansertib combined with FOLIFRI/bevacizumab exhibited manageable safety and promising efficacy in second-line treatment of patients with KRAS-mutant metastatic colorectal cancer. Further exploration of this combination therapy is ongoing. See related commentary by Stebbing and Bullock, p. 2005.
Collapse
Affiliation(s)
- Daniel H. Ahn
- Division of Medical Oncology, Mayo Clinic, Phoenix, Arizona
| | - Afsaneh Barzi
- Division of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | | | | | | | | | - Tod Smeal
- Cardiff Oncology Inc., San Diego, California
| | | | - Heinz-Josef Lenz
- Division of Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
5
|
Stebbing J, Bullock AJ. Polo-like Kinase 1 Inhibition in KRAS-Mutated Metastatic Colorectal Cancer. Clin Cancer Res 2024; 30:2005-2007. [PMID: 38470499 DOI: 10.1158/1078-0432.ccr-24-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Inhibition of Polo-like kinase 1 (Plk1) is a promising new target and therapeutic strategy in metastatic colorectal cancer, especially those with KRAS mutations. New data support further development of onvansertib, and highlights the role of circulating tumor DNA in phase I clinical trials. See related article by Ahn et al., p. 2039.
Collapse
Affiliation(s)
- Justin Stebbing
- Department of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Andrea J Bullock
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
6
|
Lim J, Hwang YS, Yoon HR, Yoo J, Yoon SR, Jung H, Cho HJ, Lee HG. PLK1 phosphorylates RhoGDI1 and promotes cancer cell migration and invasion. Cancer Cell Int 2024; 24:73. [PMID: 38355643 PMCID: PMC10865702 DOI: 10.1186/s12935-024-03254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays an important role in diverse cellular processes by regulating Rho guanosine triphosphate (GTP)ases activity. RhoGDI1 phosphorylation regulates the spatiotemporal activation of Rho GTPases during cell migration. In this study, we identified polo-like kinase 1 (PLK1) as a novel kinase of RhoGDI1 and investigated the molecular mechanism by which the interaction between RhoGDI1 and PLK1 regulates cancer cell migration. METHODS Immunoprecipitation, GST pull-down assay, and proximity ligation assay (PLA) were performed to analyze the interaction between RhoGDI1 and PLK1. In vitro kinase assay and immunoprecipitation were performed with Phospho-(Ser/Thr) antibody. We evaluated RhoA activation using RhoGTPases activity assay. Cell migration and invasion were analyzed by transwell assays. RESULTS GST pull-down assays and PLA showed that PLK1 directly interacted with RhoGDI1 in vitro and in vivo. Truncation mutagenesis revealed that aa 90-111 of RhoGDI1 are critical for interacting with PLK1. We also showed that PLK1 phosphorylated RhoGDI1 at Thr7 and Thr91, which induces cell motility. Overexpression of the GFP-tagged RhoGDI1 truncated mutant (aa 90-111) inhibited the interaction of PLK1 with RhoGDI1 and attenuated RhoA activation by PLK1. Furthermore, the overexpression of the RhoGDI1 truncated mutant reduced cancer cell migration and invasion in vitro and suppressed lung metastasis in vivo. CONCLUSIONS Collectively, we demonstrate that the phosphorylation of RhoGDI1 by PLK1 promotes cancer cell migration and invasion through RhoA activation. This study connects the interaction between PLK1 and RhoGDI1 to the promotion of cancer cell behavior associated with malignant progression, thereby providing opportunities for cancer therapeutic interventions.
Collapse
Affiliation(s)
- Jeewon Lim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yo Sep Hwang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Hyang Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Park SY, Seo D, Jeon EH, Park JY, Jang BC, Kim JI, Im SS, Lee JH, Kim S, Cho CH, Lee YH. RPL27 contributes to colorectal cancer proliferation and stemness via PLK1 signaling. Int J Oncol 2023; 63:93. [PMID: 37387446 PMCID: PMC10552708 DOI: 10.3892/ijo.2023.5541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Although expression of ribosomal protein L27 (RPL27) is upregulated in clinical colorectal cancer (CRC) tissue, to the best of our knowledge, the oncogenic role of RPL27 has not yet been defined. The present study aimed to investigate whether targeting RPL27 could alter CRC progression and determine whether RPL27 gains an extra‑ribosomal function during CRC development. Human CRC cell lines HCT116 and HT29 were transfected with RPL27‑specific small interfering RNA and proliferation was assessed in vitro and in vivo using proliferation assays, fluorescence‑activated cell sorting (FACS) and a xenograft mouse model. Furthermore, RNA sequencing, bioinformatic analysis and western blotting were conducted to explore the underlying mechanisms responsible for RPL27 silencing‑induced CRC phenotypical changes. Inhibiting RPL27 expression suppressed CRC cell proliferation and cell cycle progression and induced apoptotic cell death. Targeting RPL27 significantly inhibited growth of human CRC xenografts in nude mice. Notably, polo‑like kinase 1 (PLK1), which serves an important role in mitotic cell cycle progression and stemness, was downregulated in both HCT116 and HT29 cells following RPL27 silencing. RPL27 silencing reduced the levels of PLK1 protein and G2/M‑associated regulators such as phosphorylated cell division cycle 25C, CDK1 and cyclin B1. Silencing of RPL27 reduced the migration and invasion abilities and sphere‑forming capacity of the parental CRC cell population. In terms of phenotypical changes in cancer stem cells (CSCs), RPL27 silencing suppressed the sphere‑forming capacity of the isolated CD133+ CSC population, which was accompanied by decreased CD133 and PLK1 levels. Taken together, these findings indicated that RPL27 contributed to the promotion of CRC proliferation and stemness via PLK1 signaling and RPL27 may be a useful target in a next‑generation therapeutic strategy for both primary CRC treatment and metastasis prevention.
Collapse
Affiliation(s)
- So-Young Park
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Daekwan Seo
- Department of Bioinformatics, Psomagen Inc., Rockville, MD 20850, USA
| | - Eun-Hye Jeon
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jee Young Park
- Department of Immunology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Chi Heum Cho
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Yun-Han Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| |
Collapse
|
8
|
Kim DE, Shin SB, Kim CH, Kim YB, Oh HJ, Yim H. PLK1-mediated phosphorylation of β-catenin enhances its stability and transcriptional activity for extracellular matrix remodeling in metastatic NSCLC. Theranostics 2023; 13:1198-1216. [PMID: 36793862 PMCID: PMC9925311 DOI: 10.7150/thno.79318] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/21/2023] [Indexed: 02/17/2023] Open
Abstract
Rationale: β-catenin is a component for cell adhesion and a transcriptional coactivator in epithelial-mesenchymal transition (EMT). Previously we found that catalytically active PLK1 drives EMT in non-small cell lung cancer (NSCLC), upregulating extracellular matrix factors including TSG6, laminin γ2, and CD44. To understand the underlying mechanism and clinical significance of PLK1 and β-catenin in NSCLC, their relationship and function in metastatic regulation were investigated. Methods: The clinical relevance between the survival rate of NSCLC patients and the expression of PLK1 and β-catenin was analyzed by a KM plot. Immunoprecipitation, kinase assay, LC-MS/MS spectrometry, and site-directed mutagenesis were performed to reveal their interaction and phosphorylation. A lentiviral doxycycline-inducible system, Transwell-based 3D culture, tail-vein injection model, confocal microscopy, and chromatin immunoprecipitation assays were used to elucidate the function of phosphorylated β-catenin in the EMT of NSCLC. Results: Clinical analysis revealed that the high expression of CTNNB1/PLK1 was inversely correlated with the survival rates of 1,292 NSCLC patients, especially in metastatic NSCLC. In TGF-β-induced or active PLK1-driven EMT, β-catenin, PLK1, TSG6, laminin γ2, and CD44 were concurrently upregulated. β-catenin is a binding partner of PLK1 in TGF-β-induced EMT and is phosphorylated at S311. Phosphomimetic β-catenin promotes cell motility, invasiveness of NSCLC cells, and metastasis in a tail-vein injection mouse model. Its upregulated stability by phosphorylation enhances transcriptional activity through nuclear translocation for the expression of laminin γ2, CD44, and c-Jun, therefore enhancing PLK1 expression by AP-1. Conclusions: Our findings provide evidence for the critical role of the PLK1/β-catenin/AP-1 axis in metastatic NSCLC, implying that β-catenin and PLK1 may serve as a molecular target and prognostic indicator of the therapeutic response in metastatic NSCLC patients.
