1
|
Maljaars L, Gudde A, Oosthuysen A, Roovers JP, Guler Z. The Regenerative Capacity of Tissue-Engineered Amniotic Membranes. ACS APPLIED BIO MATERIALS 2024; 7:1441-1448. [PMID: 38391263 PMCID: PMC10951947 DOI: 10.1021/acsabm.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Scaffolds can be introduced as a source of tissue in reconstructive surgery and can help to improve wound healing. Amniotic membranes (AMs) as scaffolds for tissue engineering have emerged as promising biomaterials for surgical reconstruction due to their regenerative capacity, biocompatibility, gradual degradability, and availability. They also promote fetal-like scarless healing and provide a bioactive matrix that stimulates cell adhesion, migration, and proliferation. The aim of this study was to create a tissue-engineered AM-based implant for the repair of vesicovaginal fistula (VVF), a defect between the bladder and vagina caused by prolonged obstructed labor. Layers of AMs (with or without cross-linking) and electrospun poly-4-hydroxybutyrate (P4HB) (a synthetic, degradable polymer) scaffold were joined together by fibrin glue to produce a multilayer scaffold. Human vaginal fibroblasts were seeded on the different constructs and cultured for 28 days. Cell proliferation, cell morphology, collagen deposition, and metabolism measured by matrix metalloproteinase (MMP) activity were evaluated. Vaginal fibroblasts proliferated and were metabolically active on the different constructs, producing a distributed layer of collagen and proMMP-2. Cell proliferation and the amount of produced collagen were similar across different groups, indicating that the different AM-based constructs support vaginal fibroblast function. Cell morphology and collagen images showed slightly better alignment and organization on the un-cross-linked constructs compared to the cross-linked constructs. It was concluded that the regenerative capacity of AM does not seem to be affected by mechanical reinforcement with cross-linking or the addition of P4HB and fibrin glue. An AM-based implant for surgical repair of internal organs requiring load-bearing functionality can be directly translated to other types of surgical reconstruction of internal organs.
Collapse
Affiliation(s)
- Lennart Maljaars
- Department
of Obstetrics and Gynecology, Amsterdam
UMC location University of Amsterdam, Meibergdreef 9, 1105
AZ Amsterdam, The
Netherlands
- Amsterdam
Reproduction and Development research institute, Meibergdreef 9, 1105
AZ Amsterdam, The
Netherlands
| | - Aksel Gudde
- Department
of Obstetrics and Gynecology, Amsterdam
UMC location University of Amsterdam, Meibergdreef 9, 1105
AZ Amsterdam, The
Netherlands
- Amsterdam
Reproduction and Development research institute, Meibergdreef 9, 1105
AZ Amsterdam, The
Netherlands
| | - Anel Oosthuysen
- Cardiovascular
Research Unit, University of Cape Town, Anzio Road, Observatory, 7925 Cape Town, South Africa
| | - Jan-Paul Roovers
- Department
of Obstetrics and Gynecology, Amsterdam
UMC location University of Amsterdam, Meibergdreef 9, 1105
AZ Amsterdam, The
Netherlands
- Amsterdam
Reproduction and Development research institute, Meibergdreef 9, 1105
AZ Amsterdam, The
Netherlands
| | - Zeliha Guler
- Department
of Obstetrics and Gynecology, Amsterdam
UMC location University of Amsterdam, Meibergdreef 9, 1105
AZ Amsterdam, The
Netherlands
- Amsterdam
Reproduction and Development research institute, Meibergdreef 9, 1105
AZ Amsterdam, The
Netherlands
| |
Collapse
|
2
|
Jin Y, Zhao W, Yang M, Fang W, Gao G, Wang Y, Fu Q. Cell-Based Therapy for Urethral Regeneration: A Narrative Review and Future Perspectives. Biomedicines 2023; 11:2366. [PMID: 37760808 PMCID: PMC10525510 DOI: 10.3390/biomedicines11092366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Urethral stricture is a common urological disease that seriously affects quality of life. Urethroplasty with grafts is the primary treatment, but the autografts used in clinical practice have unavoidable disadvantages, which have contributed to the development of urethral tissue engineering. Using various types of seed cells in combination with biomaterials to construct a tissue-engineered urethra provides a new treatment method to repair long-segment urethral strictures. To date, various cell types have been explored and applied in the field of urethral regeneration. However, no optimal strategy for the source, selection, and application conditions of the cells is available. This review systematically summarizes the use of various cell types in urethral regeneration and their characteristics in recent years and discusses possible future directions of cell-based therapies.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 27157, USA
| | - Ming Yang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| |
Collapse
|
3
|
Maljaars LP, Bendaoud S, Kastelein AW, Guler Z, Hooijmans CR, Roovers JPWR. Application of amniotic membranes in reconstructive surgery of internal organs-A systematic review and meta-analysis. J Tissue Eng Regen Med 2022; 16:1069-1090. [PMID: 36333859 PMCID: PMC10099938 DOI: 10.1002/term.3357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Amniotic membrane (AM) has great potential as a scaffold for tissue regeneration in reconstructive surgery. To date, no systematic review of the literature has been performed for the applications of AM in wound closure of internal organs. Therefore, in this systematic review and meta-analysis, we summarize the literature on the safety and efficacy of AM for the closure of internal organs. A systematic search was performed in MEDLINE-PubMed database and OVID Embase to retrieve human and controlled animal studies on wound closure of internal organs. The Cochrane Risk of Bias tool for randomized clinical trials and the SYRCLE risk of bias tool for animal studies were used. Meta-analyses (MAs) were conducted for controlled animal studies to assess efficacy of closure, mortality and complications in subjects who underwent surgical wound closure in internal organs with the application of AM. Sixty references containing 26 human experiments and 36 animal experiments were included. The MAs of the controlled animal studies showed comparable results with regard to closure, mortality and complications, and suggested improved mechanical strength and lower inflammation scores after AM application when compared to standard surgical closure techniques. This systematic review and MAs demonstrate that the application of AM to promote wound healing of internal organs appears to be safe, efficacious, and feasible.
