1
|
Guarino A, Pignata P, Lovisari F, Asth L, Simonato M, Soukupova M. Cognitive comorbidities in the rat pilocarpine model of epilepsy. Front Neurol 2024; 15:1392977. [PMID: 38872822 PMCID: PMC11171745 DOI: 10.3389/fneur.2024.1392977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Patients with epilepsy are prone to cognitive decline, depression, anxiety and other behavioral disorders. Cognitive comorbidities are particularly common and well-characterized in people with temporal lobe epilepsy, while inconsistently addressed in epileptic animals. Therefore, the aim of this study was to ascertain whether there is good evidence of cognitive comorbidities in animal models of epilepsy, in particular in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature published between 1990 and 2023. The association of spontaneous recurrent seizures induced by pilocarpine with cognitive alterations has been evaluated by using various tests: contextual fear conditioning (CFC), novel object recognition (NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination of results was difficult because of differences in methodological standards, in number of animals employed, and in outcome measures. Taken together, however, the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition in rats, and supports the notion that this is a valid model for assessment of cognitive temporal lobe epilepsy comorbidities in preclinical research.
Collapse
Affiliation(s)
- Annunziata Guarino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Paola Pignata
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francesca Lovisari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci 2023; 24:ijms24043748. [PMID: 36835155 PMCID: PMC9967135 DOI: 10.3390/ijms24043748] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Neurodegenerative diseases (NDs) affect the West due to the increase in life expectancy. Nervous cells accumulate oxidative damage, which is one of the factors that triggers and accelerates neurodegeneration. However, cells have mechanisms that scavenge reactive oxygen species (ROS) and alleviate oxidative stress (OS). Many of these endogenous antioxidant systems are regulated at the gene expression level by the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In the presence of prooxidant conditions, Nrf2 translocates to the nucleus and induces the transcription of genes containing ARE (antioxidant response element). In recent years, there has been an increase in the study of the Nrf2 pathway and the natural products that positively regulate it to reduce oxidative damage to the nervous system, both in in vitro models with neurons and microglia subjected to stress factors and in vivo models using mainly murine models. Quercetin, curcumin, anthocyanins, tea polyphenols, and other less studied phenolic compounds such as kaempferol, hesperetin, and icariin can also modulate Nrf2 by regulating several Nrf2 upstream activators. Another group of phytochemical compounds that upregulate this pathway are terpenoids, including monoterpenes (aucubin, catapol), diterpenes (ginkgolides), triterpenes (ginsenosides), and carotenoids (astaxanthin, lycopene). This review aims to update the knowledge on the influence of secondary metabolites of health interest on the activation of the Nrf2 pathway and their potential as treatments for NDs.
Collapse
|
3
|
Huang Z, Gong J, Lin W, Feng Z, Ma Y, Tu Y, Cai X, Liu J, Lv C, Lv X, Wu Q, Lu W, Zhao J, Ying Y, Li S, Ni W, Chen H. Catalpol as a Component of Rehmannia glutinosa Protects Spinal Cord Injury by Inhibiting Endoplasmic Reticulum Stress-Mediated Neuronal Apoptosis. Front Pharmacol 2022; 13:860757. [PMID: 35873542 PMCID: PMC9305481 DOI: 10.3389/fphar.2022.860757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
Disturbance of the internal environment in the spinal cord after spinal cord injury (SCI) is an important cause of the massive death of neurons in the injury area and one of the major problems that lead to the difficult recovery of motor function in patients. Rehmannia glutinosa, a famous traditional Chinese medicine, is commonly used in neurodegenerative diseases, whereas an iridoid glycoside extract of catalpol (CAT), with antioxidant, antiapoptotic, and neuroprotective pharmacological effects. However, the neuroprotective and anti-apoptosis mechanism of CAT in SCI remains unclear. In our study, we found that CAT has a restorative effect on the lower limb motor function of rats with SCI by establishing a rat model of SCI and treating CAT gavage for 30 days. Our study further found that CAT has the effect of inhibiting apoptosis and protecting neurons, and the action pathway may reduce endoplasmic reticulum (ER) stress by inhibiting CHOP and GRP78 expression and then reduce apoptosis and protect neurons through the Caspase3/Bax/Bcl-2 pathway. In conclusion, we demonstrated that CAT can treat SCI by inhibiting ER stress-mediated neuronal apoptosis and has the potential to be a clinical drug for the treatment of SCI.
Collapse
Affiliation(s)
- Zhiyang Huang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahong Gong
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyi Feng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yirou Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yurong Tu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiong Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianhua Liu
- Department of Physical Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Chang Lv
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinru Lv
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjie Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Juan Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengcun Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Shengcun Li, ; Wenfei Ni, ; Haili Chen,
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Shengcun Li, ; Wenfei Ni, ; Haili Chen,
| | - Haili Chen
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Shengcun Li, ; Wenfei Ni, ; Haili Chen,
| |
Collapse
|
4
|
Lee CM, Liu RW. Comparison of pelvic incidence measurement using lateral x-ray, standard ct versus ct with 3d reconstruction. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 31:241-247. [PMID: 34743245 DOI: 10.1007/s00586-021-07024-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Pelvic incidence (PI) is a position independent parameter used to quantify spinopelvic sagittal balance. PI is generally measured on lateral radiographs, but more recent studies have suggested better accuracy with standard CT scans versus three-dimensional (3D) CT scans. This study compares PI obtained from lateral XR, standard CT scan and CT scan with 3D reconstruction. METHODS A total of 77 subjects with lateral XRs of the pelvis or lumbosacral spine and CT scans of the pelvis were randomly selected. Pelvic incidence on lateral XRs, standard CT scans and CT scans utilizing multiplanar reconstruction were measured and compared using intraclass correlation coefficients (ICC). PI was also measured on serial images in 28 individuals using the same imaging modality within 3 years and evaluated using ICC. RESULTS Mean ± SD of PI measurements on XR, standard CT and CT with 3D reconstruction were 56° ± 13°, 53° ± 12° and 53° ± 12°, respectively, demonstrating a small but significant elevation of PI measurement on XR (P < 0.001). ICC values demonstrated a higher correlation between standard CT and 3D CT (ICC 0.986), compared to XR and standard CT (ICC 0.934) and XR and 3D CT (ICC 0.937). PI measurements on repeated imaging of the same individual also demonstrated that both CT methods produced more consistent measurements (ICC 0.986 for standard CT, 0.981 for 3D CT, 0.935 for XR). CONCLUSION Although standard XR does provide a high level of reliability, it appears to slightly overestimate PI. CT scans do provide increased reliability, with no additional benefit of 3D reconstructions over standard CT.
