1
|
Zou R, Wang Y, Cai Y, Xing Z, Shao Y, Li D, Qi C. Nanofiber-based delivery of evodiamine impedes malignant properties of intrahepatic cholangiocarcinoma cells by targeting HDAC4 and restoring TPM1 transcription. Hum Cell 2024; 37:1505-1521. [PMID: 39073525 DOI: 10.1007/s13577-024-01105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
The electrospun nanofiber system is correlated with high efficacy of drug delivery. This study aims to investigate the effect of nanofiber-based delivery of evodiamine, an indole alkaloid derived from Rutaceae plants Evodia rutaecarpa (Juss.) Benth, on intrahepatic cholangiocarcinoma (ICC), as well as to explore the molecular mechanisms. An electrospun nanofiber system carrying evodiamine was generated. Compared to evodiamine treatment alone, the nano-evodiamine exhibited more pronounced effects on suppressing proliferation, colony formation, invasiveness, migration, apoptosis resistance, cell cycle progression, and in vivo tumorigenesis of two ICC cell lines (HUCC-T1 and RBE). ICC cells exhibited increased expression of histone deacetylase 4 (HDAC4) while decreased tropomyosin 1 (TPM1). HDAC4 suppressed TPM1 expression by removing H3K9ac modifications from its promoter. Nano-evodiamine reduced HDAC4 protein levels in ICC cells, thus promoting transcription and expression of TPM1. Either overexpression of HDAC4 or downregulation of TPM1 negated the tumor-suppressive effects of nano-evodiamine. Collectively, this study demonstrates that the electrospun nanofiber system enhances the efficiency of evodiamine. Additionally, evodiamine suppresses the malignant properties of ICC cells. The findings may provide fresh insights into the application of electrospun nanofiber system for drug delivery and the effects of evodiamine on tumor suppression.
Collapse
Affiliation(s)
- Rui Zou
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, No. 9, Changbin West Fourth Street, Xiuying District, Haikou, 570100, Hainan, People's Republic of China
| | - Yiyao Wang
- Department of Integrated Traditional Chinese and Western Medicine, Hainan Cancer Hospital, Haikou, 570100, Hainan, People's Republic of China
| | - Yaoqing Cai
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, 570100, Hainan, People's Republic of China
| | - Zhenming Xing
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, No. 9, Changbin West Fourth Street, Xiuying District, Haikou, 570100, Hainan, People's Republic of China
| | - Yongfu Shao
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, No. 9, Changbin West Fourth Street, Xiuying District, Haikou, 570100, Hainan, People's Republic of China
| | - Duo Li
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, No. 9, Changbin West Fourth Street, Xiuying District, Haikou, 570100, Hainan, People's Republic of China.
| | - Chunchun Qi
- Medical College of Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
2
|
Zhou X, Li Z, Chen H, Jiao M, Zhou C, Li H. Relevance Analysis of TPM2 and Clinicopathological Characteristics in Breast Cancer. Int J Gen Med 2024; 17:59-74. [PMID: 38221941 PMCID: PMC10788065 DOI: 10.2147/ijgm.s442004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background The function of tropomyosin 2 (TPM2) in breast cancer is still far understudied. In this study, we aim to explore the roles of TPM2 in breast cancer progression. Methods This research included 155 breast cancer tissues. The expression of TPM2 was analyzed by immunohistochemical staining and grading. The mRNA expression of TPM2 in pan-cancer was analyzed with The Cancer Genome Atlas (TCGA) data plate form. The differential expression of TPM2 protein and the differential promoter methylation level of TPM2 between breast cancer tissues and normal breast tissues were analyzed by the UALCAN online database. The relationship between TPM2 and signaling pathways was interpreted by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) pathway enrichment analyses. The survival curve of TPM2 was analyzed across the Kaplan-Meier plotter online database. Furthermore, the relationship between TPM2 expression and infiltrating macrophages was validated through in vitro co-culture experiments. Results TPM2 expression was significantly down-regulated in breast cancer samples. In addition, TPM2 expression was correlated with lymph node metastasis and high-grade histopathological morphology. The receiver operating characteristic (ROC) curve indicated that TPM2 expression could well distinguish between normal breast tissue and breast cancer tissue. TPM2 may have potential value in breast cancer diagnosis. Bioinformatics analysis illustrated that TPM2 was mainly involved in extracellular matrix organization, collagen fibril organization, cell junction assembly, focal adhesion, cAMP signaling pathway, estrogen signaling pathway, Wnt signaling pathway, and adaptive immune system. TPM2 expression was correlated with immune infiltrating cells and immune checkpoint molecules. Our in vitro co-culture experiments showed that the M2 macrophages could upregulate the expression of TPM2. Conclusion TPM2 may play key roles in breast cancer occurrence and development, especially in cancer metastasis. TPM2 may be a potential biomarker for breast cancer diagnosis.