Collapse
Affiliation(s)
- Lennart P Maljaars
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Sohayla Bendaoud
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Arnoud W Kastelein
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Zeliha Guler
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan-Paul W R Roovers
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Xuan Z, Zachar V, Pennisi CP. Sources, Selection, and Microenvironmental Preconditioning of Cells for Urethral Tissue Engineering. Int J Mol Sci 2022; 23:14074. [PMID: 36430557 PMCID: PMC9697333 DOI: 10.3390/ijms232214074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Urethral stricture is a common urinary tract disorder in men that can be caused by iatrogenic causes, trauma, inflammation, or infection and often requires reconstructive surgery. The current therapeutic approach for complex urethral strictures usually involves reconstruction with autologous tissue from the oral mucosa. With the goal of overcoming the lack of sufficient autologous tissue and donor site morbidity, research over the past two decades has focused on cell-based tissue-engineered substitutes. While the main focus has been on autologous cells from the penile tissue, bladder, and oral cavity, stem cells from sources such as adipose tissue and urine are competing candidates for future urethral regeneration due to their ease of collection, high proliferative capacity, maturation potential, and paracrine function. This review addresses the sources, advantages, and limitations of cells for tissue engineering in the urethra and discusses recent approaches to improve cell survival, growth, and differentiation by mimicking the mechanical and biophysical properties of the extracellular environment.
Collapse
Affiliation(s)
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
5
|
Tan Q, Le H, Tang C, Zhang M, Yang W, Hong Y, Wang X. Tailor-made natural and synthetic grafts for precise urethral reconstruction. J Nanobiotechnology 2022; 20:392. [PMID: 36045428 PMCID: PMC9429763 DOI: 10.1186/s12951-022-01599-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Injuries to the urethra can be caused by malformations, trauma, inflammation, or carcinoma, and reconstruction of the injured urethra is still a significant challenge in clinical urology. Implanting grafts for urethroplasty and end-to-end anastomosis are typical clinical interventions for urethral injury. However, complications and high recurrence rates remain unsatisfactory. To address this, urethral tissue engineering provides a promising modality for urethral repair. Additionally, developing tailor-made biomimetic natural and synthetic grafts is of great significance for urethral reconstruction. In this work, tailor-made biomimetic natural and synthetic grafts are divided into scaffold-free and scaffolded grafts according to their structures, and the influence of different graft structures on urethral reconstruction is discussed. In addition, future development and potential clinical application strategies of future urethral reconstruction grafts are predicted.
Collapse
Affiliation(s)
- Qinyuan Tan
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, People's Republic Of China
| | - Chao Tang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Ming Zhang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Weijie Yang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Yazhao Hong
- Department of Pediatric Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Street, Nanjing, 210029, People's Republic Of China.
| | - Xiaoqing Wang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China.
| |
Collapse
|
6
|
Abbas TO, Elawad A, Pullattayil S. AK, Pennisi CP. Quality of Reporting in Preclinical Urethral Tissue Engineering Studies: A Systematic Review to Assess Adherence to the ARRIVE Guidelines. Animals (Basel) 2021; 11:2456. [PMID: 34438913 PMCID: PMC8388767 DOI: 10.3390/ani11082456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Preclinical research within the area of urethral tissue engineering has not yet been successfully translated into an efficient therapeutic option for patients. This gap could be attributed, in part, to inadequate design and reporting of the studies employing laboratory animals. In this study, a systematic review was conducted to investigate the quality of reporting in preclinical studies utilizing tissue engineering approaches for urethral repair. The scope was on studies performed in rabbits, published between January 2014 and March 2020. Quality assessment of the data was conducted according to the Animal Research: Reporting of in Vivo Experiments (ARRIVE) guidelines by the scoring of a 38-item checklist in different categories. A total of 28 articles that fulfilled the eligibility criteria were included in the study. The range of ARRIVE score was from 0 to 100, taking into consideration having reported the item in question or not. The mean checklist score was 53%. The items that attained the highest scores included the number of animals utilized, the size of control and experimental groups, and the definition of experimental outcomes. The least frequently reported items included the data regarding the experimental procedure, housing and husbandry, determination and justification of the number of animals, and reporting of adverse events. Surprisingly, full disclosure about ethical guidelines and animal protocol approval was missing in 54% of the studies. No paper stated the sample size estimation. Overall, our study found that a large number of studies display inadequate reporting of fundamental information and that the quality of reporting improved marginally over the study period. We encourage a comprehensive implementation of the ARRIVE guidelines in animal studies exploring tissue engineering for urethral repair, not only to facilitate effective translation of preclinical research findings into clinical therapies, but also to ensure compliance with ethical principles and to minimize unnecessary animal studies.
