1
|
Chen L, Ye T, Wang X, Han L, Wang T, Qi D, Cheng X. The Mechanisms Underlying the Pharmacological Effects of GuiPi Decoction on Major Depressive Disorder based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2023; 26:1701-1728. [PMID: 36045534 DOI: 10.2174/1386207325666220831152959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/12/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Major Depressive Disorder (MDD) is a common affective disorder. GuiPi decoction (GPD) is used to treat depression in China, Japan, and Korea. However, its effective ingredients and antidepressant mechanisms remain unclear. We attempted to reveal the potential mechanisms of GPD in the treatment of MDD by network pharmacology and molecular docking. In addition, we conducted an enzymatic activity assay to validate the results of molecular docking. METHODS GPD-related compounds and targets, and MDD-related targets were retrieved from databases and literature. The herb-compound-target network was constructed by Cytoscape. The protein- protein interaction network was built using the STRING database to find key targets of GPD on MDD. Enrichment analysis of shared targets was analyzed by MetaCore database to obtain the potential pathway and biological process of GPD on MDD. The main active compounds treating MDD were screened by molecular docking. The PDE4s inhibitors were screened and verified by an enzyme activity assay. RESULTS GPD contained 1222 ingredients and 190 potential targets for anti-MDD. Possible biological processes regulated by GPD were neurophysiological processes, blood vessel morphogenesis, Camp Responsive Element Modulator (CREM) pathway, and Androgen Receptor (AR) signaling crosstalk in MDD. Potential pathways in MDD associated with GPD include neurotransmission, cell differentiation, androgen signaling, and estrogen signaling. Fumarine, m-cresol, quercetin, betasitosterol, fumarine, taraxasterol, and lupeol in GPD may be the targets of SLC6A4, monoamine oxidase A (MAOA), DRD2, OPRM1, HTR3A, Albumin (ALB), and NTRK1, respectively. The IC50 values of trifolin targeting Phosphodiesterase (PDE) 4A and girinimbine targeting PDE4B1 were 73.79 μM and 31.86 μM, respectively. The IC50 values of girinimbine and benzo[a]carbazole on PDE4B2 were 51.62 μM and 94.61 μM, respectively. CONCLUSION Different compounds in GPD may target the same protein, and the same component in GPD can target multiple targets. These results suggest that the effects of GPD on MDD are holistic and systematic, unlike the pattern of one drug-one target.
Collapse
Affiliation(s)
- Liyuan Chen
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianyuan Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaolong Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Tongxing Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin 300410, China
| | - Dongmei Qi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaorui Cheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
2
|
Cystathionine β-Synthase Regulates the Proliferation, Migration, and Invasion of Thyroid Carcinoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8678363. [PMID: 35795862 PMCID: PMC9252770 DOI: 10.1155/2022/8678363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022]
Abstract
Thyroid cancer is considered to be one of the most common endocrine tumors worldwide. Cystathionine β-synthase (CBS) plays a crucial role in the occurrence of several types of malignancies. And yet, the mechanism of action of CBS in the growth of thyroid carcinoma cells is still unrevealed. We found that CBS level in thyroid carcinoma tissue was higher than that in adjacent normal tissue. The overexpression of CBS enhanced the proliferation, migration, and invasion of thyroid cancer cells, while the downregulation of CBS exerted reverse effects. CBS overexpression reduced the levels of cleaved caspase-3 and cleaved poly ADP-ribose polymerase in thyroid cancer cells, whereas CBS knockdown showed reverse trends. CBS overexpression decreased reactive oxygen species (ROS) levels but increased the levels of Wnt3a and phosphorylations of phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB/AKT), mammalian target of rapamycin (mTOR), β-catenin, and glycogen synthase kinase-3 beta, while CBS knockdown exerted opposite effects. In addition, CBS overexpression promoted the growth of xenografted thyroid carcinoma, whereas CBS knockdown decreased the tumor growth by modulating angiogenesis, cell cycle, and apoptosis. Furthermore, aminooxyacetic acid (an inhibitor of CBS) dose-dependently inhibited thyroid carcinoma cell growth. CBS can regulate the proliferation, migration, and invasion of human thyroid cancer cells via ROS-mediated PI3K/AKT/mTOR and Wnt/β-catenin pathways. CBS can be a potential biomarker for diagnosing or prognosing thyroid carcinoma. Novel donors that inhibit the expression of CBS can be developed in the treatment of thyroid carcinoma.
