1
|
Zhu W, Zhang Q, Jin L, Lou S, Ye J, Cui Y, Xiong Y, Lin M, Liang G, Luo W, Zhuang Z. OTUD1 Deficiency Alleviates LPS-Induced Acute Lung Injury in Mice by Reducing Inflammatory Response. Inflammation 2024:10.1007/s10753-024-02074-7. [PMID: 39037666 DOI: 10.1007/s10753-024-02074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024]
Abstract
The ovarian tumor (OTU) family consists of deubiquitinating enzymes thought to play a crucial role in immunity. Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) pose substantial clinical challenges due to severe respiratory complications and high mortality resulting from uncontrolled inflammation. Despite this, no study has explored the potential link between the OTU family and ALI/ARDS. Using publicly available high-throughput data, 14 OTUs were screened in a simulating bacteria- or LPS-induced ALI model. Subsequently, gene knockout mice and transcriptome sequencing were employed to explore the roles and mechanisms of the selected OTUs in ALI. Our screen identified OTUD1 in the OTU family as a deubiquitinase highly related to ALI. In the LPS-induced ALI model, deficiency of OTUD1 significantly ameliorated pulmonary edema, reduced permeability damage, and decreased lung immunocyte infiltration. Furthermore, RNA-seq analysis revealed that OTUD1 deficiency inhibited key pathways, including the IFN-γ/STAT1 and TNF-α/NF-κB axes, ultimately mitigating the severity of immune responses in ALI. In summary, our study highlights OTUD1 as a critical immunomodulatory factor in acute inflammation. These findings suggest that targeting OTUD1 could hold promise for the development of novel treatments against ALI/ARDS.
Collapse
Affiliation(s)
- Weiwei Zhu
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qianhui Zhang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Leiming Jin
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuaijie Lou
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiaxi Ye
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaqian Cui
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yongqiang Xiong
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengsha Lin
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Guang Liang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| | - Wu Luo
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zaishou Zhuang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Nurlu Temel E, Savran M, Erzurumlu Y, Hasseyid N, Buyukbayram HI, Okuyucu G, Sevuk MA, Ozmen O, Beyan AC. The β1 Adrenergic Blocker Nebivolol Ameliorates Development of Endotoxic Acute Lung Injury. J Clin Med 2023; 12:jcm12051721. [PMID: 36902508 PMCID: PMC10003295 DOI: 10.3390/jcm12051721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Acute lung injury (ALI) is a disease, with no effective treatment, which might result in death. Formations of excessive inflammation and oxidative stress are responsible for the pathophysiology of ALI. Nebivolol (NBL), a third-generation selective β1 adrenoceptor antagonist, has protective pharmacological properties, such as anti-inflammatory, anti-apoptotic, and antioxidant functions. Consequently, we sought to assess the efficacy of NBL on a lipopolysaccharide (LPS)-induced ALI model via intercellular adhesion molecule-1 (ICAM-1) expression and the tissue inhibitor of metalloproteinases-1 (TIMP-1)/matrix metalloproteinases-2 (MMP-2) signaling. Thirty-two rats were split into four categories: control, LPS (5 mg/kg, intraperitoneally [IP], single dose), LPS (5 mg/kg, IP, one dosage 30 min after last NBL treatment), + NBL (10 mg/kg oral gavage for three days), and NBL (10 mg/kg oral gavage for three days). Six hours after the administration of LPS, the lung tissues of the rats were removed for histopathological, biochemical, gene expression, and immunohistochemical analyses. Oxidative stress markers such as total oxidant status and oxidative stress index levels, leukocyte transendothelial migration markers such as MMP-2, TIMP-1, and ICAM-1 expressions in the case of inflammation, and caspase-3 as an apoptotic marker, significantly increased in the LPS group. NBL therapy reversed all these changes. The results of this study suggest that NBL has utility as a potential therapeutic agent to dampen inflammation in other lung and tissue injury models.
