1
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
2
|
Lenhard S, Gerlich S, Khan A, Rödl S, Bökenkamp JE, Peker E, Zarges C, Faust J, Storchova Z, Räschle M, Riemer J, Herrmann JM. The Orf9b protein of SARS-CoV-2 modulates mitochondrial protein biogenesis. J Cell Biol 2023; 222:e202303002. [PMID: 37682539 PMCID: PMC10491932 DOI: 10.1083/jcb.202303002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) expresses high amounts of the protein Orf9b to target the mitochondrial outer membrane protein Tom70. Tom70 serves as an import receptor for mitochondrial precursors and, independently of this function, is critical for the cellular antiviral response. Previous studies suggested that Orf9b interferes with Tom70-mediated antiviral signaling, but its implication for mitochondrial biogenesis is unknown. In this study, we expressed Orf9b in human HEK293 cells and observed an Orf9b-mediated depletion of mitochondrial proteins, particularly in respiring cells. To exclude that the observed depletion was caused by the antiviral response, we generated a yeast system in which the function of human Tom70 could be recapitulated. Upon expression of Orf9b in these cells, we again observed a specific decline of a subset of mitochondrial proteins and a general reduction of mitochondrial volume. Thus, the SARS-CoV-2 virus is able to modulate the mitochondrial proteome by a direct effect of Orf9b on mitochondrial Tom70-dependent protein import.
Collapse
Affiliation(s)
- Svenja Lenhard
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sarah Gerlich
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | - Azkia Khan
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Saskia Rödl
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan-Eric Bökenkamp
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Esra Peker
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | - Christine Zarges
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | - Janina Faust
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Zuzana Storchova
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan Riemer
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | | |
Collapse
|
3
|
Gu X, Ke S, Wang Q, Zhuang T, Xia C, Xu Y, Yang L, Zhou M. Energy metabolism in major depressive disorder: Recent advances from omics technologies and imaging. Biomed Pharmacother 2021; 141:111869. [PMID: 34225015 DOI: 10.1016/j.biopha.2021.111869] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Major depressive disorder (MDD) is a serious psychiatric disorder that associated with high rate of disability and increasing suicide rate, and the pathogenesis is still unclear. Many researches showed that the energy metabolism of patients with depression is impaired, which may be the direction of depression treatment. In this review, we focus on the "omics" technologies such as genomics, proteomics, transcriptomics and metabolomics, as well as imaging, and the progress on energy metabolism of MDD. These findings indicate that abnormal energy metabolism is one of the important mechanisms for the occurrence and development of depression. Although the research on various mechanisms of depression is still ongoing, the rapid development of new technologies and the joint use of various technologies will help to clarify the pathogenesis of depression and explore efficient diagnosis and treatment methods.
Collapse
Affiliation(s)
- Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuang Ke
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tongxi Zhuang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Wang Y, Miao X, Li H, Su P, Lin L, Liu L, Li X. The correlated expression of immune and energy metabolism related genes in the response to Salmonella enterica serovar Enteritidis inoculation in chicken. BMC Vet Res 2020; 16:257. [PMID: 32711533 PMCID: PMC7382137 DOI: 10.1186/s12917-020-02474-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Background Salmonella enterica serovar Enteritidis (SE) is one of the food-borne pathogenic bacteria, which affects poultry production and poses severe threat to human health. The correlation of immune system and metabolism in chicken after SE inoculation is important but not clear. In the current study, we identified the expression of immune and energy metabolism related genes using quantitative PCR to evaluate the correlation between immune system and energy metabolism against SE inoculation in Jining Bairi chicken. Results ATP5G1, ATP5G3 and ND2 were significantly up-regulated at 1 dpi (day post inoculation), and ATP5E, ATP5G1, ATP5G3 were significantly down-regulated at 7 dpi (P < 0.05). IL-8 and IL-1β were significantly down-regulated at 1 dpi, IL-8 and IL-18 were significantly down-regulated at 3 dpi, IL-8 and BCL10 were significantly up-regulated at 7 dpi (P < 0.05). Conclusions These findings indicate that the correlation between immune and energy metabolism related genes gradually change with time points post SE inoculation, from one homeostasis to an opposite homeostasis with 3 dpi as a turning point. These results will pave the foundation for the relationship between immune system and energy metabolism in the response to SE inoculation in chicken.