Collapse
Affiliation(s)
- Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Sol-Bi Shin
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Chang-Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| |
Collapse
|
9
|
Yu Z, Deng P, Chen Y, Liu S, Chen J, Yang Z, Chen J, Fan X, Wang P, Cai Z, Wang Y, Hu P, Lin D, Xiao R, Zou Y, Huang Y, Yu Q, Lan P, Tan J, Wu X. Inhibition of the PLK1-Coupled Cell Cycle Machinery Overcomes Resistance to Oxaliplatin in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100759. [PMID: 34881526 PMCID: PMC8655181 DOI: 10.1002/advs.202100759] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Dysregulation of the cell cycle machinery leads to genomic instability and is a hallmark of cancer associated with chemoresistance and poor prognosis in colorectal cancer (CRC). Identifying and targeting aberrant cell cycle machinery is expected to improve current therapies for CRC patients. Here,upregulated polo-like kinase 1 (PLK1) signaling, accompanied by deregulation of cell cycle-related pathways in CRC is identified. It is shown that aberrant PLK1 signaling correlates with recurrence and poor prognosis in CRC patients. Genetic and pharmacological blockade of PLK1 significantly increases the sensitivity to oxaliplatin in vitro and in vivo. Mechanistically, transcriptomic profiling analysis reveals that cell cycle-related pathways are activated by oxaliplatin treatment but suppressed by a PLK1 inhibitor. Cell division cycle 7 (CDC7) is further identified as a critical downstream effector of PLK1 signaling, which is transactivated via the PLK1-MYC axis. Increased CDC7 expression is also found to be positively correlated with aberrant PLK1 signaling in CRC and is associated with poor prognosis. Moreover, a CDC7 inhibitor synergistically enhances the anti-tumor effect of oxaliplatin in CRC models, demonstrating the potential utility of targeting the PLK1-MYC-CDC7 axis in the treatment of oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- Zhaoliang Yu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Peng Deng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Yufeng Chen
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Shini Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Jinghong Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Jianfeng Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Xinjuan Fan
- Department of PathologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510060P. R. China
| | - Peili Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Zerong Cai
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Yali Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouGuangdong510060P. R. China
| | - Peishan Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Dezheng Lin
- Department of Endoscopic SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510060P. R. China
| | - Rong Xiao
- Department of Biomedical SciencesCity University of Hong KongHong KongSAR999077China
| | - Yifeng Zou
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Yan Huang
- Department of PathologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510060P. R. China
| | - Qiang Yu
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Ping Lan
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Jing Tan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouGuangdong510060P. R. China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouGuangdong510095P. R. China
| | - Xiaojian Wu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| |
Collapse
|
10
|
Patil AR, Leung MY, Roy S. Identification of Hub Genes in Different Stages of Colorectal Cancer through an Integrated Bioinformatics Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5564. [PMID: 34070979 PMCID: PMC8197092 DOI: 10.3390/ijerph18115564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer that contributes to cancer-related morbidity. However, the differential expression of genes in different phases of CRC is largely unknown. Moreover, very little is known about the role of stress-survival pathways in CRC. We sought to discover the hub genes and identify their roles in several key pathways, including oxidative stress and apoptosis in the different stages of CRC. To identify the hub genes that may be involved in the different stages of CRC, gene expression datasets were obtained from the gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) common among the different datasets for each group were obtained using the robust rank aggregation method. Then, gene enrichment analysis was carried out with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Finally, the protein-protein interaction networks were constructed using the Cytoscape software. We identified 40 hub genes and performed enrichment analysis for each group. We also used the Oncomine database to identify the DEGs related to stress-survival and apoptosis pathways involved in different stages of CRC. In conclusion, the hub genes were found to be enriched in several key pathways, including the cell cycle and p53 signaling pathway. Some of the hub genes were also reported in the stress-survival and apoptosis pathways. The hub DEGs revealed from our study may be used as biomarkers and may explain CRC development and progression mechanisms.
Collapse
Affiliation(s)
- Abhijeet R. Patil
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.P.); (M.-Y.L.)
| | - Ming-Ying Leung
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.P.); (M.-Y.L.)
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
11
|
Basnet U, Patil AR, Kulkarni A, Roy S. Role of Stress-Survival Pathways and Transcriptomic Alterations in Progression of Colorectal Cancer: A Health Disparities Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5525. [PMID: 34063993 PMCID: PMC8196775 DOI: 10.3390/ijerph18115525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/09/2022]
Abstract
Every year, more than a million individuals are diagnosed with colorectal cancer (CRC) across the world. Certain lifestyle and genetic factors are known to drive the high incidence and mortality rates in some groups of individuals. The presence of enormous amounts of reactive oxygen species is implicated for the on-set and carcinogenesis, and oxidant scavengers are thought to be important in CRC therapy. In this review, we focus on the ethnicity-based CRC disparities in the U.S., the negative effects of oxidative stress and apoptosis, and gene regulation in CRC carcinogenesis. We also highlight the use of antioxidants for CRC treatment, along with screening for certain regulatory genetic elements and oxidative stress indicators as potential biomarkers to determine the CRC risk and progression.
Collapse
Affiliation(s)
- Urbashi Basnet
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
| | - Abhijeet R. Patil
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
12
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
13
|
Zhu J, Cui K, Cui Y, Ma C, Zhang Z. PLK1 Knockdown Inhibits Cell Proliferation and Cell Apoptosis, and PLK1 Is Negatively Regulated by miR-4779 in Osteosarcoma Cells. DNA Cell Biol 2020; 39:747-755. [PMID: 32182129 DOI: 10.1089/dna.2019.5002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a ubiquitous serine/threonine protein kinase. It is reported to be involved in the occurrence and progression of various human cancers. In the present study, we explored the role and molecular mechanism of PLK1 in the proliferation of osteosarcoma (OS) cells. We found that PLK1 expression was higher in MG63/Dox cells than in MG63 cells, while inhibiting or interfering with the level of PLK1 suppressed cell proliferation of MG63/Dox cells. TargetScan analysis predicted that miR-4779 would interact with the 3'-UTR of PLK1 mRNAs and also inhibit cell autophagy of MG63/Dox cells. The data demonstrated that miR-4779 negatively regulates the expression of PLK1, and both miR-4779 and PLK1 regulate cell proliferation and cell apoptosis of MG63/Dox cells, processes that are involved in the drug resistance of OS cells.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Kai Cui
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Chengbin Ma
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Al-Maghrabi J. Vimentin immunoexpression is associated with higher tumor grade, metastasis, and shorter survival in colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:493-500. [PMID: 32269687 PMCID: PMC7137029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND/AIM The association between vimentin immunoexpression and poor prognosis has been described in many human cancers. The objective of this study was to evaluate the relationship between vimentin immunostaining and colorectal carcinoma (CRC) clinicopathologic parameters. MATERIALS AND METHODS Samples included 202 primary CRC tissues, 41 adenomas and 37 normal colonic mucosae. Anti-Vimentin (V9) monoclonal antibody was used for immunohistochemical staining. Vimentin expression was evaluated based on the percentage of cytoplasmic expression in epithelial cells. RESULTS Vimentin expression was identified in 35 (17.3%) of CRC samples. All normal mucosa and adenoma samples were vimentin negative. There was an association between positive vimentin immunostaining and high tumor grade, distant metastasis, and short overall (Log rank 5.112, P=0.024), as well as disease-free survival probabilities (Log rank 6.173, P=0.013). There was no association between vimentin expression and age, gender, tumor location, tumor size, tumor stage, nodal involvement, lymphovascular invasion, margin status, or tumor recurrence. CONCLUSION Vimentin immunoexpression is associated with worse prognosis in CRC patients. Vimentin can be considered a potentially important disease biomarker and could be a target for CRC therapy.
Collapse
Affiliation(s)
- Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Ding X, Duan H, Luo H. Identification of Core Gene Expression Signature and Key Pathways in Colorectal Cancer. Front Genet 2020; 11:45. [PMID: 32153633 PMCID: PMC7046836 DOI: 10.3389/fgene.2020.00045] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Colorectal cancer (CRC) is considered the most prevalent malignant tumor that contributes to high cancer-related mortality. However, the signaling pathways involved in CRC and CRC-driven genes are largely unknown. We sought to discover a novel biomarker in CRC. Materials and Methods All clinical CRC samples (n = 20) were from Renmin Hospital of Wuhan University. We first selected MAD2L1 by integrated bioinformatics analysis of a GSE dataset. Next, the expression of MAD2L1 in tissues and cell lines was verified by quantitative real-time PCR. The effects of MAD2L1 on cell growth, proliferation, the cell cycle, and apoptosis were examined by in vitro assays. Results We identified 683 shared DEGs (420 upregulated and 263 downregulated), and the top twenty genes (CDK1, CCNA2, TOP2A, PLK1, MAD2L1, AURKA, BUB1B, UBE2C, TPX2, RRM2, KIF11, NCAPG, MELK, NUSAP1, MCM4, RFC4, PTTG1, CHEK1, CEP55, DTL) were selected by integrated analysis. These hub genes were significantly overexpressed in CRC samples and were positively correlated. Our data revealed that the expression of MAD2L1 in CRC tissues is higher than that in normal tissues. MAD2L1 knockdown significantly suppressed CRC cell growth by impairing cell cycle progression and inducing cell apoptosis. Conclusion MAD2L1, as a novel oncogenic gene, plays a role in regulating cancer cell growth and apoptosis and could be used as a new biomarker for diagnosis and therapy in CRC.
Collapse
Affiliation(s)
- Xiang Ding
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Houyu Duan
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Shin SB, Jang HR, Xu R, Won JY, Yim H. Active PLK1-driven metastasis is amplified by TGF-β signaling that forms a positive feedback loop in non-small cell lung cancer. Oncogene 2020; 39:767-785. [PMID: 31548612 PMCID: PMC6976524 DOI: 10.1038/s41388-019-1023-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Early findings that PLK1 is highly expressed in cancer have driven an exploration of its functions in metastasis. However, whether PLK1 induces metastasis in vivo and its underlying mechanisms in NSCLC have not yet been determined. Here, we show that the expression of active PLK1 phosphorylated at T210, abundant in TGF-β-treated lung cells, potently induced metastasis in a tail-vein injection model. Active PLK1 with intact polo-box and ATP-binding domains accelerated cell motility and invasiveness by triggering EMT reprogramming, whereas a phosphomimetic version of p-S137-PLK1 did not, indicating that the phosphorylation status of PLK1 may determine the cell traits. Active PLK1-driven invasiveness upregulated TGF-β signaling and TSG6 encoded by TNFAIP6. Loss of TNFAIP6 disturbed the metastatic activity induced by active PLK1 or TGF-β. Clinical relevance shows that PLK1 and TNFAIP6 are strong predictors of poor survival rates in metastatic NSCLC patients. Therefore, we suggest that active PLK1 promotes metastasis by upregulating TGF-β signaling, which amplifies its metastatic properties by forming a positive feedback loop and that the PLK1/TGF-β-driven metastasis is effectively blocked by targeting PLK1 and TSG6, providing PLK1 and TSG6 as negative markers for prognostics and therapeutic targets in metastatic NSCLC.
