1
|
Niu C, Zhang J, Okolo PI. The possible pathogenesis of liver fibrosis: therapeutic potential of natural polyphenols. Pharmacol Rep 2024; 76:944-961. [PMID: 39162986 DOI: 10.1007/s43440-024-00638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Liver fibrosis is the formation of a fibrous scar resulting from chronic liver injury, independently from etiology. Although many of the mechanical details remain unknown, activation of hepatic stellate cells (HSCs) is a central driver of liver fibrosis. Extracellular mechanisms such as apoptotic bodies, paracrine stimuli, inflammation, and oxidative stress are critical in activating HSCs. The potential for liver fibrosis to reverse after removing the causative agent has heightened interest in developing antifibrotic therapies. Polyphenols, the secondary plant metabolites, have gained attention because of their health-beneficial properties, including well-recognized antioxidant and anti-inflammatory activities, in the setting of liver fibrosis. In this review, we present an overview of the mechanisms underlying liver fibrosis with a specific focus on the activation of resident HSCs. We highlight the therapeutic potential and promising role of natural polyphenols to mitigate liver fibrosis pathogenesis, focusing on HSCs activation. We also discuss the translational gap from preclinical findings to clinical treatments involved in natural polyphenols in liver fibrosis.
Collapse
Affiliation(s)
- Chengu Niu
- Internal medicine residency program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
2
|
O'Neill RA, Maxwell AP, Kee F, Young I, Hogg RE, Cruise S, McGuinness B, McKay GJ. Association of reduced retinal arteriolar tortuosity with depression in older participants from the Northern Ireland Cohort for the Longitudinal Study of Ageing. BMC Geriatr 2021; 21:62. [PMID: 33446119 PMCID: PMC7809811 DOI: 10.1186/s12877-021-02009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The retina shares similar anatomical and physiological features with the brain and subtle variations in retinal microvascular parameters (RMPs) may reflect similar vascular variation in the brain. The aim of this study was to assess associations between RMPs and measures of depression in the Northern Ireland Cohort for the Longitudinal Study of Ageing. METHODS RMPs (arteriolar and venular caliber, fractal dimension and tortuosity) were measured from optic disc centred fundus images using semi-automated software. Depression was characterised by the Centre for Epidemiologic Studies Depression Scale (CES-D) in the absence of mild cognitive impairment or use of anti-depressive medications. Associations between depression and RMPs were assessed by regression analyses with adjustment for potential confounders. RESULTS Data were available for 1376 participants of which 113 (8.2%) and 1263 (91.8%) were classified with and without depression. Participants had a mean age of 62.0 ± 8.4 yrs., 52% were female, and 8% were smokers. Individuals with depression had a higher CES-D score than those without (22.0 ± 6.2 versus 4.4 ± 3.9). Lower values of arteriolar tortuosity were significantly associated with depression, before and after adjustment for potential confounders (odds ratio = 0.79; 95% confidence intervals: 0.65, 0.96; P = 0.02). CONCLUSION Decreased retinal arteriolar tortuosity, a measure of the complexity of the retinal microvasculature was associated with depression in older adults independent of potential confounding factors. Retinal measures may offer opportunistic assessment of microvascular health associated with outcomes of depression.
Collapse
Affiliation(s)
- R A O'Neill
- Centre for Public Health, Queens University Belfast, Belfast, Northern Ireland
| | - A P Maxwell
- Centre for Public Health, Queens University Belfast, Belfast, Northern Ireland
| | - F Kee
- Centre for Public Health, Queens University Belfast, Belfast, Northern Ireland
| | - I Young
- Centre for Public Health, Queens University Belfast, Belfast, Northern Ireland
| | - R E Hogg
- Centre for Public Health, Queens University Belfast, Belfast, Northern Ireland
| | - S Cruise
- Centre for Public Health, Queens University Belfast, Belfast, Northern Ireland
| | - B McGuinness
- Centre for Public Health, Queens University Belfast, Belfast, Northern Ireland
| | - G J McKay
- Centre for Public Health, Queens University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
3
|
Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K, Gustad LT, Maes M. Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments. BMC Med 2020; 18:305. [PMID: 33070778 PMCID: PMC7570030 DOI: 10.1186/s12916-020-01749-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol, are examined. MAIN TEXT Key molecular players involved in the regulation of endothelial cell function are described, including PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS, nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by considering the following potential generators of endothelial dysfunction and activation in major depressive disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase; xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction. CONCLUSIONS Finally, on the basis of the above molecular mechanisms, details are given of potential treatment options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | | | - Lisa Olive
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- School of Psychology, Faculty of Health, Deakin University, Geelong, Australia
| | - Andre Carvalho
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Ken Walder
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Lise Tuset Gustad
- Department of Circulation and medical imaging, Norwegian University of Technology and Science (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Michael Maes
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
4
|
Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. Implications of hydrogen sulfide in liver pathophysiology: Mechanistic insights and therapeutic potential. J Adv Res 2020; 27:127-135. [PMID: 33318872 PMCID: PMC7728580 DOI: 10.1016/j.jare.2020.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Over the last several decades, hydrogen sulfide (H2S) has been found to exert multiple physiological functions in mammal systems. The endogenous production of H2S is primarily mediated by cystathione β-synthase (CBS), cystathione γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). These enzymes are widely expressed in the liver tissues and regulate hepatic functions by acting on various molecular targets. Aim of Review In the present review, we will highlight the recent advancements in the cellular events triggered by H2S under liver diseases. The therapeutic effects of H2S donors on hepatic diseases will also be discussed. Key Scientific Concepts of Review As a critical regulator of liver functions, H2S is critically involved in the etiology of various liver disorders, such as nonalcoholic steatohepatitis (NASH), hepatic fibrosis, hepatic ischemia/reperfusion (IR) injury, and liver cancer. Targeting H2S-producing enzymes may be a promising strategy for managing hepatic disorders.