Collapse
Affiliation(s)
- Xingchen Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Zhishuang Li
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Huan Chen
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Meng Jiao
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Hui Li
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
3
|
Meng Y, Huang K, Shi M, Huo Y, Han L, Liu B, Li Y. Research Advances in the Role of the Tropomyosin Family in Cancer. Int J Mol Sci 2023; 24:13295. [PMID: 37686101 PMCID: PMC10488083 DOI: 10.3390/ijms241713295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is one of the most difficult diseases for human beings to overcome. Its development is closely related to a variety of factors, and its specific mechanisms have been a hot research topic in the field of scientific research. The tropomyosin family (Tpm) is a group of proteins closely related to the cytoskeleton and actin, and recent studies have shown that they play an important role in various cancers, participating in a variety of biological activities, including cell proliferation, invasion, and migration, and have been used as biomarkers for various cancers. The purpose of this review is to explore the research progress of the Tpm family in tumorigenesis development, focusing on the molecular pathways associated with them and their relevant activities involved in tumors. PubMed and Web of Science databases were searched for relevant studies on the role of Tpms in tumorigenesis and development and the activities of Tpms involved in tumors. Data from the literature suggest that the Tpm family is involved in tumor cell proliferation and growth, tumor cell invasion and migration, tumor angiogenesis, tumor cell apoptosis, and immune infiltration of the tumor microenvironment, among other correlations. It can be used as a potential biomarker for early diagnosis, follow-up, and therapeutic response of some tumors. The Tpm family is involved in cancer in a close relationship with miRNAs and LncRNAs. Tpms are involved in tumor tissue invasion and migration as a key link. On this basis, TPM is frequently used as a biomarker for various cancers. However, the specific molecular mechanism of its involvement in cancer progression has not been explained clearly, which remains an important direction for future research.