Collapse
Affiliation(s)
- Sol-Bi Shin
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Hay-Ran Jang
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Rong Xu
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Jae-Yeon Won
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea.
| |
Collapse
|
17
|
Ran Z, Chen W, Shang J, Li X, Nie Z, Yang J, Li N. Clinicopathological and prognostic implications of polo-like kinase 1 expression in colorectal cancer: A systematic review and meta-analysis. Gene 2019; 721:144097. [PMID: 31493507 DOI: 10.1016/j.gene.2019.144097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Polo-like kinase 1 (PLK1) is a potential prognostic marker in colorectal cancer (CRC). Nevertheless, the clinicopathological and prognostic roles of PLK1 in CRC are still undefined. Therefore, we performed a meta-analysis to investigate the clinicopathological and prognostic relevance of PLK1 expression in CRC patients. METHODS Studies published between 2003 and 2016 were selected for the meta-analysis based on an electronic literature search (PubMed, EMBASE and Chinese databases). Studies that investigated the clinicopathological and prognostic impacts of PLK1 expression in CRC patients were included for this analysis. RESULTS Eleven studies that enrolled 1147 CRC patients were included in our meta-analysis. The effect of PLK1 level on overall survival (OS) was reported in five studies, which included 702 patients. Ten studies investigated the clinicopathological role of PLK1 expression in CRC patients. Consequently, PLK1 overexpression was associated with poorer OS in CRC patients. Furthermore, the results revealed that higher PLK1 levels were also observed in CRC tissues compared with that of normal colorectal tissues. In addition, this meta-analysis also revealed positive correlations between PLK1 upregulation and lymph node metastasis or invasion. PLK1 overexpression was significantly correlated with advanced TNM stages and higher Dukes stages. CONCLUSION This meta-analysis strongly supports the hypothesis that PLK1 might serve as an important factor in evaluating the biological behavior and prognosis of CRC.
Collapse
Affiliation(s)
- Zihan Ran
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, 201318 Shanghai, PR China; The Genius Medicine Consortium (TGMC), Shanghai, PR China.
| | - Wenjie Chen
- The Genius Medicine Consortium (TGMC), Shanghai, PR China; Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Jun Shang
- The Genius Medicine Consortium (TGMC), Shanghai, PR China; State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Xuemei Li
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, 201318 Shanghai, PR China
| | - Zhiyan Nie
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, 201318 Shanghai, PR China
| | - Jingcheng Yang
- The Genius Medicine Consortium (TGMC), Shanghai, PR China; State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Na Li
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, 201318 Shanghai, PR China.
| |
Collapse
|
18
|
Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
19
|
Zhou JM, Hu SQ, Jiang H, Chen YL, Feng JH, Chen ZQ, Wen KM. OCT4B1 Promoted EMT and Regulated the Self-Renewal of CSCs in CRC: Effects Associated with the Balance of miR-8064/PLK1. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:7-20. [PMID: 31650021 PMCID: PMC6804455 DOI: 10.1016/j.omto.2019.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are the main cause of tumor generation, recurrence, metastasis, and therapy failure in various malignancies including colorectal cancer (CRC). Accumulating evidence suggests that tumor cells can acquire CSC characteristics through the epithelial-mesenchymal transition (EMT) process. However, the molecular mechanism of CSCs remains unclear. OCT4B1 is a transcript of OCT4, which is initially expressed in embryonic stem and carcinoma cells, and is involved in the regulation and maintenance of an undifferentiated state of stem cells. In this study, three-dimensional (3D) microspheres were confirmed as CRC stem cells. Compared with that of parental cells, their self-renewal ability was significantly increased, and OCT4B1 expression was increased and promoted the EMT process. The knockdown of OCT4B1 decreased the self-renewal of CSCs and reversed EMT. Moreover, OCT4B1 induced the expression of Polo-like kinase 1 (PLK1), which is a key regulator of EMT in tumor cells. Further examination showed that OCT4B1 regulated the miR-8064/PLK1 balance to exert its function. Taken together, our data suggest that OCT4B1 may be involved in regulating the self-renewal of colorectal CSCs through EMT, which is at least partially due to the miR-8064/PLK1 balance. This study indicates that OCT4B1 is a potential therapeutic target for CRC by targeting CSCs.
Collapse
Affiliation(s)
- Jun-Min Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shui-Qing Hu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yi-Lin Chen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ji-Hong Feng
- Department of Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zheng-Quan Chen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Kun-Ming Wen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
20
|
Tang Y, Zhong Y, Fu T, Zhang Y, Cheng A, Dai Y, Qu J, Gan R. Bioinformatic analysis of differentially expressed genes and identification of key genes in EBV-transformed lymphoblasts. Biomed Pharmacother 2019; 116:108984. [PMID: 31129512 DOI: 10.1016/j.biopha.2019.108984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 01/28/2023] Open
Abstract
Although the Epstein-Barr virus (EBV) is a well-known human oncogenic virus, its molecular mechanisms involved in the transformation of healthy human cells remain poorly understood. In this study, human lymphocytes were isolated from the peripheral blood of healthy adults, and lymphocytes were transformed in vitro by EBV. Agilent human whole genome microarrays were used to detect the differential gene expression profiles of EBV-transformed lymphoblasts and healthy peripheral blood lymphocytes (PBLs). By constructing the gene functional network of EBV-induced lymphocyte transformation, we screened out candidate key genes in this process and verified their expression levels by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. In the EBV-transformed lymphoblasts, 2335 differentially expressed genes, including 1328 up-regulated and 1007 down-regulated, were screened out. Five candidate key genes, namely, PLK1, E2F1, PTPN11, BIRC5 and FYN were mainly screened out according to the results of LIMMA, String, Cytoscape software analysis. RT-qPCR and Western blot showed that PLK1, E2F1, PTPN11, BIRC5 genes had increased expression levels, and FYN gene was down-regulated in EBV-transformed lymphoblasts. Silencing of PLK1 gene in Raji cells could inhibit cell proliferation and invasion, and induce cell cycle arrest and apoptosis. In conclusion, PLK1, E2F1, PTPN11, BIRC5 and FYN are the candidate key molecules of EBV-transformed lymphocytes.
Collapse
Affiliation(s)
- Yunlian Tang
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, 421001, PR China
| | - Yating Zhong
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, 421001, PR China
| | - Ting Fu
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, 421001, PR China
| | - Yang Zhang
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, 421001, PR China
| | - Ailan Cheng
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, 421001, PR China
| | - Yongming Dai
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, 421001, PR China
| | - Jiani Qu
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, 421001, PR China
| | - Runliang Gan
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
21
|
Van den Bossche J, Deben C, De Pauw I, Lambrechts H, Hermans C, Deschoolmeester V, Jacobs J, Specenier P, Pauwels P, Vermorken JB, Peeters M, Lardon F, Wouters A. In vitro study of the Polo-like kinase 1 inhibitor volasertib in non-small-cell lung cancer reveals a role for the tumor suppressor p53. Mol Oncol 2019; 13:1196-1213. [PMID: 30859681 PMCID: PMC6487694 DOI: 10.1002/1878-0261.12477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Polo-like kinase 1 (Plk1), a master regulator of mitosis and the DNA damage response, is considered to be an intriguing target in the research field of mitotic intervention. The observation that Plk1 is overexpressed in multiple human malignancies, including non-small-cell lung cancer (NSCLC), gave rise to the development of several small-molecule inhibitors. Volasertib, presently the most extensively studied Plk1 inhibitor, has been validated to efficiently reduce tumor growth in preclinical settings. Unfortunately, only modest antitumor activity against solid tumors was reported in clinical trials. This discrepancy prompted research into the identification of predictive biomarkers. In this study, we investigated the therapeutic effect of volasertib monotherapy (i.e., cytotoxicity, cell cycle distribution, apoptotic cell death, cellular senescence, and migration) in a panel of NSCLC cell lines differing in p53 status under both normal and reduced oxygen tension (<0.1% O2 ). A strong growth inhibitory effect was observed in p53 wild-type cells (A549 and A549-NTC), with IC50 values significantly lower than those in p53 knockdown/mutant cells (A549-920 and NCI-H1975) (P < 0.001). While mitotic arrest was significantly greater in cells with nonfunctional p53 (P < 0.005), apoptotic cell death (P < 0.026) and cellular senescence (P < 0.021) were predominantly induced in p53 wild-type cells. Overall, the therapeutic effect of volasertib was reduced under hypoxia (P < 0.050). Remarkably, volasertib inhibited cell migration in all cell lines tested (P < 0.040), with the exception of for the NCI-H1975 p53 mutant cell line. In conclusion, our results show an important difference in the therapeutic effect of Plk1 inhibition in NSCLC cells with versus without functional p53. Overall, the p53 wild-type cell lines were more sensitive to volasertib treatment, suggesting that p53 might be a predictive biomarker for Plk1 inhibition in NSCLC. Moreover, our results pave the way for new combination strategies with Plk1 inhibitors to enhance antitumor activity.
Collapse
Affiliation(s)
| | - Christophe Deben
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| | - Ines De Pauw
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| | - Hilde Lambrechts
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| | - Christophe Hermans
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Vanessa Deschoolmeester
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Julie Jacobs
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Pol Specenier
- Department of OncologyAntwerp University HospitalEdegemBelgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of OncologyAntwerp University HospitalEdegemBelgium
| | - Marc Peeters
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of OncologyAntwerp University HospitalEdegemBelgium
| | - Filip Lardon
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| | - An Wouters
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| |
Collapse
|
22
|
Expression of long non-coding RNA CCHE1 in colorectal carcinoma: correlations with clinicopathological features and ERK/COX-2 pathway. Mol Biol Rep 2018; 46:657-667. [DOI: 10.1007/s11033-018-4521-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022]
|
23
|
Yan W, Yu H, Li W, Li F, Wang S, Yu N, Jiang Q. Plk1 promotes the migration of human lung adenocarcinoma epithelial cells via STAT3 signaling. Oncol Lett 2018; 16:6801-6807. [PMID: 30405824 DOI: 10.3892/ol.2018.9437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase (Plk)1 contributes to the development of human cancer via multiple mechanisms, such as promoting the migration of cancer cells. However, the mechanistic basis for the regulation of cell migration by Plk1 remains unknown. To address this question, the present study investigated the effect of Plk1 inhibition on the migration of human lung adenocarcinoma epithelial A549 cells and the molecular factors involved. A549 cells were treated with the Plk1 inhibitor, BI2536, and cell migration was evaluated with the wound-healing assay. The expression of matrix metallopeptidase (MMP)2, vascular endothelial growth factor (VEGF)A, total and phosphorylated signal transducer and activator of transcription (STAT)3 was assessed by western blotting and reverse transcription-polymerase chain reaction following Plk1 knockdown and/or STAT3 overexpression. The interaction between Plk1 and STAT3 was evaluated by co-immunoprecipitation. The levels of MMP2 and VEGFA were decreased by treatment with Plk1 inhibitor. The phosphorylation of STAT3, which acts upstream of MMP2 and VEGFA, was also decreased by Plk1 knockdown, an effect that was abrogated by STAT3 overexpression. In addition, Plk1 was detected to bind with STAT3 either directly or as part of a complex by co-immunoprecipitation experiments. These results indicated that Plk1 may promote the migration of A549 cells via regulation of STAT3 signaling.