Collapse
Key Words
- 3-MP, 3-mercaptopyruvate
- 3-MST, 3-mercaptopyruvate sulfurtransferase
- AGTR1, angiotensin II type 1 receptor
- AMPK, AMP-activated protein kinase
- Akt, protein kinase B
- CAT, cysteine aminotransferase
- CBS, cystathione β-synthase
- CO, carbon monoxide
- COX-2, cyclooxygenase-2
- CSE, cystathione γ-lyase
- CX3CR1, chemokine CX3C motif receptor 1
- Cancer
- DAO, D-amino acid oxidase
- DATS, Diallyl trisulfide
- EGFR, epidermal growth factor receptor
- ERK, extracellular regulated protein kinases
- FAS, fatty acid synthase
- Fibrosis
- H2S, hydrogen sulfide
- HFD, high fat diet
- HO-1, heme oxygenase 1
- Hydrogen sulfide
- IR, ischemia/reperfusion
- Liver disease
- MMP-2, matrix metalloproteinase 2
- NADH, nicotinamide adenine dinucleotide
- NADPH, nicotinamide adenine dinucleotide phosphate
- NAFLD, non-alcoholic fatty liver diseases
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-kappa B
- NaHS, sodium hydrosulfide
- Nrf2, nuclear factor erythroid2-related factor 2
- PI3K, phosphatidylinositol 3-kinase
- PLP, pyridoxal 5′-phosphate
- PPG, propargylglycine
- PTEN, phosphatase and tensin homolog deleted on chromosome ten
- SAC, S-allyl-cysteine
- SPRC, S-propargyl-cysteine
- STAT3, signal transducer and activator of transcription 3
- Steatosis
- VLDL, very low density lipoprotein
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xin-Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen 518037, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,National University of Singapore Research Institute, Suzhou 215000, China
| |
Collapse
|
5
|
Alam MA, Sagor AT, Tabassum N, Ulla A, Shill MC, Rahman GMS, Hossain H, Reza HM. Caffeic acid rich Citrus macroptera peel powder supplementation prevented oxidative stress, fibrosis and hepatic damage in CCl4 treated rats. CLINICAL PHYTOSCIENCE 2018. [DOI: 10.1186/s40816-018-0074-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
6
|
Castelblanco M, Lugrin J, Ehirchiou D, Nasi S, Ishii I, So A, Martinon F, Busso N. Hydrogen sulfide inhibits NLRP3 inflammasome activation and reduces cytokine production both in vitro and in a mouse model of inflammation. J Biol Chem 2017; 293:2546-2557. [PMID: 29279328 DOI: 10.1074/jbc.m117.806869] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/17/2017] [Indexed: 12/13/2022] Open
Abstract
A variety of stimuli, including monosodium urate (MSU) crystals, activate the NLRP3 inflammasome, and this activation involves several molecular mechanisms including xanthine oxidase (XO) up-regulation and mitochondrial dysfunction. Upon oligomerization of apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1 becomes active and cleaves the proinflammatory cytokine IL-1β into its active secreted form. Hydrogen sulfide (H2S), a gasotransmitter mainly produced by cystathionine γ-lyase (CSE) in macrophages, could modulate inflammation. Here, we sought to investigate the effects of exogenous and endogenous H2S on NLRP3 inflammasome activation in vitro and in vivo Primed bone marrow-derived macrophages (BMDM) isolated from wildtype (wt) or CSE-deficient mice and human macrophages (THP1 cells and primary macrophages), were stimulated with MSU crystals in the presence or absence of a H2S donor, sodium thiosulfate (STS) or GYY4137 (GYY). In murine and human macrophages in vitro, both STS and GYY inhibited MSU crystal-induced IL-1β secretion in a dose-dependent manner. Moreover, the H2S donors inhibited MSU crystal-induced XO/caspase-1 activities, mitochondrial reactive oxygen species (ROS) generation, and ASC oligomerization. Accordingly, IL-1β secretion and XO/caspase-1 activities were higher in CSE-deficient BMDMs than in wt BMDMs. For in vivo studies, we experimentally induced peritonitis by intraperitoneal injection of MSU crystals into mice. GYY pretreatment ameliorated inflammation, evidenced by decreased IL-6/monocyte chemoattractant protein-1 (MCP-1) released into peritoneal lavages. Taken together, our results suggest that both exogenous (via H2S donors) and endogenous (via CSE) H2S production may represent approaches for managing, for example, acute gout or other inflammation conditions.