Collapse
Affiliation(s)
- Yuanmei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China.,Present Address: Current affiliation: Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Xiuxiu Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Huilong Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Pengcheng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Lili Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Liying Liu
- College of Life Science, Shandong Agricultural University, 271018, Taian, China.
| | - Xianyao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China.
| |
Collapse
|
5
|
Carles A, Trigo-Gonzalez G, Cao Q, Cheng SWG, Moksa M, Bilenky M, Huntsman DG, Morin GB, Hirst M. The Pathognomonic FOXL2 C134W Mutation Alters DNA-Binding Specificity. Cancer Res 2020; 80:3480-3491. [PMID: 32641414 DOI: 10.1158/0008-5472.can-20-0104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/04/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022]
Abstract
The somatic missense point mutation c.402C>G (p.C134W) in the FOXL2 transcription factor is pathognomonic for adult-type granulosa cell tumors (AGCT) and a diagnostic marker for this tumor type. However, the molecular consequences of this mutation and its contribution to the mechanisms of AGCT pathogenesis remain unclear. To explore these mechanisms, we engineered V5-FOXL2WT- and V5-FOXL2C134W-inducible isogenic cell lines and performed chromatin immunoprecipitation sequencing and transcriptome profiling. FOXL2C134W associated with the majority of the FOXL2 wild-type DNA elements as well as a large collection of unique elements genome wide. This model enabled confirmation of altered DNA-binding specificity for FOXL2C134W and identification of unique targets of FOXL2C134W including SLC35F2, whose expression increased sensitivity to YM155. Our results suggest FOXL2C134W drives AGCT by altering the binding affinity of FOXL2-containing complexes to engage an oncogenic transcriptional program. SIGNIFICANCE: A mechanistic understanding of FOXL2C134W-induced regulatory state alterations drives discovery of a rationally designed therapeutic strategy.
Collapse
Affiliation(s)
- Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Genny Trigo-Gonzalez
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - S-W Grace Cheng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada.,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Qi X, Zhong X, Xu S, Zeng B, Chen J, Zang G, Zeng L, Bai S, Zhou C, Wei H, Xie P. Extracellular Matrix and Oxidative Phosphorylation: Important Role in the Regulation of Hypothalamic Function by Gut Microbiota. Front Genet 2020; 11:520. [PMID: 32670347 PMCID: PMC7330020 DOI: 10.3389/fgene.2020.00520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background In previous studies, our team examined the gut microbiota of healthy individuals and depressed patients using fecal microbiota transplantation of germ-free (GF) mice. Our results showed that depression-like and anxiety-like behavioral phenotypes of host mice were increased, but the molecular mechanism by which gut microbiota regulate host behavioral phenotypes is still unclear. Methods To investigate the molecular mechanism by which gut microbiota regulate host brain function, adult GF mice were colonized with fecal samples derived from healthy control (HC) individuals or patients with major depressive disorder (MDD). Transcriptomic profiling of hypothalamus samples was performed to detect differentially expressed genes (DEGs). qRT-PCR was used for validation experiments. Results Colonization germ-free (CGF) mice had 243 DEGs compared with GF mice. The most enriched KEGG pathways associated with upregulated genes were "protein digestion and absorption," "extracellular matrix (ECM)-receptor interaction," and "focal adhesion." MDD mice had 642 DEGs compared with HC mice. The most enriched KEGG pathways associated with upregulated genes in MDD mice were also "protein digestion and absorption," "ECM-receptor interaction," and "focal adhesion." Meanwhile, the most enriched KEGG pathway associated with downregulated genes in these mice was "oxidative phosphorylation," and genes related to this pathway were found to be highly correlated in PPI network analysis. Conclusion In summary, our findings suggested that regulation of ECM is a key mechanism shared by different gut microbiota and that inhibition of energy metabolism in the hypothalamus by gut microbiota derived from MDD patients is a potential mechanism of behavioral regulation and depression.