Collapse
Affiliation(s)
- Esra Nurlu Temel
- Department of Infectious Diseases, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
- Correspondence: ; Tel.: +90-532-551-94-39; Fax: +90-246-237-11-65
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Yalcın Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Nursel Hasseyid
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Halil Ibrahim Buyukbayram
- Department of Medical Biochemistry, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Gozde Okuyucu
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Mehmet Abdulkadir Sevuk
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Ayse Coskun Beyan
- Department of Occupational Medicine, Faculty of Medicine, Dokuz Eylul University, 35220 İzmir, Turkey
| |
Collapse
|
3
|
Gao H, Zhang X, Tang F, Chen L, Tian Z, Xiao D, Li X. Knockdown of lncRNA MEG3 protects against sepsis-induced acute lung injury in mice through miR-93-5p-dependent inhibition of NF‑κB signaling pathway. Pathol Res Pract 2022; 239:154142. [DOI: 10.1016/j.prp.2022.154142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
|
4
|
Sadeghsoltani F, Mohammadzadeh I, Safari MM, Hassanpour P, Izadpanah M, Qujeq D, Moein S, Vaghari-Tabari M. Zinc and Respiratory Viral Infections: Important Trace Element in Anti-viral Response and Immune Regulation. Biol Trace Elem Res 2022; 200:2556-2571. [PMID: 34368933 PMCID: PMC8349606 DOI: 10.1007/s12011-021-02859-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Influenza viruses, respiratory syncytial virus (RSV), and SARS-COV2 are among the most dangerous respiratory viruses. Zinc is one of the essential micronutrients and is very important in the immune system. The aim of this narrative review is to review the most interesting findings about the importance of zinc in the anti-viral immune response in the respiratory tract and defense against influenza, RSV, and SARS-COV2 infections. The most interesting findings on the role of zinc in regulating immunity in the respiratory tract and the relationship between zinc and acute respiratory distress syndrome (ARDS) are reviewed, as well. Besides, current findings regarding the relationship between zinc and the effectiveness of respiratory viruses' vaccines are reviewed. The results of reviewed studies have shown that zinc and some zinc-dependent proteins are involved in anti-viral defense and immune regulation in the respiratory tract. It seems that zinc can reduce the viral titer following influenza infection. Zinc may reduce RSV burden in the lungs. Zinc can be effective in reducing the duration of viral pneumonia symptoms. Zinc may enhance the effectiveness of hydroxychloroquine in reducing mortality rate in COVID-19 patients. Besides, zinc has a positive effect in preventing ARDS and ventilator-induced lung damage. The relationship between zinc levels and the effectiveness of respiratory viruses' vaccines, especially influenza vaccines, is still unclear, and the findings are somewhat contradictory. In conclusion, zinc has anti-viral properties and is important in defending against respiratory viral infections and regulating the immune response in the respiratory tract.
Collapse
Affiliation(s)
- Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mir-Meghdad Safari
- Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Melika Izadpanah
- Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Peng J, Chen X, Hou M, Yang K, Yang B, Wang P, Du Y, Yu Q, Ren J, Liu J. The TCM Preparation Feilike Mixture for the Treatment of Pneumonia: Network Analysis, Pharmacological Assessment and Silico Simulation. Front Pharmacol 2022; 13:794405. [PMID: 35295341 PMCID: PMC8918795 DOI: 10.3389/fphar.2022.794405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Abstract
The Feilike mixture (FLKM) is a valid prescription that is frequently used to assist in the clinical treatment of pneumonia. However, the mechanisms of its effects remain unclear. First, through literature evaluation, it was preliminarily determined that FLKM improved clinical symptoms, regulated immune inflammation response and ameliorated pulmonary function. Then, via database search and literature mining, 759 targets of the 104 active compounds of FLKM were identified. The component-target (CT) network showed that the key active compositions were resveratrol, stigmasterol, beta-sitosterol, sesamin, and quercetin. 115 targets overlapped with pneumonia-related targets. The protein-protein interaction (PPI) network identified TNF, AKT1, IL6, JUN, VEGFA and MAPK3 as hub targets. KEGG analyses found that they were mainly enriched in immune related pathway. Next, in vivo experiment, we observed that FLKM ameliorated pathological injury of lung tissue and reduced neutrophil infiltration in rats with LPS-induced pneumonia. And FLKM decreased the concentration of TNF-α and IL-6 in BALF and downregulated the expression of p38MAPK, AKT and VEGFA in lung tissue. Finally, Molecular docking tests showed tight docking of these predicted targeted proteins with key active compounds. Molecular dynamics simulation was employed to assess stability and flexibility of receptor-ligand. Among them, AKT1- stigmasterol bound more stably, and their binding free energies were −47.91 ± 1.62 kcal/mol. This study revealed core compositions and targets for FLKM treating pneumonia and provided integrated pharmacological evidence to support its clinical efficacy.