Collapse
Affiliation(s)
| | - Jérôme Lugrin
- the Department of Biochemistry, University of Lausanne, Epalinges 155 1066, Switzerland and
| | - Driss Ehirchiou
- the Department of Biochemistry, University of Lausanne, Epalinges 155 1066, Switzerland and
| | - Sonia Nasi
- From the Service of Rheumatology, DAL, Lausanne University Hospital (CHUV) and
| | - Isao Ishii
- Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Alexander So
- From the Service of Rheumatology, DAL, Lausanne University Hospital (CHUV) and
| | - Fabio Martinon
- the Department of Biochemistry, University of Lausanne, Epalinges 155 1066, Switzerland and
| | - Nathalie Busso
- From the Service of Rheumatology, DAL, Lausanne University Hospital (CHUV) and
| |
Collapse
|
7
|
Yang N, Shi JJ, Wu FP, Li M, Zhang X, Li YP, Zhai S, Jia XL, Dang SS. Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway. World J Gastroenterol 2017; 23:1203-1214. [PMID: 28275300 PMCID: PMC5323445 DOI: 10.3748/wjg.v23.i7.1203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms.
METHODS HSC-T6 cells were cultured in vitro and treated with various concentrations of CAPE for 24, 48 and 72 h, respectively. Cell proliferation was investigated using the MTT assay, and cell ultrastructural alterations were observed by transmission electron microscopy. Flow cytometry was employed to investigate the effects of CAPE on apoptosis and the levels of reactive oxygen species in HSC-T6 cells cultured in vitro. An enzyme immunoassay instrument was used to evaluate antioxidant enzyme expression. The effect on α-smooth muscle actin was shown using immunofluorescence. Gene and protein levels of Nrf2, related factors, and mitogen activated protein kinases (MAPKs), in HSC-T6 cells were detected using RT-PCR and Western blot, respectively.
RESULTS CAPE inhibited the proliferation and activation of HSC-T6 cells cultured in vitro. CAPE increased the antioxidant levels and the translocation of Nrf2 from the cytoplasm to the nucleus in HSC-T6 cells. Moreover, the phosphorylation of MAPKs in cells decreased in response to CAPE. Interestingly, CAPE-induced oxidative stress in the cells was significantly attenuated by pretreatment with MAPKs inhibitors.
CONCLUSION CAPE inhibits cell proliferation and up-regulates the antioxidant levels in HSC-T6 cells partly through the Nrf2-MAPKs signaling pathway.
Collapse
|
8
|
Wang J, Liu H, Tian L, Wang F, Han L, Zhang W, Bai YA. miR-15b Inhibits the Progression of Glioblastoma Cells Through Targeting Insulin-like Growth Factor Receptor 1. Discov Oncol 2016; 8:49-57. [PMID: 27896672 DOI: 10.1007/s12672-016-0276-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
The microRNAs (miRNAs) have been suggested as a tumor suppressor in recent years. miR-15b was reported to exert an anti-oncogenic role in the proliferation, migration, and invasion of diverse tumor cells. However, the mechanisms underlying miR-15b-mediated biology of glioblastoma are still unclear. In the present study, the expression of miR-15b was down-regulated in glioblastoma tumor tissues and U87 and U251 cells, but insulin-like growth factor receptor 1 (IGF1R) expression became up-regulated in these tumor tissues and cells (all p < 0.001). Furthermore, IGF1R expression was inversely associated with miR-15b expression. Notably, patients with lower miR-15b expression have a much shorter survival period compared with high expression (log-rank test p = 0.045). In vitro data demonstrated that miR-15b mimics inhibited the proliferation, cell cycle arrest, and invasion of U87 and U251 cells. Besides, we validated IGF1R as a direct target of miR-15b using dual luciferase assays, and IGF1R plasmids partially abrogated miR-15b mimics inhibited cell proliferation. In vivo, miR-15b mimics indeed repressed cell proliferation in mouse xenograft model. In conclusion, our study demonstrated that miR-15b inhibits the progression of glioblastoma cells through targeting IGF1R, and miR-15b can be recommended as a tumor suppressor in the progression of glioblastoma.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Huaqiang Liu
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Lin Tian
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Fachen Wang
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Liangbo Han
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Wei Zhang
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China
| | - Yun-An Bai
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138, Linglongshan Road, Qingzhou, Shandong, 262500, China.
| |
Collapse
|