Collapse
Affiliation(s)
- Weijuan Yan
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The Second Artillery Corps of Chinese PLA, Beijing 100088, P.R. China
| | - Huijie Yu
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The Second Artillery Corps of Chinese PLA, Beijing 100088, P.R. China
| | - Wei Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The Second Artillery Corps of Chinese PLA, Beijing 100088, P.R. China
| | - Fengsheng Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The Second Artillery Corps of Chinese PLA, Beijing 100088, P.R. China
| | - Sinian Wang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The Second Artillery Corps of Chinese PLA, Beijing 100088, P.R. China
| | - Nan Yu
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The Second Artillery Corps of Chinese PLA, Beijing 100088, P.R. China
| | - Qisheng Jiang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The Second Artillery Corps of Chinese PLA, Beijing 100088, P.R. China
| |
Collapse
|
24
|
Xu W, Huang Y, Yang Z, Hu Y, Shu X, Xie C, He C, Zhu Y, Lu N. Helicobacter pylori promotes gastric epithelial cell survival through the PLK1/PI3K/Akt pathway. Onco Targets Ther 2018; 11:5703-5713. [PMID: 30254463 PMCID: PMC6140703 DOI: 10.2147/ott.s164749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Helicobacter pylori (H. pylori) infection plays a critical role in the process of gastric carcinogenesis. However, the complicated pathogenic mechanism is still unclear. Polo-like kinase 1 (PLK1) is involved in the development of multiple human malignancies, including gastric cancer. Therefore, this study aimed to elucidate the role of PLK1 in H. pylori-induced gastric carcinogenesis and the underlying signaling mechanism. Materials and methods We detected the expression of PLK1 in 166 patients in different stages of gastric carcinogenesis as well as the established Mongolian gerbil model with H. pylori infection by immunohistochemistry. Cell Counting Kit-8 was used to estimate the survival of gastric cancer cells. Results We found that PLK1 expression in gastric cancer tissues was significantly higher than that of paired adjacent mucosa. PLK1 expression was increased in intestinal metaplasia, dysplasia, and gastric cancer tissues compared to chronic non-atrophic gastritis tissues. Notably, PLK1 expression was much lower in H. pylori-negative tissues than in H. pylori-positive tissues at intestinal metaplasia stage. In addition, H. pylori infection increased PLK1 expression in the gastric epithelial cells of the Mongolian gerbil model, which was positively related to the duration of H. pylori infection. Inhibition of PLK1 significantly reduced H. pylori-induced cell proliferation. Furthermore, incubation of MKN-28 cells with H. pylori resulted in a significant increase in PLK1, p-PTEN, and the downstream PI3K/Akt pathway, and pretreatment with a PLK1 inhibitor reversed these molecular changes. Conclusion PLK1 is involved in H. pylori-induced gastric carcinogenesis at the early stage by activating the PI3K/Akt signaling pathway. These results may contribute to the development of new control strategies for H. pylori infection-related gastric cancer.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Ying Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| |
Collapse
|
25
|
Wang K, Xiao H, Zhang J, Zhu D. Synaptotagmin7 Is Overexpressed In Colorectal Cancer And Regulates Colorectal Cancer Cell Proliferation. J Cancer 2018; 9:2349-2356. [PMID: 30026831 PMCID: PMC6036711 DOI: 10.7150/jca.25098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 12/25/2022] Open
Abstract
Purpose: Synaptotagmin7 (SYT7) belongs to the synaptotagmin gene family and plays an important role in synaptic transmission. However, the function of this gene in most human cancer especially in colorectal cancer (CRC) remains unknown. In this research, we examined SYT7's role in CRC and tried to reveal its underlying mechanism. Methods: We examined SYT7's expression levels in normal colorectal tissue and CRC tissues from 83 patients and analyzed the possible correlation between the expression level of SYT7 and pathological characteristics. The influences of SYT7 knockdown on cell growth were detected by Celigo image cytometer, colony formation assay, cell cycle analysis and apoptosis assay in vitro. The possible molecular mechanism was assessed using a microarray and Ingenuity Pathway Analysis. Results: Our results show that the expression of SYT7 is upregulated in colorectal cancer tissues in comparison with normal tissues and positively correlated with the pathological stage of colorectal cancer. (P=0.015). We examined SYT7's role in human colorectal cancer cell line RKO by using SYT7-shRNA and revealed that SYT7 knockdown inhibit cell proliferation (P=8.6E-5), clonogenic ability (P=4.5E-6) and promoted G2/M Phase arrest and apoptosis (P=4.6E-7). Multiple cancer-associated pathways regulated by SYT7 were unraveled by microarray and Ingenuity Pathway Analysis. Conclusions: Our study suggests that SYT7 plays an important role in the development of CRC and SYT7 may become a new therapeutic target in CRC.
Collapse
Affiliation(s)
- Kewei Wang
- Department of Gastrointestinal & hernia Surgery, First Hospital of China Medical University, Shenyang, China
| | - Huimin Xiao
- Department of General Surgery, People's Hospital of China Medical University, Shenyang, China
| | - Jiaqi Zhang
- Department of Gastrointestinal & hernia Surgery, First Hospital of China Medical University, Shenyang, China
| | - Dehua Zhu
- Department of Gastrointestinal & hernia Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Zhang J, Wang Y, Shen Y, He P, Ding J, Chen Y. G9a stimulates CRC growth by inducing p53 Lys373 dimethylation-dependent activation of Plk1. Theranostics 2018; 8:2884-2895. [PMID: 29774081 PMCID: PMC5957015 DOI: 10.7150/thno.23824] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/01/2018] [Indexed: 11/28/2022] Open
Abstract
Rationale: G9a is genetically deregulated in various tumor types and is important for cell proliferation; however, the mechanism underlying G9a-induced carcinogenesis, especially in colorectal cancer (CRC), is unclear. Here, we investigated if G9a exerts oncogenic effects in CRC by increasing polo-like kinase 1 (Plk1) expression. Thus, we further characterized the detailed molecular mechanisms. Methods: The role of Plk1 in G9a aberrant CRC was determined by performing different in vitro and in vivo assays, including assessment of cell growth by performing cell viability assay and assessment of signaling transduction profiles by performing immunoblotting, in the cases of pharmacological inhibition or short RNA interference-mediated suppression of G9a. Detailed molecular mechanisms underlying the effect of G9a on Plk1 expression were determined by performing point mutation analysis, chromatin immunoprecipitation analysis, and luciferase reporter assay. Correlation between G9a and Plk1 expression was determined by analyzing clinical samples of patients with CRC by performing immunohistochemistry. Results: Our study is the first to report a significant positive correlation between G9a and Plk1 levels in 89 clinical samples of patients with CRC. Moreover, G9a depletion decreased Plk1 expression and suppressed CRC cell growth both in vitro and in vivo, thus confirming the significant correlation between G9a and Plk1 levels. Further, we observed that G9a-induced Plk1 regulation depended on p53 inhibition. G9a dimethylated p53 at lysine 373, which in turn increased Plk1 expression and promoted CRC cell growth. Conclusions: These results indicate that G9a-induced and p53-dependent epigenetic programing stimulates the growth of colon cancer, which also suggests that G9a inhibitors that restore p53 activity are promising therapeutic agents for treating colon cancer, especially for CRC expressing wild-type p53.
Collapse
Affiliation(s)
- Jie Zhang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yafang Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanyan Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pengxing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
27
|
Li K, Ma H, Zheng X, Hu Y, Wang Y, Zhang K, Chen J, Qi Y, Jiang J, Pang L, Tao L, Gu W, Li F, Zou H. Overexpression of Polo-like kinase1 (PLK1) in chondrosarcoma and its implications for cancer progression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1707-1711. [PMID: 31938273 PMCID: PMC6958127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/05/2017] [Indexed: 06/10/2023]
Abstract
Polo-like kinase1 (PLK1) is a new therapeutic target for osteosarcoma with good application prospects. Whether PLK1 is highly expressed in chondrosarcoma and whether PLK1 can be a potential therapeutic target for chondrosarcoma are worth exploring. However, PLK1 expression in chondrosarcoma is scarcely investigated. Therefore, we collected 11 cases of chondrosarcoma and 26 cases of osteochondroma with complete clinical pathological data and used immunohistochemical staining to detect the expression of PLK1 in chondrosarcoma and osteochondroma and then studied its significance and relationship with clinical pathological parameters. Our results showed that the positive expression rate of PLK1 in chondrosarcoma tissue (90.91%, 10/11) was significantly higher than the rate of osteochondroma tissues (53.85%, 14/26) (P<0.05). The expression of PLK1 enhanced gradually with the increase in histological grade (P<0.05). PLK1 was highly expressed in chondrosarcoma, and the high expression of PLK1 might be involved in cartilage tumor malignant progression.