Collapse
Affiliation(s)
- Tariq O. Abbas
- Regenerative Medicine Research Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Pediatric Urology Section, Sidra Medicine, Doha 26999, Qatar;
- College of Medicine, Qatar University, Doha 2713, Qatar
- Weill Cornell Medicine Qatar, Doha 24144, Qatar
| | - Abubakr Elawad
- Pediatric Urology Section, Sidra Medicine, Doha 26999, Qatar;
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Research Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| |
Collapse
|
7
|
Jerman UD, Veranič P, Cirman T, Kreft ME. Human Amniotic Membrane Enriched with Urinary Bladder Fibroblasts Promote the Re-Epithelization of Urothelial Injury. Cell Transplant 2021; 29:963689720946668. [PMID: 32841052 PMCID: PMC7563929 DOI: 10.1177/0963689720946668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Culturing cells in three-dimensional systems that include extracellular matrix
components and different cell types mimic the native tissue and as such provide
much more representative results than conventional two-dimensional cell
cultures. In order to develop biomimetic bladder tissue in vitro, we used human
amniotic membrane (AM) extracellular matrix as a scaffold for bladder
fibroblasts (BFs) and urothelial cells. Our aims were to evaluate the
integration of BFs into the AM stroma, to assess the differentiation of the
urothelium on BFs-enriched AM scaffolds, and to evaluate the AM as a urothelial
wound dressing. First, to achieve the optimal integration of BFs into AM stroma,
different intact and de- epithelialized AM (dAM) scaffolds were tested. BFs
secreted matrix metalloproteinase (MMP)-1 and MMP-2 and integrated into the
stroma of all types of AM scaffolds. Second, to establish urothelial tissue
equivalent, urothelial cells were seeded on dAM scaffolds enriched with BFs. The
BFs in the stroma of the AM scaffolds promoted (1) the proliferation of
urothelial cells, (2) the attachment of urothelial cells on AM basal lamina with
hemidesmosomes, and (3) development of multilayered urothelium with expressed
uroplakins and well-developed cell junctions. Third, we established an ex vivo
model of the injured bladder to evaluate the dAM as a wound dressing for
urothelial full-thickness injury. dAM acted as a promising wound dressing since
it enabled rapid re-epithelization of urothelial injury and integrated into the
bladder tissue. Herein, the developed urothelial tissue equivalents enable
further mechanistic studies of bladder epithelial–mesenchymal interactions, and
they could be applied as biomimetic models for preclinical testing of newly
developed drugs. Moreover, we could hypothesize that AM may be suitable as a
dressing of the wound that occurs during transurethral resection of bladder
tumor, since it could diminish the possibility of tumor recurrence, by promoting
the rapid re-epithelization of the urothelium.
Collapse
Affiliation(s)
- Urška Dragin Jerman
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Cirman
- 86684Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Applications of Human Amniotic Membrane for Tissue Engineering. MEMBRANES 2021; 11:membranes11060387. [PMID: 34070582 PMCID: PMC8227127 DOI: 10.3390/membranes11060387] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
An important component of tissue engineering (TE) is the supporting matrix upon which cells and tissues grow, also known as the scaffold. Scaffolds must easily integrate with host tissue and provide an excellent environment for cell growth and differentiation. Human amniotic membrane (hAM) is considered as a surgical waste without ethical issue, so it is a highly abundant, cost-effective, and readily available biomaterial. It has biocompatibility, low immunogenicity, adequate mechanical properties (permeability, stability, elasticity, flexibility, resorbability), and good cell adhesion. It exerts anti-inflammatory, antifibrotic, and antimutagenic properties and pain-relieving effects. It is also a source of growth factors, cytokines, and hAM cells with stem cell properties. This important source for scaffolding material has been widely studied and used in various areas of tissue repair: corneal repair, chronic wound treatment, genital reconstruction, tendon repair, microvascular reconstruction, nerve repair, and intraoral reconstruction. Depending on the targeted application, hAM has been used as a simple scaffold or seeded with various types of cells that are able to grow and differentiate. Thus, this natural biomaterial offers a wide range of applications in TE applications. Here, we review hAM properties as a biocompatible and degradable scaffold. Its use strategies (i.e., alone or combined with cells, cell seeding) and its degradation rate are also presented.
Collapse
|
9
|
Schwab RHM, Goonetilleke M, Zhu D, Kusuma GD, Wallace EM, Sievert W, Lim R. Amnion Epithelial Cells — a Therapeutic Source. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Ramuta TŽ, Jerman UD, Tratnjek L, Janev A, Magatti M, Vertua E, Bonassi Signoroni P, Silini AR, Parolini O, Kreft ME. The Cells and Extracellular Matrix of Human Amniotic Membrane Hinder the Growth and Invasive Potential of Bladder Urothelial Cancer Cells. Front Bioeng Biotechnol 2020; 8:554530. [PMID: 33240862 PMCID: PMC7680964 DOI: 10.3389/fbioe.2020.554530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
Bladder cancer is one of the most common cancers among men in industrialized countries and on the global level incidence and mortality rates are increasing. In spite of progress in surgical treatment and chemotherapy, the prognosis remains poor for patients with muscle-invasive bladder cancer. Therefore, there is a great need for the development of novel therapeutic approaches. The human amniotic membrane (hAM) is a multi-layered membrane that comprises the innermost part of the placenta. It has unique properties that make it suitable for clinical use, such as the ability to promote wound healing and decrease scarring, low immunogenicity, and immunomodulatory, antimicrobial and anticancer properties. This study aimed to investigate the effect of (i) hAM-derived cells and (ii) hAM scaffolds on the growth dynamics, proliferation rate, and invasive potential of muscle-invasive bladder cancer T24 cells. Our results show that 24 and 48 h of co-culturing T24 cells with hAM-derived cells (at 1:1 and 1:4 ratios) diminished the proliferation rate of T24 cells. Furthermore, when seeded on hAM scaffolds, namely (1) epithelium of hAM (e-hAM), (2) basal lamina of hAM (denuded; d-hAM), and (3) stroma of hAM (s-hAM), the growth dynamic of T24 cells was altered and proliferation was reduced, even more so by the e-hAM scaffolds. Importantly, despite their muscle-invasive potential, the T24 cells did not disrupt the basal lamina of hAM scaffolds. Furthermore, we observed a decrease in the expression of epithelial-mesenchymal transition (EMT) markers N-cadherin, Snail and Slug in T24 cells grown on hAM scaffolds and individual T24 cells even expressed epithelial markers E-cadherin and occludin. Our study brings new knowledge on basic mechanisms of hAM affecting bladder carcinogenesis and the results serve as a good foundation for further research into the potential of hAM-derived cells and the hAM extracellular matrix to serve as a novel bladder cancer treatment.