Collapse
Affiliation(s)
- Juqin Peng
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Chen
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Hou
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Kuo Yang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Bing Yang
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pan Wang
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Du
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Qingyuan Yu
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Junguo Ren, ; Jianxun Liu,
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Junguo Ren, ; Jianxun Liu,
| |
Collapse
|
6
|
Lucas R, Hadizamani Y, Enkhbaatar P, Csanyi G, Caldwell RW, Hundsberger H, Sridhar S, Lever AA, Hudel M, Ash D, Ushio-Fukai M, Fukai T, Chakraborty T, Verin A, Eaton DC, Romero M, Hamacher J. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Front Physiol 2022; 12:793251. [PMID: 35264975 PMCID: PMC8899333 DOI: 10.3389/fphys.2021.793251] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Rudolf Lucas,
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Harald Hundsberger
- Department of Medical Biotechnology, University of Applied Sciences, Krems, Austria,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Alice Ann Lever
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Dipankar Ash
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tohru Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maritza Romero
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland,Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, University Medical Centre of the Saarland, Saarland University, Homburg, Germany,Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany,Jürg Hamacher,
| |
Collapse
|
7
|
Duan Q, Jia Y, Qin Y, Jin Y, Hu H, Chen J. Narciclasine attenuates LPS-induced acute lung injury in neonatal rats through suppressing inflammation and oxidative stress. Bioengineered 2021; 11:801-810. [PMID: 32693689 PMCID: PMC8291818 DOI: 10.1080/21655979.2020.1795424] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening disorder related to serious pulmonary inflammation. Narciclasine exhibits strong anti-inflammation activity and attenuates the reactive oxygen species (ROS) production. The present study aims to investigate the underlying mechanism related to the effect of narciclasine on the pathogenesis of neonatal acute lung injury (ALI). Narciclasine attenuated LPS-induced pathological injury and pulmonary edema. In addition, narciclasine suppressed the secretion of inflammatory cytokines, including necrosis factor-α (TNF-α), Interleukin (IL-6), IL-1β, monocyte chemotactic protein-1 (MCP-1) in serum, and inhibited the expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in lung tissues of neonatal ALI rats. Furthermore, narciclasine alleviated oxidative stress and apoptosis in lung tissues. Importantly, narciclasine exerted an inhibition effect on NF-κB nuclear translocation and activation of Toll-like Receptor 4 (TLR4)/Nuclear factor (NF)-κB/Cyclooxygenase 2 (Cox2) signaling pathway. Taken together, narciclasine protected against lung injury via inhibition effect on excessive inflammation, oxidative stress and apoptosis, hence, narciclasine may be considered as an effective and novel agent for clinical therapeutic strategy of ALI Treatment.
Collapse
Affiliation(s)
- Qingning Duan
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| | - Yin Jia
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| | - Yan Qin
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| | - Yingji Jin
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| | - Haozhong Hu
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| | - Jiebin Chen
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| |
Collapse
|
8
|
Wang X, Liu F, Xu M, Wu L. Penehyclidine hydrochloride alleviates lipopolysaccharide‑induced acute respiratory distress syndrome in cells via regulating autophagy‑related pathway. Mol Med Rep 2020; 23:100. [PMID: 33300058 PMCID: PMC7723159 DOI: 10.3892/mmr.2020.11739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Acute progressive hypoxic respiratory failure caused by various predisposing factors is known as acute respiratory distress syndrome (ARDS). Although penehyclidine hydrochloride (PHC), an anticholinergic drug, is widely applied in clinical practice, the specific mechanisms underlying PHC in the treatment of ARDS are not completely understood. In the present study, BEAS-2B cells were treated with 10 ng/ml lipopolysaccharide (LPS) to establish an ARDS cell model and a rat model of acute lung injury (ALI). The influences of PHC and/or autophagy inhibitor (3-methyladenine (3-MA)) on the morphology, autophagy, proliferation and apoptosis of cells and tissues were evaluated using hematoxylin and eosin staining, Cell Counting Kit-8 assays, Hoechst staining, TUNEL staining, flow cytometry, immunofluorescence assays, ELISAs and scanning electron microscopy. The expression levels of apoptosis- and autophagy-related proteins were measured via western blotting. The results indicated that PHC enhanced proliferation and autophagy, and decreased apoptosis and the inflammatory response in LPS-induced BEAS-2B cells and ALI model rats. In addition, 3-MA reversed the effects of PHC on proliferation, inflammation, apoptosis and autophagy in LPS-induced BEAS-2B cells. Therefore, the present study suggested that PHC demonstrated a protective effect in LPS-induced ARDS by regulating an autophagy-related pathway.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Fen Liu
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Min Xu
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Liangxia Wu
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
9
|
GC-MS based metabolomic profiling of lung tissue couple with network pharmacology revealed the possible protection mechanism of Pudilan Xiaoyan Oral Liquid in LPS-induced lung injury of mice. Biomed Pharmacother 2020; 124:109833. [PMID: 31958766 DOI: 10.1016/j.biopha.2020.109833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Pudilan Xiaoyan Oral Liquid (PDL) originated from "Pudilan" Classic Recipe of traditional Chinese medicine is one kind of anti-inflammatory Chinese patent medicine recorded in Chinese Pharmacopeia. PDL has been used clinically for treating inflammatory diseases of the respiratory tract. However, due to the complex composition of PDL, its potential anti-inflammation and the mechanism remain unknown. To identify the mechanism of the PDL in the treatment of lipopolysaccharide (LPS)-induced lung injury of mice. The mice models of lung injury were established and the changes of biochemical indices in serum and histopathology were detected to explore the effects of PDL. The approach of GC-MS metabolomics was used to find more significant metabolites, and the metabolic pathways were enriched through MetaboAnalyst. Then network analysis was applied to visualize the protein related to the important metabolites, merging into a protein-metabolite network via Cytoscape. The treatment of PDL could attenuate LPS-induced histopathological damage of lung tissues, followed by reducing pro-inflammation mediators including IL-10, TNF-a and NF-ĸB in serum. 11 potential metabolites were identified in lung tissue through metabolomics, which were significantly regulated to recover by PDL treatment. The correlated network was constructed by integrating potential metabolites and pathways. Aspartate and l-cysteine were selected as key metabolites and correlated proteins such as IL4I1 and ASPA were speculated as the potential target to treat LPS-induced lung injury using PDL. These results demonstrated that PDL might prevent the pathological process of lung injury through regulating the disturbed protein-metabolite network.