Collapse
|
3
|
Song F, Liu D, Huo X, Qiu D. The anticancer activity of carbazole alkaloids. Arch Pharm (Weinheim) 2021; 355:e2100277. [PMID: 34486161 DOI: 10.1002/ardp.202100277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Chemotherapy is the first choice for the majority of cancers, but severe side effects and drug resistance restrict the actual clinical efficacy. Carbazole alkaloids, mainly from the Rutaceae family, possess favorable donor ability, good planarity, rich photophysical properties, and excellent biocompatibility. Carbazole alkaloids could not only intercalate in DNA but could also inhibit telomerase and topoisomerase and regulate protein phosphorylation. Hence, carbazole alkaloids are useful in providing lead hits/candidates for the development of novel anticancer agents. This review summarizes the research progress made regarding the anticancer properties of carbazole alkaloids, covering articles published from January 2010 to June 2021.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Dan Liu
- Dezhou Number One Middle School, Dezhou, Shandong, China
| | - Xiankai Huo
- Department of Medical Imaging, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Di Qiu
- Department of Hematology, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
4
|
Xin Q, Muer A. Retracted: Girinimbine Inhibits the Proliferation of Human Ovarian Cancer Cells In Vitro via the Phosphatidylinositol-3-Kinase (PI3K)/Akt and the Mammalian Target of Rapamycin (mTOR) and Wnt/β-Catenin Signaling Pathways. Med Sci Monit 2021; 27:e931225. [PMID: 33704262 PMCID: PMC7962497 DOI: 10.12659/msm.931225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This paper is retracted at the author's request. Reference: Qiu Xin, An Muer: Girinimbine Inhibits the Proliferation of Human Ovarian Cancer Cells In Vitro via the Phosphatidylinositol-3-Kinase (PI3K)/Akt and the Mammalian Target of Rapamycin (mTOR) and Wnt/ß-Catenin Signaling Pathways. Med Sci Monit 2018; 24: 5480-5487. 10.12659/MSM.910137.
Collapse
Affiliation(s)
- Qiu Xin
- Department of Obstetrics and Gynecology, Huashan Hospital North, Fudan University, Shanghai, China (mainland)
| | - An Muer
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
5
|
Aniqa A, Kaur S, Sadwal S. A Review of the Anti-Cancer Potential of Murraya koenigii (Curry Tree) and Its Active Constituents. Nutr Cancer 2021; 74:12-26. [PMID: 33587002 DOI: 10.1080/01635581.2021.1882509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Murraya koenigii (MK) relates to the Rutaceae family and has many health benefits. To date, over eighty-eight carbazole alkaloids along with terpenoids, and other nutrients have been identified from different parts of this plant. This review presents accumulated information regarding the role of MK and its constituents in the prevention/treatment of cancer. Literature survey revealed that MK and its constituents target multiple deranged pathways associated with apoptosis, growth (JAK-STAT, mTOR), and cell cycle in a variety of cancerous cell lines (colon, lung, liver, skin, prostate, breast, etc.) and few animal models. Thus, the present review highlights the anticancer mechanism of MK and its phytoconstituents, and further future perspectives. The ameliorating effects of MK and its phytoconstituents against various cancers warrant its multi-institutional clinical trials as soon as possible. The prospects of relatively cheaper cancer drugs could then be brighter, particularly for the socio-economically feebler cancer patients of the world.