Collapse
Affiliation(s)
- Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elsa Vertua
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Zamani M, Shakhssalim N, Ramakrishna S, Naji M. Electrospinning: Application and Prospects for Urologic Tissue Engineering. Front Bioeng Biotechnol 2020; 8:579925. [PMID: 33117785 PMCID: PMC7576678 DOI: 10.3389/fbioe.2020.579925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells' function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area.
Collapse
Affiliation(s)
- Masoud Zamani
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY, United States
| | - Nasser Shakhssalim
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Mackiewicz AG, Klekiel T, Kurowiak J, Piasecki T, Bedzinski R. Determination of Stent Load Conditions in New Zealand White Rabbit Urethra. J Funct Biomater 2020; 11:jfb11040070. [PMID: 32992694 PMCID: PMC7712058 DOI: 10.3390/jfb11040070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Frequency of urethral stenosis makes it necessary to develop new innovative methods of treating this disease. This pathology most often occurs in men and manifests itself in painful urination, reduced urine flow, or total urinary retention. This is a condition that requires immediate medical intervention. Methods: Experimental tests were carried out on a rabbit in order to determine the changes of pressure in the urethra system and to estimate the velocity of urine flow. For this purpose, a measuring system was proposed to measure the pressure of a fluid-filled urethra. A fluoroscope was used to observe the deformability of the bladder and urethra canal. Results: Based on these tests, the range of changes in the urethra tube diameter, the pressures inside the system, and the flow velocity during micturition were determined. Conclusions: The presented studies allowed determining the behavior of the urethra under the conditions of urinary filling. The fluid-filled bladder and urethra increased their dimensions significantly. Such large changes require that the stents used for the treatment of urethral stenosis should not have a fixed diameter but should adapt to changing urethral dimensions.
Collapse
Affiliation(s)
- Agnieszka G. Mackiewicz
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
- Correspondence:
| | - Tomasz Klekiel
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
| | - Jagoda Kurowiak
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
| | - Tomasz Piasecki
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25 Street, 50-375 Wroclaw, Poland;
| | - Romuald Bedzinski
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
| |
Collapse
|
13
|
Ramuta TŽ, Starčič Erjavec M, Kreft ME. Amniotic Membrane Preparation Crucially Affects Its Broad-Spectrum Activity Against Uropathogenic Bacteria. Front Microbiol 2020; 11:469. [PMID: 32265889 PMCID: PMC7107013 DOI: 10.3389/fmicb.2020.00469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
Urinary tract infections are among the most common bacterial infections in humans. Moreover, they are highly recurrent and increasingly often resistant to antibiotics. The antimicrobial properties of the amniotic membrane (AM), the innermost layer of fetal membranes, have been briefly reported in the literature, however, the results of published studies are often inconsistent and unclear; moreover, its effect on uropathogenic bacteria has not yet been investigated. Further, there is no data in the literature about the effect of AM preparation and storage on its antimicrobial properties. To examine the impact of several preparation procedures on the antimicrobial properties of AM, we prepared patches and homogenates of fresh (fAM) and cryopreserved (cAM) human AM and tested them on 14 selected Gram-positive and Gram-negative uropathogenic bacteria. By employing novel antimicrobial efficiency assays we showed that fAM and cAM homogenates have broad-spectrum antimicrobial activity against all here tested uropathogenic bacteria, except for Serratia marcescens. Moreover, they had a potent effect also on the multiple-resistant clinical strains of uropathogenic Escherichia coli. Interestingly, the patches of fAM and cAM had no antimicrobial effect on any of the tested strains. We therefore prepared and stored AM patches according to the standard procedure for clinical use in ophthalmology, which includes the cryopreservation of antibiotic-treated AM, and performed antimicrobial efficiency assays. Our findings suggest that the ultrastructure of AM patches could enable the retention of added antibiotics. In addition, we also prepared gentamicin-resistant uropathogenic E. coli strains, which confirmed that the antimicrobial effect of antibiotic-treated AM patches can be attributed to the antibiotic alone. To summarize, here we describe novel protocols for preparation and storage of AM to ensure the preservation of its antimicrobial factors. Moreover, we describe the mechanism of AM retention of antibiotics, based on which the AM could potentially be used as a drug delivery vehicle in future clinically applicable approaches.