Collapse
Affiliation(s)
- Kelu Li
- Department of Pathology, First Affiliated Hospital, Shihezi UniversityShihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Pathology, School of Medicine, Shihezi University, Ministry of Education of ChinaShihezi, China
| | - Hongmei Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Pathology, School of Medicine, Shihezi University, Ministry of Education of ChinaShihezi, China
| | - Xiuyan Zheng
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Pathology, School of Medicine, Shihezi University, Ministry of Education of ChinaShihezi, China
| | - Yali Hu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Pathology, School of Medicine, Shihezi University, Ministry of Education of ChinaShihezi, China
| | - Yue Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Pathology, School of Medicine, Shihezi University, Ministry of Education of ChinaShihezi, China
| | - Kunpeng Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Pathology, School of Medicine, Shihezi University, Ministry of Education of ChinaShihezi, China
| | - Jiahan Chen
- School of Medicine, Shihezi UniversityShihezi, China
| | - Yan Qi
- Department of Pathology, First Affiliated Hospital, Shihezi UniversityShihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Pathology, School of Medicine, Shihezi University, Ministry of Education of ChinaShihezi, China
| | - Jinfang Jiang
- Department of Pathology, First Affiliated Hospital, Shihezi UniversityShihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Pathology, School of Medicine, Shihezi University, Ministry of Education of ChinaShihezi, China
| | - Lijuan Pang
- Department of Pathology, First Affiliated Hospital, Shihezi UniversityShihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Pathology, School of Medicine, Shihezi University, Ministry of Education of ChinaShihezi, China
| | - Lin Tao
- Department of Pathology, First Affiliated Hospital, Shihezi UniversityShihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Pathology, School of Medicine, Shihezi University, Ministry of Education of ChinaShihezi, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbane, Australia
| | - Feng Li
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| | - Hong Zou
- Department of Pathology, First Affiliated Hospital, Shihezi UniversityShihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Pathology, School of Medicine, Shihezi University, Ministry of Education of ChinaShihezi, China
| |
Collapse
|
28
|
Tankiewicz‐Kwedlo A, Hermanowicz JM, Domaniewski T, Pawlak K, Rusak M, Pryczynicz A, Surazynski A, Kaminski T, Kazberuk A, Pawlak D. Simultaneous use of erythropoietin and LFM-A13 as a new therapeutic approach for colorectal cancer. Br J Pharmacol 2018; 175:743-762. [PMID: 29160911 PMCID: PMC5811618 DOI: 10.1111/bph.14099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Bruton's tyrosine kinase (Btk) is a non-receptor tyrosine kinase involved in the activation of signalling pathways responsible for cell maturation and viability. Btk has previously been reported to be overexpressed in colon cancers. This kind of cancer is often accompanied by anaemia, which is treated with an erythropoietin supplement. The goal of the present study was to assess the effects of combination therapy with erythropoietin β (Epo) and LFM-A13 (Btk inhibitor) on colon cancer in in vitro and in vivo models. EXPERIMENTAL APPROACH DLD-1 and HT-29 human colon adenocarcinoma cells were cultured with Epo and LFM-A13. Cell number and viability, and mRNA and protein levels of Epo receptors, Btk and Akt were assessed. Nude mice were inoculated with adenocarcinoma cells and treated with Epo and LFM-A13. KEY RESULTS The combination of Epo and LFM-A13 mostly exerted a synergistic inhibitory effect on colon cancer cell growth. The therapeutic scheme used effectively killed the cancer cells and attenuated the Btk signalling pathways. Epo + LFM-A13 also prevented the normal process of microtubule assembly during mitosis by down-regulating the expression of Polo-like kinase 1. The combination of Epo and LFM-A13 significantly reduced the growth rate of tumour cells, while it showed high safety profile, inducing no nephrotoxicity, hepatotoxicity or changes in the haematological parameters. CONCLUSION AND IMPLICATIONS Epo significantly enhances the antitumour activity of LFM-A13, indicating that a combination of Epo and LFM-A13 has potential as an effective therapeutic approach for patients with colorectal cancer.
Collapse
Affiliation(s)
| | - Justyna Magdalena Hermanowicz
- Department of PharmacodynamicsMedical University of BialystokBialystokPoland
- Department of Clinical PharmacyMedical University of BialystokBialystokPoland
| | - Tomasz Domaniewski
- Department of Monitored PharmacotherapyMedical University of BialystokBialystokPoland
| | - Krystyna Pawlak
- Department of Monitored PharmacotherapyMedical University of BialystokBialystokPoland
| | - Małgorzata Rusak
- Department of Hematological DiagnosticsMedical University of BialystokBialystokPoland
| | - Anna Pryczynicz
- Department of PathomorphologyMedical University of BialystokBialystokPoland
| | | | - Tomasz Kaminski
- Department of PharmacodynamicsMedical University of BialystokBialystokPoland
| | - Adam Kazberuk
- Department of Medicinal ChemistryMedical University of BialystokBialystokPoland
| | - Dariusz Pawlak
- Department of PharmacodynamicsMedical University of BialystokBialystokPoland
| |
Collapse
|
29
|
Alaee M, Padda A, Mehrabani V, Churchill L, Pasdar M. The physical interaction of p53 and plakoglobin is necessary for their synergistic inhibition of migration and invasion. Oncotarget 2018; 7:26898-915. [PMID: 27058623 PMCID: PMC5042024 DOI: 10.18632/oncotarget.8616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 01/15/2023] Open
Abstract
Plakoglobin (PG) is a paralog of β-catenin with similar adhesive, but contrasting signalling functions. Although β-catenin has well-known oncogenic function, PG generally acts as a tumor/metastasis suppressor by mechanisms that are just beginning to be deciphered. Previously, we showed that PG interacted with wild type (WT) and a number of mutant p53s, and that its tumor/metastasis suppressor activity may be mediated, at least partially, by this interaction. Here, carcinoma cell lines deficient in both p53 and PG (H1299), or expressing mutant p53 in the absence of PG (SCC9), were transfected with expression constructs encoding WT and different fragments and deletions of p53 and PG, individually or in pairs. Transfectants were characterized for their in vitro growth, migratory and invasive properties and for mapping the interacting domain of p53 and PG. We showed that when coexpressed, p53-WT and PG-WT cooperated to decrease growth, and acted synergistically to significantly reduce cell migration and invasion. The DNA-binding domain of p53 and C-terminal domain of PG mediated p53/PG interaction, and furthermore, the C-terminus of PG played a central role in the inhibition of invasion in association with p53.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Amarjot Padda
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Vahedah Mehrabani
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Lucas Churchill
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| |
Collapse
|
30
|
Zhang Z, Zhang G, Gao Z, Li S, Li Z, Bi J, Liu X, Li Z, Kong C. Comprehensive analysis of differentially expressed genes associated with PLK1 in bladder cancer. BMC Cancer 2017; 17:861. [PMID: 29246203 PMCID: PMC5732388 DOI: 10.1186/s12885-017-3884-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The significance of PLK1 (polo-like kinase 1) has become increasingly essential as both a biomarker and a target for cancer treatment. Here, we aimed to determine the downstream genes of PLK1 and their effects on the carcinogenesis and progression of bladder cancer. METHODS Specific siRNA was utilized to silence the target gene expression. The cell proliferation, invasion and migration of bladder cancer cells by MTT assay, BrdU assay and transwell assay. The differential expression genes were identified using Affymetrix HTA2.0 Array. The KEGG, GO and STRING analysis were used to analyze the signaling pathway and protein-protein interaction. Spearman analysis was used to analyze the correlation between protein and protein, between protein and clincopathologic characteristics. RESULTS PLK1 siRNA hindered the proliferation, invasion and migration of bladder cancer cells, as determined by the MTT, BrdU and transwell assays. A total of 561 differentially expressed genes were identified using an Affymetrix HTA2.0 Array in PLK1 knockdown T24 cells. According to KEGG, GO and STRING analysis, five key genes (BUB1B, CCNB1, CDC25A, FBXO5, NDC80) were determined to be involved in cell proliferation, invasion and migration. PLK1 knockdown decreased BUB1B, CCNB1, CDC25A and NDC80 expressions but increased FBXO5 expression. BUB1B, CCNB1, CDC25A and NDC80 were positively correlated with cell proliferation, invasion, migration and PLK1 expression in tissues, but FBXO5 was negatively correlated with each of those factors. The results showed that the five genes expressions were significantly correlation with the PLK1 expression in normal bladder tissues and bladder cancer tissues. Four of them (BUB1B, CCNB1, CDC25A, NDC80) were obviously positive correlations with pT stage and metastasis. But FBXO5 was negative correlated with pT stage and metastasis. Furthermore, significant correlations were found between CCNB1 or CDC25A or NDC80 and histological grade; between BUB1B or NDC80 and recurrence. CONCLUSION Five downstream genes of PLK1 were associated with the regulation of cell proliferation, invasion and migration in bladder cancer. Furthermore, these genes may play important roles in bladder cancer and become important biomarkers and targets for cancer treatment.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Guojun Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi, Shenyang, Liaoning 110022 China
| | - Zhipeng Gao
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Shiguang Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Zeliang Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Jianbin Bi
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Xiankui Liu
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Zhenhua Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Chuize Kong
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| |
Collapse
|
31
|
Lin P, Xiong DD, Dang YW, Yang H, He Y, Wen DY, Qin XG, Chen G. The anticipating value of PLK1 for diagnosis, progress and prognosis and its prospective mechanism in gastric cancer: a comprehensive investigation based on high-throughput data and immunohistochemical validation. Oncotarget 2017; 8:92497-92521. [PMID: 29190933 PMCID: PMC5696199 DOI: 10.18632/oncotarget.21438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/26/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a multi-functional protein and its aberrant expression is a driver of cancerous transformation and progression. To increase our understanding of the clinical value and potential molecular mechanism of PLK1 in gastric cancer (GC), we performed this comprehensive investigation. A total of 25 datasets and 12 publications were finally incorporated. Additional immunohistochemistry was conducted to validate the expression pattern of PLK1 in GC. The pooled standard mean deviation (SMD) indicated that PLK1 mRNA was up-regulated in GC (SMD=1.21, 95% CI: 0.65-1.77, P< 0.001). Similarly, the pooled odds ratio (OR) revealed that PLK1 protein was overexpressed in GC compared with normal gastric tissue (OR=12.12, 95% CI: 5.41-27.16, P<0.001). The area under the curve (AUC) of the summary receiver operating characteristic (SROC) curve was 0.86. Furthermore, our results demonstrated that GC patients with PLK1 overexpression were significantly associated with unfavorable overall survival (HR =1.54, 95% CI: 1.30–1.83, P<0.001), lymph node metastasis (OR = 1.78, 95% CI: 1.13–2.80, P=0.013) and advanced TNM stage (OR=1.48, 95% CI: 1.02-2.15, P=0.038). Altogether, 100 similar genes were identified by Gene Expression Profiling Interactive Analysis (GEPIA) and further with gene-set enrichment analysis. These genes were related to gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways relevant to the cell cycle. Gene set enrichment analysis (GSEA) indicated that PLK1 is associated with various cancer-related pathways. Collectively, this study suggests that PLK1 overexpression could play vital roles in the carcinogenesis and deterioration of GC via regulating tumor-related pathways.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Xin-Gan Qin
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
32
|
The Emerging Role of Polo-Like Kinase 1 in Epithelial-Mesenchymal Transition and Tumor Metastasis. Cancers (Basel) 2017; 9:cancers9100131. [PMID: 28953239 PMCID: PMC5664070 DOI: 10.3390/cancers9100131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays a key role in the regulation of the cell cycle. PLK1 is overexpressed in a variety of human tumors, and its expression level often correlates with increased cellular proliferation and poor prognosis in cancer patients. It has been suggested that PLK1 controls cancer development through multiple mechanisms that include canonical regulation of mitosis and cytokinesis, modulation of DNA replication, and cell survival. However, emerging evidence suggests novel and previously unanticipated roles for PLK1 during tumor development. In this review, we will summarize the recent advancements in our understanding of the oncogenic functions of PLK1, with a focus on its role in epithelial-mesenchymal transition and tumor invasion. We will further discuss the therapeutic potential of these functions.