Collapse
Affiliation(s)
- Yucheng Meng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Ke Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yifei Huo
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Liang Han
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| |
Collapse
|
4
|
Salah RA, Nasr MA, El-Derby AM, Abd Elkodous M, Mohamed RH, El-Ekiaby N, Osama A, Elshenawy SE, Hamad MHM, Magdeldin S, Gabr MM, Abdelaziz AI, El-Badri NS. Hepatocellular carcinoma cell line-microenvironment induced cancer-associated phenotype, genotype and functionality in mesenchymal stem cells. Life Sci 2022; 288:120168. [PMID: 34826437 DOI: 10.1016/j.lfs.2021.120168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise in liver cancer treatment. However, when MSCs are recruited to hepatic site of injury, they acquire cancerous promoting phenotype. AIMS To assess the influence of Hepatocellular carcinoma (HCC) microenvironment on human adipose MSCs (hA-MSCs) and predict hA-MSCs intracellular miRNAs role. MATERIALS AND METHODS After indirect co-culturing with Huh-7 cells, hA-MSCs were characterized via cell cycle profile, proliferation and migration potentials by MTT and scratch assays respectively. Functional enrichment analysis of deregulated proteins and miRNA targets was also analyzed. KEY FINDINGS Co-cultured hA-MSCs could acquire a cancer-associated phenotype as shown by upregulation of CAF, cancer markers, and downregulation of differentiation markers. Migration of these cancer-associated cells was increased concomitantly with upregulation of adhesion molecules, but not epithelial to mesenchymal transition markers. Co-cultured cells showed increased proliferation confirmed by downregulation in cell percentage in G0/G1, G2/M and upregulation in S phases of cell cycle. Upregulation of miR-17-5p and 615-5p in co-cultured hA-MSCs was also observed. Functional enrichment analysis of dysregulated proteins in co-cultured hA-MSCs, including our selected miRNAs targets, showed their involvement in development of cancer-associated characteristics. SIGNIFICANCE This study suggests an interaction between tumor cells and surrounding stromal components to generate cancer associated phenotype of some CAF-like characteristics, known to favor cancer progression. This sheds the light on the use of hA-MSCs in HCC therapy. hA-MSCs modulation may be partially achieved via dysregulation of intracellular miR17-5P and 615-5p expression, suggesting an important role for miRNAs in HCC pathogenesis, and as a possible therapeutic candidate.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nada El-Ekiaby
- School of Medicine NewGiza University (NGU), Cairo, Egypt
| | - Aya Osama
- Proteomics and metabolomics Research Program, Basic Research Department, Children Cancer Hospital Egypt, 57357 Cairo, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | | | - Sameh Magdeldin
- Proteomics and metabolomics Research Program, Basic Research Department, Children Cancer Hospital Egypt, 57357 Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | | | - Nagwa S El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt.
| |
Collapse
|
5
|
Wang F, Li Z, Song T, Jia Y, Qi L, Ren L, Chen S. Proteomics study on the effect of silybin on cardiomyopathy in obese mice. Sci Rep 2021; 11:7136. [PMID: 33785854 PMCID: PMC8009917 DOI: 10.1038/s41598-021-86717-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/19/2021] [Indexed: 12/29/2022] Open
Abstract
Due to the increase in the number of obese individuals, the incidence of obesity-related complications such as cardiovascular disease and type 2 diabetes is higher. The aim of the present study was to explore the effects of silybin on protein expression in obese mice. Firstly, serum was collected, and it was used to detect serum lipids and other serological indicators. Secondly, total protein from epididymal adipose tissue was extracted for differential expression analysis by quantitative tandem mass tag (TMT) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by bioinformatics and protein-protein interaction (PPI) network analyses of these proteins. Lastly, real-time polymerase chain reaction (RT-PCR) and parallel reaction monitoring (PRM) were used to further validate the expression of identified differentially expressed proteins (DEPs) at the mRNA and protein level, respectively. The results revealed that silybin could improve abnormal lipid metabolism caused by the high fat diet in obese mice. A total of 341, 538 and 243 DEPs were found in the high fat/control (WF/WC), silybin/high fat (WS/WF) and WS/WC groups, respectively. These DEPs mainly participated in lipid metabolism and energy metabolism. Notably, tropomyosin 1 (TPM1), myosin light chain 2 (MYL2), myosin heavy chain 11 (MYH11) and other DEPs were involved in hypertrophic cardiomyopathy, dilated cardiomyopathy and other pathways. Silybin could protect cardiac function by inducing the protein expression of TPM1, MYL2 and MYH11 in the adipose tissue of obese mice.
Collapse
Affiliation(s)
- Fei Wang
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Zelin Li
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Tiantian Song
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Yujiao Jia
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei Medical University, Shijiazhaung, China
| | - Licui Qi
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei North University, Shijiazhaung, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhaung, 050000, Hebei, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Graduate School of Hebei North University, No. 348 Heping West Road, Shijiazhaung, 050000, Hebei, China.
| |
Collapse
|