Collapse
Affiliation(s)
- Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
The current state of tissue engineering in the management of hypospadias. Nat Rev Urol 2020; 17:162-175. [DOI: 10.1038/s41585-020-0281-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
|
15
|
Pederzoli F, Joice G, Salonia A, Bivalacqua TJ, Sopko NA. Regenerative and engineered options for urethroplasty. Nat Rev Urol 2019; 16:453-464. [PMID: 31171866 DOI: 10.1038/s41585-019-0198-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
Surgical correction of urethral strictures by substitution urethroplasty - the use of grafts or flaps to correct the urethral narrowing - remains one of the most challenging procedures in urology and is frequently associated with complications, restenosis and poor quality of life for the affected individual. Tissue engineering using different cell types and tissue scaffolds offers a promising alternative for tissue repair and replacement. The past 30 years of tissue engineering has resulted in the development of several therapies that are now in use in the clinic, especially in treating cutaneous, bone and cartilage defects. Advances in tissue engineering for urethral replacement have resulted in several clinical applications that have shown promise but have not yet become the standard of care.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gregory Joice
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Trinity J Bivalacqua
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nikolai A Sopko
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
16
|
Placental membrane grafts for urethral replacement in a rabbit model: a pilot study. World J Urol 2019; 38:2133-2138. [PMID: 31201521 DOI: 10.1007/s00345-019-02836-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Several graft materials are available for use in the treatment of urethral stricture disease. Placental membrane is being used in a variety of settings as a graft in wound healing and tissue repair. We aim to evaluate the effect of implanting decellularized human placental membrane into rabbit urethras. METHODS Dorsal onlay graft urethroplasty using prepared human placental membrane was performed in 10 New Zealand White rabbits (Oryctolagus cuniculus). After 3 months, the rabbits underwent cystourethroscopy to evaluate urethral patency. The rabbits were then euthanized and the urethras examined for pathological findings. RESULTS All urethroplasties were performed without complication. There were no observed episodes of urinary retention, infection, or renal failure. Urethral patency was achieved in all rabbits 3 months postoperatively. Urothelial replacement of the placental membrane graft was observed in all rabbits without malignant transformation. CONCLUSION Dorsal onlay urethroplasty using decellularized human placental membrane can safely be performed in a rabbit model. This pilot study demonstrated urothelial replacement of human placental membrane in the rabbit urethra without stricture formation. Placental membrane is a promising biomaterial for urethral reconstruction.
Collapse
|
17
|
Rashidbenam Z, Jasman MH, Hafez P, Tan GH, Goh EH, Fam XI, Ho CCK, Zainuddin ZM, Rajan R, Nor FM, Shuhaili MA, Kosai NR, Imran FH, Ng MH. Overview of Urethral Reconstruction by Tissue Engineering: Current Strategies, Clinical Status and Future Direction. Tissue Eng Regen Med 2019; 16:365-384. [PMID: 31413941 DOI: 10.1007/s13770-019-00193-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Urinary tract is subjected to a variety of disorders such as urethral stricture, which often develops as a result of scarring process. Urethral stricture can be treated by urethral dilation and urethrotomy; but in cases of long urethral strictures, substitution urethroplasty with genital skin and buccal mucosa grafts is the only option. However a number of complications such as infection as a result of hair growth in neo-urethra, and stone formation restrict the application of those grafts. Therefore, tissue engineering techniques recently emerged as an alternative approach, aiming to overcome those restrictions. The aim of this review is to provide a comprehensive coverage on the strategies employed and the translational status of urethral tissue engineering over the past years and to propose a combinatory strategy for the future of urethral tissue engineering. METHODs Data collection was based on the key articles published in English language in years between 2006 and 2018 using the searching terms of urethral stricture and tissue engineering on PubMed database. RESULTS Differentiation of mesenchymal stem cells into urothelial and smooth muscle cells to be used for urologic application does not offer any advantage over autologous urothelial and smooth muscle cells. Among studied scaffolds, synthetic scaffolds with proper porosity and mechanical strength is the best option to be used for urethral tissue engineering. CONCLUSION Hypoxia-preconditioned mesenchymal stem cells in combination with autologous cells seeded on a pre-vascularized synthetic and biodegradable scaffold can be said to be the best combinatory strategy in engineering of human urethra.
Collapse
Affiliation(s)
- Zahra Rashidbenam
- 1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Mohd Hafidzul Jasman
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Pezhman Hafez
- 3Faculty of Medicine and Health Science, UCSI University, No. 1 Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Guan Hee Tan
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Eng Hong Goh
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Xeng Inn Fam
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Christopher Chee Kong Ho
- 4School of Medicine, Taylor's University, No. 1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan Malaysia
| | - Zulkifli Md Zainuddin
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Reynu Rajan
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Fatimah Mohd Nor
- 6Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Mohamad Aznan Shuhaili
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nik Ritza Kosai
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Farrah Hani Imran
- 6Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- 1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Ramuta TŽ, Kreft ME. Human Amniotic Membrane and Amniotic Membrane-Derived Cells: How Far Are We from Their Use in Regenerative and Reconstructive Urology? Cell Transplant 2019; 27:77-92. [PMID: 29562770 PMCID: PMC6434475 DOI: 10.1177/0963689717725528] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human amniotic membrane (hAM) is the innermost layer of fetal membranes, which surrounds the developing fetus and forms the amniotic cavity. hAM and hAM-derived cells possess many properties that make them suitable for use in regenerative medicine, such as low immunogenicity, promotion of epithelization, anti-inflammatory properties, angiogenic and antiangiogenic properties, antifibrotic properties, antimicrobial properties, and anticancer properties. Many pathological conditions of the urinary tract lead to organ damage or complete loss of function. Consequently, the reconstruction or replacement of damaged organs is needed, which makes searching for new approaches in regenerative and reconstructive urology a necessity. The use of hAM for treating defects in kidneys, ureters, urinary bladder, and urethra was tested in vitro in cell cultures and in vivo in mice, rats, rabbits, cats, dogs, and also in humans. These studies confirmed the advantages and the potential of hAM for use in regenerative and reconstructive urology as stated above. However, they also pointed out a few concerns we have to take into consideration. These are (1) the lack of a standardized protocol in hAM preparation and storage, (2) the heterogeneity of hAM, and especially (3) low mechanical strength of hAM. Before any wider use of hAM for treating urological defects, the protocols for preparation and storage will need to be standardized, followed by more studies on larger animals and clinical trials, which will altogether extensively assess the potential of hAM use in urological patients.