Collapse
|
33
|
Rashed HE, Hussein S, Mosaad H, Abdelwahab MM, Abdelhamid MI, Mohamed SY, Mohamed AM, Fayed A. Prognostic significance of the genetic and the immunohistochemical expression of epithelial-mesenchymal-related markers in colon cancer. Cancer Biomark 2017; 20:107-122. [PMID: 28759954 DOI: 10.3233/cbm-170034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hayam E. Rashed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hala Mosaad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mai M. Abdelwahab
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Salem Y. Mohamed
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abdel Motaleb Mohamed
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Alaa Fayed
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
34
|
The clinical and prognostic value of polo-like kinase 1 in lung squamous cell carcinoma patients: immunohistochemical analysis. Biosci Rep 2017; 37:BSR20170852. [PMID: 28724602 PMCID: PMC5554781 DOI: 10.1042/bsr20170852] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/09/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Polo-like kinase 1 (PLK1) has been suggested to serve as an oncogene in most human cancers. The aim of our study is to present more evidence about the clinical and prognostic value of PLK1 in lung squamous cell carcinoma patients. The status of PLK1 was observed in lung adenocarcinoma, lung squamous cell carcinoma, and normal lung tissues through analyzing microarray dataset (GEO accession numbers: GSE1213 and GSE 3627). PLK1 mRNA and protein expressions were detected in lung squamous cell carcinoma and normal lung tissues by using quantitative real-time PCR (qRT-PCR) and immunohistochemistry. In our results, the levels of PLK1 in lung squamous cell carcinoma tissues were higher than that in lung adenocarcinoma tissues. Compared with paired adjacent normal lung tissues, the PLK1 expression was increased in lung squamous cell carcinoma tissues. Furthermore, high expression of PLK1 protein was correlated with differentiated degree, clinical stage, tumor size, lymph node metastasis, and distant metastasis. The univariate and multivariate analyses showed PLK1 protein high expression was an unfavorable prognostic biomarker for lung squamous cell carcinoma patients. In conclusion, high expression of PLK1 is associated with the aggressive progression and poor prognosis in lung squamous cell carcinoma patients.
Collapse
|
35
|
Van den Bossche J, Deben C, Op de Beeck K, Deschoolmeester V, Hermans C, De Pauw I, Jacobs J, Van Schil P, Vermorken JB, Pauwels P, Peeters M, Lardon F, Wouters A. Towards Prognostic Profiling of Non-Small Cell Lung Cancer: New Perspectives on the Relevance of Polo-Like Kinase 1 Expression, the TP53 Mutation Status and Hypoxia. J Cancer 2017. [PMID: 28638459 PMCID: PMC5479250 DOI: 10.7150/jca.18455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background: Currently, prognosis of non-small cell lung cancer (NSCLC) patients is based on clinicopathological factors, including TNM stage. However, there are considerable differences in patient outcome within a similar staging group, even when patients received identical treatments. In order to improve prognostic predictions and to guide treatment options, additional parameters influencing outcome are required. Polo-like kinase 1 (Plk1), a master regulator of mitotic cell division and the DNA damage response, is considered as a new potential biomarker in this research area. While several studies reported Plk1 overexpression in a broad range of human malignancies, inconsistent results were published regarding the clinical significance hereof. A prognostic panel, consisting of Plk1 and additional biomarkers that are related to the Plk1 pathway, might further improve prediction of patient prognosis. Methods: In this study, we evaluated for the first time the prognostic value of Plk1 mRNA and protein expression in combination with the TP53 mutation status (next generation sequencing), induction of apoptotic cell death (immunohistochemistry for cleaved caspase 3) and hypoxia (immunohistochemistry for carbonic anhydrase IX (CA IX)) in 98 NSCLC adenocarcinoma patients. Results: Both Plk1 mRNA and protein expression and CA IX protein levels were upregulated in the majority of tumor samples. Plk1 mRNA and protein expression levels were higher in TP53 mutant samples, suggesting that Plk1 overexpression is, at least partially, the result of loss of functional p53 (<0.05). Interestingly, the outcome of patients with both Plk1 mRNA and CA IX protein overexpression, who also harbored a TP53 mutation, was much worse than that of patients with aberrant expression of only one of the three markers (p=0.001). Conclusion: The combined evaluation of Plk1 mRNA expression, CA IX protein expression and TP53 mutations shows promise as a prognostic panel in NSCLC patients. Moreover, these results pave the way for new combination strategies with Plk1 inhibitors.
Collapse
Affiliation(s)
- Jolien Van den Bossche
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Ken Op de Beeck
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Center of Medical Genetics, University of Antwerp, Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium
| | - Vanessa Deschoolmeester
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Julie Jacobs
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Paul Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
36
|
Yun T, Qin T, Liu Y, Lai L. Identification of acylthiourea derivatives as potent Plk1 PBD inhibitors. Eur J Med Chem 2016; 124:229-236. [PMID: 27592392 DOI: 10.1016/j.ejmech.2016.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 02/04/2023]
Abstract
Thiourea derivatives have drawn much attention for their latent capacities of biological activities. In this study, we designed acylthiourea compounds as polo-like kinase 1 (Plk1) polo-box domain (PBD) inhibitors. A series of acylthiourea derivatives without pan assay interference structure (PAINS) were synthesized. Four compounds with halogen substituents exhibited binding affinities to Plk1 PBD in low micromole range. The most potent compound (3v) showed selectivity over other subtypes of Plk PBDs and inhibited the kinase activity of full-length Plk1.
Collapse
Affiliation(s)
- Taikangxiang Yun
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tan Qin
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
37
|
Plk2 promotes tumor growth and inhibits apoptosis by targeting Fbxw7/Cyclin E in colorectal cancer. Cancer Lett 2016; 380:457-466. [DOI: 10.1016/j.canlet.2016.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/20/2016] [Accepted: 07/10/2016] [Indexed: 12/21/2022]
|
38
|
Kudryavtseva AV, Lipatova AV, Zaretsky AR, Moskalev AA, Fedorova MS, Rasskazova AS, Shibukhova GA, Snezhkina AV, Kaprin AD, Alekseev BY, Dmitriev AA, Krasnov GS. Important molecular genetic markers of colorectal cancer. Oncotarget 2016; 7:53959-53983. [PMID: 27276710 PMCID: PMC5288236 DOI: 10.18632/oncotarget.9796] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/21/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) ranks third in the incidences of cancer morbidity and mortality worldwide. CRC is rather heterogeneous with regard to molecular genetic characteristics and pathogenic pathways. A wide spectrum of biomarkers is used for molecular subtype determination, prognosis, and estimation of sensitivity to different drugs in practice. These biomarkers can include germline and somatic mutations, chromosomal aberrations, genomic abnormalities, gene expression alterations at mRNA or protein level and changes in DNA methylation status. In the present review we discuss the most important and well-studied CRC biomarkers, and their potential clinical significance and current approaches to molecular classification of colorectal tumors.