Collapse
Affiliation(s)
- Xunzhong Qi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Shaohua Xu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Guangchao Zang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Pathogen Biology and Immunology Laboratory, and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Guo D, Li F, Zhao X, Long B, Zhang S, Wang A, Cao D, Sun J, Li B. Circular RNA expression and association with the clinicopathological characteristics in papillary thyroid carcinoma. Oncol Rep 2020; 44:519-532. [PMID: 32468074 PMCID: PMC7336492 DOI: 10.3892/or.2020.7626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Circular RNAs (circRNAs) are a novel class of RNAs, with higher stability and tissue specificity, which may be of value as novel clinical markers. High-throughput RNA sequencing was used to profile the expression of circRNAs in 5 pairs of cancer and normal tissues, and reverse transcription-quantitative PCR (RT-qPCR) analysis was employed to verify the results of the RNA sequencing in 45 cases of PTC. The dysregulated circRNA expression and clinicopathological characteristics were assessed and the potential roles of circRNAs in the cellular miRNA and mRNA network were predicted using bioinformatics analysis. The results demonstrated that, compared with normal tissues, a total of 53 circRNAs were dysregulated in tumour tissues, and 8 circRNAs were validated at the mRNA level (P<0.001 and P<0.01). Among those, the expression of chr5:161330882-161336769- (P=0.015), chr9:22046750-22097364+ (P=0.041) and chr8:18765448-18804898- (P=0.036) were obviously associated with the BRAFV600E mutation, chr12:129699809-129700698- was associated with capsular invasion (P=0.025) and chr5:38523418-38530666- was associated with pT stage (P=0.037) and lymph node metastasis (P=0.002). Therefore, some dysregulated circRNAs were found to be associated with BRAFV600E mutation, capsular invasion, advanced pT stage and lymph node metastasis of PTC, indicating that circRNAs may be involved in tumourigenesis and cancer progression, and they may be putative biomarkers for the diagnosis and evaluation of progression of PTC.
Collapse
Affiliation(s)
- Dan Guo
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Fangyuan Li
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiaoxiao Zhao
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Bo Long
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Sumei Zhang
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Anqi Wang
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Dingyan Cao
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jian Sun
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Binglu Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
8
|
Quantitative proteomics to study aging in rabbit liver. Mech Ageing Dev 2020; 187:111227. [PMID: 32126221 DOI: 10.1016/j.mad.2020.111227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
Aging globally effects cellular and organismal metabolism across a range of mammalian species, including humans and rabbits. Rabbits (Oryctolagus cuniculus are an attractive model system of aging due to their genetic similarity with humans and their short lifespans. This model can be used to understand metabolic changes in aging especially in major organs such as liver where we detected pronounced variations in fat metabolism, mitochondrial dysfunction, and protein degradation. Such changes in the liver are consistent across several mammalian species however in rabbits the downstream effects of these changes have not yet been explored. We have applied proteomics to study changes in the liver proteins from young, middle, and old age rabbits using a multiplexing cPILOT strategy. This resulted in the identification of 2,586 liver proteins, among which 45 proteins had significant p < 0.05) changes with aging. Seven proteins were differentially-expressed at all ages and include fatty acid binding protein, aldehyde dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl CoA dehydrogenase, apolipoprotein C3, peroxisomal sarcosine oxidase, adhesion G-protein coupled receptor, and glutamate ionotropic receptor kinate. Insights to how alterations in metabolism affect protein expression in liver have been gained and demonstrate the utility of rabbit as a model of aging.