Collapse
Affiliation(s)
- Taja Železnik Ramuta
- 1 Faculty of Medicine, Institute of Cell biology, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- 1 Faculty of Medicine, Institute of Cell biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Arrizabalaga JH, Nollert MU. Human Amniotic Membrane: A Versatile Scaffold for Tissue Engineering. ACS Biomater Sci Eng 2018; 4:2226-2236. [PMID: 33435098 DOI: 10.1021/acsbiomaterials.8b00015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human amniotic membrane (hAM) is a collagen-based extracellular matrix derived from the human placenta. It is a readily available, inexpensive, and naturally biocompatible material. Over the past decade, the development of tissue engineering and regenerative medicine, along with new decellularization protocols, has recast this simple biomaterial as a tunable matrix for cellularized tissue engineered constructs. Thanks to its biocompatibility, decellularized hAM is now commonly used in a broad range of medical fields. New preparation techniques and composite scaffold strategies have also emerged as ways to tune the properties of this scaffold. The current state of understanding about the hAM as a biomaterial is summarized in this review. We examine the processing techniques available for the hAM, addressing their effect on the mechanical properties, biodegradation, and cellular response of processed scaffolds. The latest in vitro applications, in vivo studies, clinical trials, and commercially available products based on the hAM are reported, organized by medical field. We also look at the possible alterations to the hAM to tune its properties, either through composite materials incorporating decellularized hAM, chemical cross-linking, or innovative layering and tissue preparation strategies. Overall, this review compiles the current literature about the myriad capabilities of the human amniotic membrane, providing a much-needed update on this biomaterial.
Collapse
Affiliation(s)
- Julien H Arrizabalaga
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Matthias U Nollert
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.,School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
20
|
Tian B, Song L, Liang T, Li Z, Ye X, Fu Q, Li Y. Repair of urethral defects by an adipose mesenchymal stem cell‑porous silk fibroin material. Mol Med Rep 2018; 18:209-215. [PMID: 29749544 PMCID: PMC6059671 DOI: 10.3892/mmr.2018.9001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/01/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to determine whether it was possible to repair urethral defects with a material of adipose mesenchymal stem cells (ADMSCs)-porous silk fibroin (SF). A total of 39 male New Zealand white rabbits were randomly divided into a control group, an SF group and a bromodeoxyuridine (BrdU)-labeled ADMSCs-SF group (SSF group; n=13/group). Defects were made by resecting the posterior urethral wall. The defects in the SF and SSF groups were repaired using SF and BrdU-labeled ADMSCs-SF materials respectively. Then the anterior wall was sutured, and the urethral catheter was retained for 3 weeks following surgery. The catheter was rinsed with nitrofurazone once a day. The cells with positive expressions of factor VIII related antigen (FVIII-RAg), α-smooth muscle actin (α-SMA) and pan-cytokeratin (AE1/AE3) were detected by immunohistochemical assay, and the distributions of BrdU positive cells and macrophages were observed. Urethrography was performed prior to and following surgery. All rabbits had normal urethral morphologies prior to surgery. The incidence rates of postoperative complications in the control, SF and SSF groups were 76.92 (7/13), 23.07 (3/13) and 15.38% (2/13), respectively (P<0.05). The number of positive macrophages in the SSF group was significantly lower than that of the SF group 4 weeks following surgery (P<0.05). In the SSF group, BrdU positive cells were scattered within the SF material following surgery, primarily at the intersection between the SF material and the urethra. The number of FVIII-RAg positive cells in the SSF and SF groups were significantly different (P<0.05), which were also significantly higher than that of control group (P<0.01). The number of α-SMA positive cells in the SSF and SF groups were significantly different (P<0.05), and these values also significantly exceeded those exhibited by the control group (P<0.01). In addition, the SSF and SF groups had positive staining of AE1/AE3. Similar to normal urethral mucosa, the cytoplasm was stained brownish yellow (P<0.05). It is thus feasible to repair urethral defects using ADMSCs-SF material.
Collapse
Affiliation(s)
- Binqiang Tian
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Lujie Song
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Tao Liang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zuowei Li
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xuxiao Ye
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qiang Fu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yonghui Li
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
21
|
Oottamasathien S, Hotaling JM, Craig JR, Myers JB, Brant WO. Amniotic therapeutic biomaterials in urology: current and future applications. Transl Androl Urol 2017; 6:943-950. [PMID: 29184795 PMCID: PMC5673810 DOI: 10.21037/tau.2017.09.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To examine the rationale and applications of amniotic tissue augmentation in urological surgery. Published literature in English-language was reviewed for basic science and clinical use of amniotic or amnion-chorionic tissue in genitourinary tissues. Basic science and animal studies support the likely benefit of clinical applications of amnion-derived tissues in a variety of urologic interventions. The broad number of properties found in amniotic membrane, coupled with its immunologically privileged status presents a number of future applications in the urological surgical realm. These applications are in their clinical infancy and suggest that further studies are warranted to investigate the use of these products in a systematic fashion.