Collapse
Affiliation(s)
- Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Centre, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrew R. Zaretsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Centre, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | | | - Galina A. Shibukhova
- National Medical Research Radiological Centre, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | | | - Andrey D. Kaprin
- National Medical Research Radiological Centre, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Boris Y. Alekseev
- National Medical Research Radiological Centre, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|
39
|
Zhang X, Yu J, Li M, Zhu H, Sun X, Kong L. The association of HMGB1 expression with clinicopathological significance and prognosis in Asian patients with colorectal carcinoma: a meta-analysis and literature review. Onco Targets Ther 2016; 9:4901-11. [PMID: 27540303 PMCID: PMC4982502 DOI: 10.2147/ott.s105512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background The association of high mobility group box 1 (HMGB1) expression with clinicopathological significance and prognosis in Asian patients with colorectal carcinoma (CRC) remains controversial. The purpose of this study was to conduct a meta-analysis and literature review to identify the role of HMGB1 in the development and prognosis of CRC in Asians. Methods All eligible studies regarding the association between HMGB1 expression in tissue with clinicopathological significance and prognosis in Asian patients with CRC published up to January 2015 were identified by searching PubMed, Web of Science, Chinese National Knowledge Infrastructure, and WanFang database. Analysis of pooled data was performed, while odds ratio (OR) or hazard radio with 95% confidence interval (CI) was calculated and summarized to evaluate the strength of this association in fixed- or random-effects model. Results The expression level of HMGB1 in CRC tissues was much higher than normal colorectal tissues (OR =27.35, 95% CI 9.32–80.26, P<0.0001) and para-tumor colorectal tissues (OR =10.06, 95% CI 4.61–21.95, P<0.0001). There was no relation between the HMGB1 expression and sex, age, clinical T stage, tumor size, and location (colon or rectum cancer). However, a significant relation was detected between the HMGB1 expression and clinical stage (American Joint Committee on Cancer 7), lymph node metastasis, distant metastasis, tumor invasion depth, and differentiation rate (P=0.002, P≤0.0001, P<0.0001, P<0.0001, and P=0.007, respectively). Patients with higher HMGB1 expression had shorter overall survival time, whereas patients with lower level of HMGB1 had better survival (hazard ratio =1.40, 95% CI 0.98–1.82, P<0.0001). Conclusion In this meta-analysis, our results illustrated the significant relationship of HMGB1 protein overexpression in tissues with clinicopathological characteristics and prognosis of CRC. Thus, HMGB1 may be a promising marker in predicting the clinical outcome of patients with CRC. However, more well-designed studies of large sample size are warranted to validate the findings of current study.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, People's Republic of China
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, People's Republic of China
| | - Minghuan Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, People's Republic of China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, People's Republic of China
| | - Xindong Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, People's Republic of China
| | - Li Kong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
40
|
Spindle Assembly Checkpoint as a Potential Target in Colorectal Cancer: Current Status and Future Perspectives. Clin Colorectal Cancer 2016; 16:1-8. [PMID: 27435760 DOI: 10.1016/j.clcc.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC), one of the most common malignancies worldwide, is often diagnosed at an advanced stage, and resistance to chemotherapeutic and existing targeted therapy is a major obstacle to its successful treatment. New targets that offer alternative clinical options are therefore urgently needed. Recently, perturbation of the spindle assembly checkpoint (SAC), the surveillance mechanism that maintains anaphase inhibition until all chromosomes reach the metaphase plate, has been regarded as a promising target to fight cancer cells, either alone or in combination regimens. Consistent with this strategy, many cancers, including CRC, exhibit altered expression of SAC genes. In this article, we review our current knowledge on SAC activity status in CRC, and on current anti-CRC strategies and future therapeutic perspectives on the basis of SAC targeting experiments in vitro and in animal models.
Collapse
|
41
|
Hong H, Yu H, Yuan J, Guo C, Cao H, Li W, Xiao C. MicroRNA-200b Impacts Breast Cancer Cell Migration and Invasion by Regulating Ezrin-Radixin-Moesin. Med Sci Monit 2016; 22:1946-52. [PMID: 27276064 PMCID: PMC4917322 DOI: 10.12659/msm.896551] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ezrin-radixin-moesin (ERM) plays an important role in multiple links of tumors. It also involved in breast cancer invasion and metastasis, and might be a potential biomarker of breast cancer. Another study suggested that ERM expression was regulated directly by miR-200c, and had a critical role in miR-200c suppressing cell migration. This study aimed to investigate the effect of miR-200b on ERM expression in a breast cancer cell line and its influence on invasion and metastasis ability in vitro. MATERIAL AND METHODS Breast cancer cell lines MCF-7 and MDA-MB-231 with different metastatic potentials were selected as a model. MiR-200b overexpression or inhibition was achieved by Lipofectamine™ 2000-mediated miRNA transfection. RT-PCR was used to test miR-200b level, while Western blot was selected to detect ERM protein expression. Wound healing assay and Transwell assay were performed to determine cell migration and invasion ability. RESULTS RT-PCR revealed that miR-200b level in MDA-MB-231 was obviously lower than that in MCF-7, while Western blot analysis showed that ERM expression was significantly higher. MiR-200b inhibition by transfection in MCF-7 markedly decreased miR-200b level, elevated ERM expression, and enhanced cell migration and invasion. MiR-200b overexpression in MDA-MB-231 obviously increased miR-200b level, reduced ERM expression, and weakened cell migration and invasion. CONCLUSIONS MiR-200b participates in breast cancer cell migration and invasion through regulating ERM in MCF-7 and MDA-MB-231.
Collapse
Affiliation(s)
- Hong Hong
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu, China (mainland)
| | - Haizhong Yu
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu, China (mainland)
| | - Jianfen Yuan
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu, China (mainland)
| | - Chunyan Guo
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu, China (mainland)
| | - Hongyan Cao
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu, China (mainland)
| | - Weibing Li
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu, China (mainland)
| | - Chunhong Xiao
- Department of Clinical Laboratory, Nantong Tumor Hospital, Nantong, Jiangsu, China (mainland)
| |
Collapse
|
42
|
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men globally. CRC arises from one or a combination of chromosomal instability, CpG island methylator phenotype, and microsatellite instability. Genetic instability is usually caused by aneuploidy and loss of heterozygosity. Mutations in the tumor suppressor or cell cycle genes may also lead to cellular transformation. Similarly, epigenetic and/or genetic alterations resulting in impaired cellular pathways, such as DNA repair mechanism, may lead to microsatellite instability and mutator phenotype. Non-coding RNAs, more importantly microRNAs and long non-coding RNAs have also been implicated at various CRC stages. Understanding the specific mechanisms of tumorigenesis and the underlying genetic and epigenetic traits is critical in comprehending the disease phenotype. This paper reviews these mechanisms along with the roles of various non-coding RNAs in CRCs.
Collapse
Affiliation(s)
- Kanwal Tariq
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Kulsoom Ghias
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| |
Collapse
|
43
|
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men globally. CRC arises from one or a combination of chromosomal instability, CpG island methylator phenotype, and microsatellite instability. Genetic instability is usually caused by aneuploidy and loss of heterozygosity. Mutations in the tumor suppressor or cell cycle genes may also lead to cellular transformation. Similarly, epigenetic and/or genetic alterations resulting in impaired cellular pathways, such as DNA repair mechanism, may lead to microsatellite instability and mutator phenotype. Non-coding RNAs, more importantly microRNAs and long non-coding RNAs have also been implicated at various CRC stages. Understanding the specific mechanisms of tumorigenesis and the underlying genetic and epigenetic traits is critical in comprehending the disease phenotype. This paper reviews these mechanisms along with the roles of various non-coding RNAs in CRCs.
Collapse
Affiliation(s)
- Kanwal Tariq
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Kulsoom Ghias
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| |
Collapse
|
44
|
Wu J, Ivanov AI, Fisher PB, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. eLife 2016; 5:e10734. [PMID: 27003818 PMCID: PMC4811775 DOI: 10.7554/elife.10734] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 03/03/2016] [Indexed: 12/22/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a key cell cycle regulator implicated in the development of various cancers, including prostate cancer. However, the functions of PLK1 beyond cell cycle regulation remain poorly characterized. Here, we report that PLK1 overexpression in prostate epithelial cells triggers oncogenic transformation. It also results in dramatic transcriptional reprogramming of the cells, leading to epithelial-to-mesenchymal transition (EMT) and stimulation of cell migration and invasion. Consistently, PLK1 downregulation in metastatic prostate cancer cells enhances epithelial characteristics and inhibits cell motility. The signaling mechanisms underlying the observed cellular effects of PLK1 involve direct PLK1-dependent phosphorylation of CRAF with subsequent stimulation of the MEK1/2-ERK1/2-Fra1-ZEB1/2 signaling pathway. Our findings highlight novel non-canonical functions of PLK1 as a key regulator of EMT and cell motility in normal prostate epithelium and prostate cancer. This study also uncovers a previously unanticipated role of PLK1 as a potent activator of MAPK signaling.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Zheng Fu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, United States
| |
Collapse
|
45
|
Samadder P, Aithal R, Belan O, Krejci L. Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol Ther 2016; 161:111-131. [PMID: 26899499 DOI: 10.1016/j.pharmthera.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy.
Collapse
Affiliation(s)
- Pounami Samadder
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic
| | - Rakesh Aithal
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Belan
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
46
|
Tut TG, Lim SHS, Dissanayake IU, Descallar J, Chua W, Ng W, de Souza P, Shin JS, Lee CS. Upregulated Polo-Like Kinase 1 Expression Correlates with Inferior Survival Outcomes in Rectal Cancer. PLoS One 2015; 10:e0129313. [PMID: 26047016 PMCID: PMC4457812 DOI: 10.1371/journal.pone.0129313] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/08/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human polo-like kinase 1 (PLK1) expression has been associated with inferior outcomes in colorectal cancer. Our aims were to analyse PLK1 in rectal cancer, and its association with clinicopathological variables, overall survival as well as tumour regression to neoadjuvant treatment. METHODS PLK1 expression was quantified with immunohistochemistry in the centre and periphery (invasive front) of rectal cancers, as well as in the involved regional lymph nodes from 286 patients. Scores were based on staining intensity and percentage of positive cells, multiplied to give weighted scores from 1-12, dichotomised into low (0-5) or high (6-12). RESULTS PLK1 scores in the tumour periphery were significantly different to adjacent normal mucosa. Survival analysis revealed that low PLK1 score in the tumour periphery had a hazard ratio of death of 0.59 in multivariate analysis. Other predictors of survival included age, tumour depth, metastatic status, vascular and perineural invasion and adjuvant chemotherapy. There was no statistically significant correlation between PLK1 score and histological tumour regression in the neoadjuvant cohort. CONCLUSION Low PLK1 score was an independent predictor of superior overall survival, adjusting for multiple clinicopathological variables including treatment.