Collapse
|
10
|
Kong Q, Wu X, Duan W, Zhan L, Song X. Penehyclidine hydrochloride exerts protective effects in rats with acute lung injury via the Fas/FasL signaling pathway. Exp Ther Med 2019; 17:3598-3606. [PMID: 30988742 PMCID: PMC6447765 DOI: 10.3892/etm.2019.7340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/01/2019] [Indexed: 11/28/2022] Open
Abstract
Acute lung injury (ALI) is a critical syndrome that is associated with high morbidity and mortality rates. The activation of the Fas/Fas ligand (FasL) signaling pathway may be an important pathophysiological mechanism during ALI development. Penehyclidine hydrochloride (PHC) has been revealed to exhibit anti-apoptotic properties and may attenuate the observed systemic inflammatory response. The present study was performed to elucidate the molecular mechanism of PHC in the regulation of the Fas/FasL signaling pathway in rats with ALI. An ALI rat model was constructed by inducing blunt chest trauma and hemorrhagic shock (T/HS), with PHC administration prior to or following T/HS. At 6 h following T/HS, blood samples and lung tissues were collected. Western blotting, arterial blood gas analysis, ELISA, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and biochemical indicator analysis were performed to determine the degree of lung injury and the key signaling pathways associated with lung damage. The results indicated that the administration of PHC following T/HS effectively attenuates lung injury by improving pulmonary oxygenation, decreasing histopathological damage, decreasing polymorphonuclear neutrophil count and decreasing Fas, FasL, caspase-8, caspase-3, tumor necrosis factor-α, interleukin (IL)-6 and IL-1β expression. The results indicated that PHC exhibits anti-apoptotic functions and exerts protective effects in ALI rats induced by T/HS, which may be attributed to the inhibition of the Fas/FasL signaling pathway.
Collapse
Affiliation(s)
- Qian Kong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weina Duan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Liying Zhan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuemin Song
- Department of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
11
|
Momtazi G, Lambrecht BN, Naranjo JR, Schock BC. Regulators of A20 (TNFAIP3): new drug-able targets in inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 316:L456-L469. [PMID: 30543305 DOI: 10.1152/ajplung.00335.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Persistent activation of the transcription factor Nuclear factor-κB (NF-κB) is central to the pathogenesis of many inflammatory disorders, including those of the lung such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD). Despite recent advances in treatment, management of the inflammatory component of these diseases still remains suboptimal. A20 is an endogenous negative regulator of NF-κB signaling, which has been widely described in several autoimmune and inflammatory disorders and more recently in terms of chronic lung disorders. However, the underlying mechanism for the apparent lack of A20 in CF, COPD, and asthma has not been investigated. Transcriptional regulation of A20 is complex and requires coordination of different transcription factors. In this review we examine the existing body of research evidence on the regulation of A20, concentrating on pulmonary inflammation. Special focus is given to the repressor downstream regulatory element antagonist modulator (DREAM) and its nuclear and cytosolic action to regulate inflammation. We provide evidence that would suggest the A20-DREAM axis to be an important player in (airway) inflammatory responses and point to DREAM as a potential future therapeutic target for the modification of phenotypic changes in airway inflammatory disorders. A schematic summary describing the role of DREAM in inflammation with a focus on chronic lung diseases as well as the possible consequences of altered DREAM expression on immune responses is provided.
Collapse
Affiliation(s)
- G Momtazi
- Centre for Experimental Medicine, Queen's University of Belfast , Belfast , United Kingdom
| | - B N Lambrecht
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas), Instituto de Salud Carlos III, Madrid, Spain.,National Biotechnology Center, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - B C Schock
- Centre for Experimental Medicine, Queen's University of Belfast , Belfast , United Kingdom
| |
Collapse
|