Collapse
Affiliation(s)
- Siam Oottamasathien
- Department of Surgery and Section of Pediatric Urology, University of Utah, Salt Lake City, Utah, USA.,Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
| | - James M Hotaling
- Department of Surgery and Section of Pediatric Urology, University of Utah, Salt Lake City, Utah, USA.,Department of Surgery and Division of Urology Section of Men's Health, University of Utah, Salt Lake City, Utah, USA
| | - James R Craig
- Department of Surgery and Section of Pediatric Urology, University of Utah, Salt Lake City, Utah, USA.,Department of Surgery and Division of Urology Section of Men's Health, University of Utah, Salt Lake City, Utah, USA
| | - Jeremy B Myers
- Department of Surgery and Section of Pediatric Urology, University of Utah, Salt Lake City, Utah, USA.,Department of Surgery and Division of Urology Section of Men's Health, University of Utah, Salt Lake City, Utah, USA
| | - William O Brant
- Department of Surgery and Section of Pediatric Urology, University of Utah, Salt Lake City, Utah, USA.,Department of Surgery and Division of Urology Section of Men's Health, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
22
|
Žiaran S, Galambošová M, Danišovič L. Tissue engineering of urethra: Systematic review of recent literature. Exp Biol Med (Maywood) 2017; 242:1772-1785. [PMID: 28893083 DOI: 10.1177/1535370217731289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The purpose of this article was to perform a systematic review of the recent literature on urethral tissue engineering. A total of 31 articles describing the use of tissue engineering for urethra reconstruction were included. The obtained results were discussed in three groups: cells, scaffolds, and clinical results of urethral reconstructions using these components. Stem cells of different origin were used in many experimental studies, but only autologous urothelial cells, fibroblasts, and keratinocytes were applied in clinical trials. Natural and synthetic scaffolds were studied in the context of urethral tissue engineering. The main advantage of synthetic ones is the fact that they can be obtained in unlimited amount and modified by different techniques, but scaffolds of natural origin normally contain chemical groups and bioactive proteins which increase the cell attachment and may promote the cell proliferation and differentiation. The most promising are smart scaffolds delivering different bioactive molecules or those that can be tubularized. In two clinical trials, only onlay-fashioned transplants were used for urethral reconstruction. However, the very promising results were obtained from animal studies where tubularized scaffolds, both non-seeded and cell-seeded, were applied. Impact statement The main goal of this article was to perform a systematic review of the recent literature on urethral tissue engineering. It summarizes the most recent information about cells, seeded or non-seeded scaffolds and clinical application with respect to regeneration of urethra.
Collapse
Affiliation(s)
- Stanislav Žiaran
- 1 Department of Urology, Faculty of Medicine, Comenius University in Bratislava, Bratislava 833 05, Slovak Republic
| | - Martina Galambošová
- 2 Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava 811 08, Slovak Republic
| | - L'uboš Danišovič
- 2 Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava 811 08, Slovak Republic.,3 Regenmed Ltd, Bratislava 811 02, Slovak Republic
| |
Collapse
|
23
|
Zou Q, Fu Q. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China. Asian J Urol 2017; 5:57-68. [PMID: 29736367 PMCID: PMC5934513 DOI: 10.1016/j.ajur.2017.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/10/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.
Collapse
Affiliation(s)
- Qingsong Zou
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Abstract
Reconstructive urologists are constantly facing diverse and complex pathologies that require structural and functional restoration of urinary organs. There is always a demand for a biocompatible material to repair or substitute the urinary tract instead of using patient's autologous tissues with its associated morbidity. Biomimetic approaches are tissue-engineering tactics aiming to tailor the material physical and biological properties to behave physiologically similar to the urinary system. This review highlights the different strategies to mimic urinary tissues including modifications in structure, surface chemistry, and cellular response of a range of biological and synthetic materials. The article also outlines the measures to minimize infectious complications, which might lead to graft failure. Relevant experimental and preclinical studies are discussed, as well as promising biomimetic approaches such as three-dimensional bioprinting.
Collapse
Affiliation(s)
- Moustafa M Elsawy
- Division of Surgery and Interventional Science, Royal Free Hospital, NHS Trust, University College London (UCL)
- Division of Reconstructive Urology, University College London Hospitals (uclh), London, UK
- Urology Department, School of Medicine, Alexandria University, Alexandria, Egypt
| | - Achala de Mel
- Division of Surgery and Interventional Science, Royal Free Hospital, NHS Trust, University College London (UCL)
| |
Collapse
|
25
|
Tissue Engineered Human Amniotic Membrane Application in Mouse Ovarian Follicular Culture. Ann Biomed Eng 2017; 45:1664-1675. [PMID: 28451989 DOI: 10.1007/s10439-017-1836-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Since folliculogenesis requires a powerful cell-matrix interaction, natural scaffolds seem to be needed for follicular culture. Human amniotic membrane (HAM) offers promise as a support of in vitro ovarian follicular culture. HAM was decellularized with trypsin and EDTA. DNA and histology assays were performed to determine the elimination rate of genomic components. Cyto-biocompatibility of decellular AM (DAM) was verified by the cell viability (MTT) test. The small parts of intact amniotic membrane (IAM) and DAM were coated on the bottom of 96-well and each well was filled with 150 µL of base medium. Mouse primary-secondary (PS) follicles were separated to three groups: 1-culture in base medium (Control), 2-culture on IAM and 3-culture on DAM. Follicular size, morphology, viability, estradiol production and genes expression were evaluated and IAM group showed better growth and development in follicle culture. The viability rate and estradiol production in both experimental groups were statistically higher than the Control. Gdf9, Bmp15 and Cx37 were found to have higher expression levels in IAM group. Also, maximum apoptotic and survival indexes were determined in Control and IAM groups, respectively. Finally, IAM provides a better protective environment for mouse PS follicular culture that can reduce apoptosis level.