Collapse
Affiliation(s)
- T. G. Tut
- School of Medicine, University of Western Sydney, Liverpool, New South Wales 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | - S. H. S. Lim
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales 2170, Australia
- University of New South Wales, Kensington, New South Wales 2052, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, New South Wales 2170, Australia
| | - I. U. Dissanayake
- School of Medicine, University of Western Sydney, Liverpool, New South Wales 2170, Australia
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, New South Wales 2170, Australia
| | - J. Descallar
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales 2170, Australia
- University of New South Wales, Kensington, New South Wales 2052, Australia
| | - W. Chua
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, New South Wales 2170, Australia
| | - W. Ng
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, New South Wales 2170, Australia
| | - P. de Souza
- School of Medicine, University of Western Sydney, Liverpool, New South Wales 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales 2170, Australia
- University of New South Wales, Kensington, New South Wales 2052, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, New South Wales 2170, Australia
| | - J-S. Shin
- School of Medicine, University of Western Sydney, Liverpool, New South Wales 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales 2170, Australia
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, New South Wales 2170, Australia
| | - C. S. Lee
- School of Medicine, University of Western Sydney, Liverpool, New South Wales 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales 2170, Australia
- University of New South Wales, Kensington, New South Wales 2052, Australia
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, New South Wales 2170, Australia
- Bosch Institute, University of Sydney, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
47
|
Wei Z, Han G, Bai X. Effect of Proliferator-Activated Receptor-γ Pro12Ala Polymorphism on Colorectal Cancer Risk: A Meta-Analysis. Med Sci Monit 2015; 21:1611-6. [PMID: 26049557 PMCID: PMC4463773 DOI: 10.12659/msm.892849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background The association between peroxisome proliferators-activated receptor γ (PPARγ) Pro12Ala polymorphism and colorectal cancer (CRC) risk is still controversial. A meta-analysis was performed. Material/Methods We conducted a literature search using PubMed, EMBASE, and Cochran databases. The pooled odds ratio (OR) with 95% confidence intervals (CIs) were calculated. Fixed-effects and random-effects models were used. Dominant model, recessive model, and additive model were used in this meta-analysis. Results Fifteen studies including 13575 cases and 17085 controls were included in our meta-analysis. Result of this meta-analysis found that PPARγ Pro12Ala polymorphism was significantly associated with a reduced risk of CRC (OR=0.90; 95% CI 0.83–0.98; P=0.01). No significant association was found between PPARγ Pro12Ala polymorphism and CRC risk in Asians (OR=0.80; 95% CI 0.60–1.09; P=0.15). However, PPARγ Pro12Ala polymorphism was significantly associated with a reduced risk of CRC in Caucasians (OR=0.91; 95% CI 0.83–0.99; P=0.03). When stratified analysis was performed by CRC site, no positive association was found between PPARγ Pro12Ala polymorphism and rectal cancer (OR=0.95; 95% CI 0.74–1.22; P=0.71). However, a reduced risk of colon cancer was observed (OR=0.85; 95% CI 0.76–0.94; P=0.002). Conclusions In summary, this study suggests that PPARγ Pro12Ala polymorphism was a protective factor of CRC.
Collapse
Affiliation(s)
- Zhijiang Wei
- 1st Department of Tumor Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Guoda Han
- 1st Department of Tumor Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, Chile
| | - Xiyong Bai
- 1st Department of Tumor Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, Chile
| |
Collapse
|
48
|
Awada A, Dumez H, Aftimos PG, Costermans J, Bartholomeus S, Forceville K, Berghmans T, Meeus MA, Cescutti J, Munzert G, Pilz K, Liu D, Schöffski P. Phase I trial of volasertib, a Polo-like kinase inhibitor, plus platinum agents in solid tumors: safety, pharmacokinetics and activity. Invest New Drugs 2015; 33:611-20. [PMID: 25794535 PMCID: PMC4435638 DOI: 10.1007/s10637-015-0223-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/22/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND This trial evaluated the maximum tolerated dose (MTD), safety, pharmacokinetics, and activity of volasertib, a selective Polo-like kinase 1 inhibitor that induces mitotic arrest and apoptosis, combined with cisplatin or carboplatin in patients with advanced/metastatic solid tumors (NCT00969761; 1230.6). METHODS Sequential patient cohorts (3 + 3 dose-escalation design) received a single infusion of volasertib (100-350 mg) with cisplatin (60-100 mg/m(2)) or carboplatin (area under the concentration versus time curve [AUC]4-AUC6) on day 1 every 3 weeks for up to six cycles. Sixty-one patients received volasertib/cisplatin (n = 30) or volasertib/carboplatin (n = 31) for a median of 3.5 (range, 1-6) and 2.0 (range, 1-6) treatment cycles, respectively. RESULTS The most common cycle 1 dose-limiting toxicities (DLTs) were thrombocytopenia, neutropenia and fatigue. MTDs (based on cycle 1 DLTs) were determined to be volasertib 300 mg plus cisplatin 100 mg/m(2) and volasertib 300 mg plus carboplatin AUC6. Co-administration did not affect the pharmacokinetics of each drug. Partial responses were observed in two patients in each arm. Stable disease was achieved in 11 and six patients treated with volasertib/cisplatin and volasertib/carboplatin, respectively. CONCLUSIONS Volasertib plus cisplatin or carboplatin at full single-agent doses was generally manageable and demonstrated activity in heavily pretreated patients with advanced solid tumors.
Collapse
Affiliation(s)
- Ahmad Awada
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo 121, B-1000, Brussels, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jabłkowski M, Szemraj M, Oszajca K, Janiszewska G, Bartkowiak J, Szemraj J. New type of BACE1 siRNA delivery to cells. Med Sci Monit 2014; 20:2598-606. [PMID: 25491230 PMCID: PMC4266366 DOI: 10.12659/msm.891219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Small interfering RNA (siRNA) gene therapy is a new molecular approach in the search for an efficient therapy for Alzheimer disease (AD), based on the principle of RNA interference. Reducing BACE activity can have great therapeutic potential for the treatment of AD. In this study, receptor-mediated delivery was used to deliver opioid peptide-conjugated BACE 1 to INR-32 human neuroblastoma cells. MATERIAL AND METHODS An INR-32 human neuroblastoma cell line was stably transfected to express the APP cDNA coding fragment containing the predicted sites for cleavage by α, β, or γ-secretase. This was then treated with BACE 1 siRNA to silence BACE gene expression. BACE gene transcription and translation was determined using BACE-1 siRNA cross-linked with opioid peptide, together with RT-PCR, Western blot analysis, and ELISA. RESULTS Receptor-mediated delivery was used to introduce BACE1 siRNA to the APP - INR 32 human neuroblastoma cells. Decreased BACE mRNA and protein expression were observed after the cells were transfected with BACE1 siRNA. CONCLUSIONS Delivery of BACE1 siRNA appears to specifically reduce the cleavage of APP by inhibiting BACE1 activity.
Collapse
Affiliation(s)
- Maciej Jabłkowski
- Department of Infectious and Liver Diseases, Medical University of Łódź, Łódź, Poland
| | - Maciej Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | - Katarzyna Oszajca
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | - Grażyna Janiszewska
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | - Jacek Bartkowiak
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
50
|
Süren D, Yıldırım M, Kaya V, Alikanoğlu AS, Bülbüller N, Yıldız M, Sezer C. Loss of tight junction proteins (Claudin 1, 4, and 7) correlates with aggressive behavior in colorectal carcinoma. Med Sci Monit 2014; 20:1255-62. [PMID: 25038829 PMCID: PMC4113573 DOI: 10.12659/msm.890598] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/04/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Tight junction proteins in the cell organize paracellular permeability and they play a critical role in apical cell-to-cell adhesion and epithelial polarity. Claudins are major integral membrane proteins of tight junctions, especially Claudin 1, 4, and 7, which are known as the impermeability Claudins. In this study, we investigated the importance of loss of Claudin 1, 4, and 7 expression, and their relation to tumor progression in colorectal cancer patients. MATERIAL/METHODS Loss of Claudin 1, 4, and 7 expression was examined by immunohistochemical method in 70 patients diagnosed with colorectal cancer. Cases with loss of Claudin expression in <1/3 of tumor cells were classified as mild loss, whereas cases with loss of Claudin expression ³1/3 of tumor cells were classified as moderate-to-marked loss in order to evaluate the relation between loss of Claudin 1, 4, and 7 expression and clinicopathologic data. RESULTS The severe suppression of Claudin 1, 4, and 7 expression was found to be significantly related to the depth of tumor invasion, positive regional lymph nodes, histological grade, lymphovascular invasion, perineural invasion, and lymphocytic response. Additionally, severity of loss in Claudin 4 expression was found to have a relation with distant metastasis. CONCLUSIONS Claudin 1, 4, and 7 are important building blocks of paracellular adhesion molecules. Their decreased expression in colorectal cancer seems to have critical effects on cell proliferation, motility, invasion, and immune response against the tumor.
Collapse
Affiliation(s)
- Dinç Süren
- Department of Pathology, Antalya Education and Research Hospital, Antalya, Turkey
| | - Mustafa Yıldırım
- Department of Medical Oncology, Ministry of Health Batman Regional Government Hospital, Batman, Turkey
| | - Vildan Kaya
- Department of Radiation Oncology, Süleyman Demirel University, Isparta, Turkey
| | | | - Nurullah Bülbüller
- Department of General Surgery, Antalya Education and Research Hospital, Antalya, Turkey
| | - Mustafa Yıldız
- Department of Medical Oncology, Antalya Education and Research Hospital, Antalya, Turkey
| | - Cem Sezer
- Department of Pathology, Antalya Education and Research Hospital, Antalya, Turkey
| |
Collapse
|