Collapse
Affiliation(s)
- Aniqa Aniqa
- Department of Biophysics, Panjab University, Chandigarh, India
| | | | - Shilpa Sadwal
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Yan H, Guo M. Schizandrin A inhibits cellular phenotypes of breast cancer cells by repressing miR-155. IUBMB Life 2020; 72:1640-1648. [PMID: 32623835 DOI: 10.1002/iub.2329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022]
Abstract
AIMS Schizandrin A (SchA) is a type of lignan with biological properties against oxidation, inflammation, and cancer. Here, we aimed to sustain the bioactive properties of SchA in proliferative and motional phenotypes of MDA-MB-231 cells and their molecular mechanism. METHODS MDA-MB-231 cells were exposed to SchA. At 24 h after SchA treatment, the viability and proliferation were measured using CCK-8 and BrdU incorporation methods, respectively. Propidium iodide/Annexin V-FITC staining was carried out for detecting apoptotic cells. Migration and invasion were detected by 24-Transwell assay. Proteins expression was evaluated by Western blotting. MDA-MB-231 cells were transfected with microRNA (miR)-155 mimic, and miR-155 was detected by qRT-PCR. RESULTS SchA weakens the viability of MDA-MB-231 cells in a dose-relative way (0-40 μM). Furthermore, 30 μM SchA significantly suppresses proliferation, enhances apoptosis, and inhibits migration and invasion. SchA strikingly decreases miR-155. Exogenous miR-155 counteracts the inhibitory effects that SchA confers on proliferative and motional activities. Finally, SchA was observed to blunt PI3K/AKT and Wnt/β-catenin while miR-155 mimic reverses the effects. CONCLUSION Taken together, SchA downregulates miR-155 and results in the suppression of proliferation and motility in breast cancer cells. Our findings proposed that SchA might be used as an underlying therapeutic agent.
Collapse
Affiliation(s)
- Huiling Yan
- Department of Traditional Chinese Medicine, Jining No. 1 People's Hospital, Jining, Shandong, China.,Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Meng Guo
- Department of Breast and Thyroid Surgery, Jining No. 1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
7
|
Balakrishnan R, Vijayraja D, Jo SH, Ganesan P, Su-Kim I, Choi DK. Medicinal Profile, Phytochemistry, and Pharmacological Activities of Murraya koenigii and its Primary Bioactive Compounds. Antioxidants (Basel) 2020; 9:E101. [PMID: 31991665 PMCID: PMC7070712 DOI: 10.3390/antiox9020101] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of several revitalizing molecules that can stop or reduce the pathology of a wide range of diseases will be considered a major breakthrough of the present time. Available synthetic compounds may provoke side effects and health issues, which heightens the need for molecules from plants and other natural resources under discovery as potential methods of replacing synthetic compounds. In traditional medicinal therapies, several plant extracts and phytochemicals have been reported to impart remedial effects as better alternatives. Murraya koenigii (M. koenigii) belongs to the Rutaceae family, which is commonly used as a medicinally important herb of Indian origin in the Ayurvedic system of medicine. Previous reports have demonstrated that the leaves, roots, and bark of this plant are rich sources of carbazole alkaloids, which produce potent biological activities and pharmacological effects. These include antioxidant, antidiabetic, anti-inflammatory, antitumor, and neuroprotective activities. The present review provides insight into the major components of M. koenigii and their pharmacological activities against different pathological conditions. The review also emphasizes the need for more research on the molecular basis of such activity in various cellular and animal models to validate the efficacy of M. koenigii and its derivatives as potent therapeutic agents.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
| | - Dhanraj Vijayraja
- Department of Biochemistry, Rev. Jacob Memorial Christian College, Ambilikkai 624612, Tamilnadu, India;
| | - Song-Hee Jo
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
| | - Palanivel Ganesan
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Korea;
| | - In Su-Kim
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
| | - Dong-Kug Choi
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Korea;
| |
Collapse
|