Collapse
|
9
|
Wangpermtam P, Petmitr S, Punyarit P, Klongnoi B, Sanguansin S. Down-regulation of mitochondrial NADH and cytochrome b gene associated with high tumor stages in head and neck squamous cell carcinoma. Arch Oral Biol 2019; 99:107-112. [PMID: 30658318 DOI: 10.1016/j.archoralbio.2019.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study aimed to determine mitochondrial mRNA expression levels and the relationships between these expression levels and various adverse clinicopathological characteristics. METHODS The mRNA expression levels of all 12 genes encoded protein, located on the heavy-strand of mitochondrial DNA including cytochrome b, NADH1, NADH2, NADH3, NADH4, NADH4L, NADH5, ATPase6, ATPase8, cytochrome c oxidase subunit 1, cytochrome c oxidase subunit 2, cytochrome c oxidase subunit 3 were analyzed in 30 head and neck squamous cell carcinoma (HNSCC) and the corresponding normal tissues using reverse transcriptase quantitative real time PCR. Pearson Chi-square test was used to determine the relationships between these expression levels and categorical parameters. RESULTS The expression levels of 12 mitochondrial mRNAs were observed in all 30 HNSCC patients with down-regulation, ranging from 43.3% to 76.7% and up-regulation, ranging from 10.0% to 36.7%. Furthermore, the number of cases with down-regulations in all 6 NADH and cytochrome b mRNA with TMN stages III and IV were significantly higher than that in stages I and II (p=0.049 and 0.007, respectively). CONCLUSION Down-regulation of all mitochondrial NADH mRNA as well as mitochondrial cytochrome b mRNA was associated with high tumor stage among HNSCC patients.
Collapse
Affiliation(s)
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phaibul Punyarit
- Department of Clinical Pathology, Army Institute of Pathology, Phramongkutklao Medical Center and Pathology Division, Bangkok, Thailand; Department of Surgery, Bumrungrad International Hospital, Bangkok, Thailand
| | - Boworn Klongnoi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Sirima Sanguansin
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
10
|
Szmidt M, Stankiewicz A, Urbańska K, Jaworski S, Kutwin M, Wierzbicki M, Grodzik M, Burzyńska B, Góra M, Chwalibog A, Sawosz E. Graphene oxide down-regulates genes of the oxidative phosphorylation complexes in a glioblastoma. BMC Mol Biol 2019; 20:2. [PMID: 30602369 PMCID: PMC6317254 DOI: 10.1186/s12867-018-0119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recently different forms of nanographene were proposed as the material with high anticancer potential. However, the mechanism of the suppressive activity of the graphene on cancer development remains unclear. We examined the effect of oxygenated, reduced and pristine graphene on the gene expression in glioblastoma U87 cell line. RESULTS Conducting microarrays and RT-qPCR analysis we explored that graphene oxide (rather than reduced graphene oxide and pristine graphene) down-regulates the mRNA expression of mitochondrial oxidative phosphorylation (OXPHOS) nuclear genes of complexes I, III, IV and V. The presented results provide first evidence for the hypothesis that the suppressed growth of GBM can be the consequence of down-regulation of OXPHOS protein expression and decreased ATP level. CONCLUSIONS We suggest that changes in the expression of OXPHOS genes identified in our study may mediate the anti-proliferative and anti-migratory effects of graphene oxide in glioblastoma cells. However, further investigations with different cell lines, regarding expression, regulation and activity of OXPHOS genes identified in our study is necessary to elucidate the mechanism mediating the anti-proliferative and anti-migratory effects of graphene oxide in glioblastoma cells.
Collapse
Affiliation(s)
- Maciej Szmidt
- Department of Morphological Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Adrian Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Kaja Urbańska
- Department of Morphological Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Beata Burzyńska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Góra
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvje 3, 1870 Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
11
|
Zhang H, Wang Y, Xuan X, Wang G, Guo H, Fan J. A dynamic invertible intramolecular charge-transfer fluorescence probe: real-time monitoring of mitochondrial ATPase activity. Chem Commun (Camb) 2017; 53:5535-5538. [PMID: 28466886 DOI: 10.1039/c7cc02450a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A dynamic invertible intramolecular charge-transfer (ICT) process could provide abundant response signals for real-time monitoring in living organisms. Herein, based on dynamic invertible ICT, we have reported a cancer cell-targeted fluorescence probe (OPM) for mitochondrial ATPase activity. Due to its abundant response signals, OPM could real-time monitor mitochondrial ATPase activity during the cancer apoptosis process, successfully.
Collapse
Affiliation(s)
- Hua Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Key Laboratory of Green Chemical Media and Reactions, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Institution, Henan Normal University, 453007 Xinxiang, China.
| | | | | | | | | | | |
Collapse
|