Collapse
|
26
|
Barski D, Gerullis H, Ecke T, Yang J, Varga G, Boros M, Pintelon I, Timmermans JP, Otto T. Bladder Reconstruction with Human Amniotic Membrane in a Xenograft Rat Model: A Preclinical Study. Int J Med Sci 2017; 14:310-318. [PMID: 28553162 PMCID: PMC5436472 DOI: 10.7150/ijms.18127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/30/2017] [Indexed: 12/23/2022] Open
Abstract
Background: Human amniotic membranes (HAMs) are assumed to have a number of unique characteristics including durability, hypoallergenic and anti-inflammatory properties. Materials and Methods: Multilayer HAMs from caesarian sections were applied to repair defined bladder defects in male Sprague-Dawley rats. The animals were sacrificed at 7, 21 and 42 days after implantation. Bladder volume capacity after grafting was measured. Histological analyses were performed to asses a number of parameters including HAM degradation, inflammatory reaction, graft rejection and smooth muscle ingrowth. Results: One rat died from sepsis in the treated group. No severe complications or signs of leakage were observed. Bladder capacity did not change over time. The initially increased inflammation in the HAM group diminished significantly over time (p<0.05). No signs of HAM degradation were observed and smooth muscle staining increased over time. Conclusions: HAMs appear to be durable and hypoallergenic grafts. The assumed suitability for the reconstruction of urinary tract justifies further research on detailed immunological process in larger grafts.
Collapse
Affiliation(s)
| | - Holger Gerullis
- University Hospital for Urology, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Thorsten Ecke
- Department of Urology, Helios Hospital, Bad Saarow, Germany
| | - Jin Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Gabriella Varga
- Institute of Experimental Surgery, University of Szeged, Hungary
| | - Mihaly Boros
- Institute of Experimental Surgery, University of Szeged, Hungary
| | - Isabel Pintelon
- University of Antwerp, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | | | - Thomas Otto
- Department of Urology, Lukas Hospital Neuss, Germany
| |
Collapse
|
27
|
Qi N, Li WJ, Tian H. A systematic review of animal and clinical studies on the use of scaffolds for urethral repair. ACTA ACUST UNITED AC 2016; 36:111-117. [PMID: 26838750 DOI: 10.1007/s11596-016-1551-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/29/2015] [Indexed: 12/26/2022]
Abstract
Replacing urethral tissue with functional scaffolds has been one of the challenging problems in the field of urethra reconstruction or repair over the last several decades. Various scaffold materials have been used in animal studies, but clinical studies on use of scaffolds for urethral repair are scarce. The aim of this study was to review recent animal and clinical studies on the use of different scaffolds for urethral repair, and to evaluate these scaffolds based on the evidence from these studies. PubMed and OVID databases were searched to identify relevant studies, in conjunction with further manual search. Studies that met the inclusion criteria were systematically evaluated. Of 555 identified studies, 38 were included for analysis. It was found that in both animal and clinical studies, scaffolds seeded with cells were used for repair of large segmental defects of the urethra, such as in tubular urethroplasty. When the defect area was small, cell-free scaffolds were more likely to be applied. A lot of pre-clinical and limited clinical evidence showed that natural or artificial materials could be used as scaffolds for urethral repair. Urinary tissue engineering is still in the immature stage, and the safety, efficacy, cost-effectiveness of the scaffolds are needed for further study.
Collapse
Affiliation(s)
- Na Qi
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen-Jiao Li
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Tian
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
28
|
Atala A, Danilevskiy M, Lyundup A, Glybochko P, Butnaru D, Vinarov A, Yoo JJ. The potential role of tissue-engineered urethral substitution: clinical and preclinical studies. J Tissue Eng Regen Med 2015; 11:3-19. [PMID: 26631921 DOI: 10.1002/term.2112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 10/01/2015] [Accepted: 10/15/2015] [Indexed: 01/10/2023]
Abstract
Urethral strictures and anomalies remain among the difficult problems in urology, with urethroplasty procedures being the most effective treatment options. The two major types of urethroplasty are anastomotic urethroplasty and widening the urethral lumen using flaps or grafts (i.e. substitution urethroplasty). However, no ideal material for the latter has been found so far. Designing and selecting such a material is a necessary and challenging endeavour, driving the need for further bioengineered urethral tissue research. This article reviews currently available studies on the potentialities of tissue engineering in urethral reconstruction, in particular those describing the use of both acellular and recellularized tissue-engineered constructs in animal and human models. Possible future developments in this field are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mikhail Danilevskiy
- Research Institute of Uronephrology and Reproductive Health, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexey Lyundup
- Research Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Petr Glybochko
- I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Denis Butnaru
- Research Institute of Uronephrology and Reproductive Health, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Andrey Vinarov
- Research Institute of Uronephrology and Reproductive Health, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
29
|
Zhu J, Yang F, He F, Tian X, Tang S, Chen X. A tubular gelatin scaffold capable of the time-dependent controlled release of epidermal growth factor and mitomycin C. Colloids Surf B Biointerfaces 2015; 135:416-424. [DOI: 10.1016/j.colsurfb.2015.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 05/24/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
|