Collapse
Affiliation(s)
- Carol M Lee
- Victor M. Goldberg Professor Chair in Orthopaedics, Division of Pediatric Orthopaedic Surgery, Rainbow Babies and Children's Hospital, Case Western Reserve University, 11100 Euclid Avenue, RBC 6081, Cleveland, OH, 44106, USA
| | - Raymond W Liu
- Victor M. Goldberg Professor Chair in Orthopaedics, Division of Pediatric Orthopaedic Surgery, Rainbow Babies and Children's Hospital, Case Western Reserve University, 11100 Euclid Avenue, RBC 6081, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Pina LTS, Guimarães AG, Santos WBDR, Oliveira MA, Rabelo TK, Serafini MR. Monoterpenes as a perspective for the treatment of seizures: A Systematic Review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153422. [PMID: 33310306 DOI: 10.1016/j.phymed.2020.153422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epilepsy affects more than 65 million people worldwide. Treatment for epileptic seizures is ineffective and has many adverse effects. For this reason, the search for new therapeutic options capable of filling these limitations is necessary. HYPOTHESIS/PURPOSE In this sense, natural products, such as monoterpenes, have been indicated as a new option to control neurological disorders such as epilepsy. STUDY DESIGN Therefore, the objective of this study was to review the monoterpenes that have anticonvulsive activity in animal models. METHODS The searches were performed in the PubMed, Web of Science and Scopus databases in September, 2020 and compiled studies using monoterpenes as an alternative to seizure. Two independent reviewers performed the study selection, data extraction and methodological quality assessment using the Syrcle tool. RESULTS 51 articles that described the anticonvulsant activity of 35 monoterpenes were selected with action on the main pharmacological target, including GABAA receptors, glutamate, calcium channels, sodium and potassium. In addition, these compounds are capable of reducing neuronal inflammation and oxidative stress caused by seizure. CONCLUSION These compounds stand out as a promising alternative for acting through different pharmacological mechanisms, which may not only reduce seizure, but also promote neuroprotective effect by reducing toxicity in brain regions. However, further studies are needed to determine the mechanism of action and safety assessment of these compounds.
Collapse
Affiliation(s)
- Lícia T S Pina
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil.
| | - Adriana G Guimarães
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Wagner B da R Santos
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Thallita K Rabelo
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mairim R Serafini
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
6
|
Gao X, Xu J, Liu H. Protective effects of catalpol on mitochondria of hepatocytes in cholestatic liver injury. Mol Med Rep 2020; 22:2424-2432. [PMID: 32705256 PMCID: PMC7411478 DOI: 10.3892/mmr.2020.11337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Cholestasis, which is caused by the obstruction of bile flow, can lead to rapid organ injury, cell apoptosis and necrosis of hepatocytes, and may eventually develop into fibrosis and cirrhosis. Oxidative stress and mitochondrial dysfunction are the key pathogenic signs of hepatic cholestasis. Catalpol has pharmacological activities, including antioxidative and anti-inflammatory effects, and may relieve mitochondrial damage and restore mitochondrial membrane potential. However, the potential roles and mechanisms of catalpol in cholestasis-induced liver injury are not clear. In the present study, liver function-related indexes were measured in the serum of mice by commercial kits. In addition, levels of serum inflammatory factors were detected by ELISA. Hematoxylin and eosin staining was performed to observe histopathological changes, and mitochondrial membrane potential was detected using JC-1 staining. Mitochondrial adenosine triphosphate (ATP), reactive oxygen species (ROS) and malondialdehyde levels were determined using a luciferase reporter kit, flow cytometry and a thiobarbituric acid reactive substance assay kit, respectively. Western blotting was performed to detect the expression levels of apoptosis-related proteins in liver tissues. The findings revealed that catalpol reduced liver damage caused by cholestasis, improved the mitochondrial membrane potential, and increased the ATP content and glutathione content of cholestasis model mice. Moreover, catalpol also reduced the ROS level, inhibited lipid peroxidation, and regulated oxidative stress and apoptotic protein expression. Thus, the present study preliminarily confirmed that catalpol can reduce liver injury in a mouse model of cholestasis through inhibiting oxidative stress and enhancing mitochondrial membrane potential.
Collapse
Affiliation(s)
- Xingjuan Gao
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jiaju Xu
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Hongbo Liu
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
7
|
Kim M, Acharya S, Botanas CJ, Custodio RJ, Lee HJ, Sayson LV, Abiero A, Lee YS, Cheong JH, Kim KM, Kim HJ. Catalpol and Mannitol, Two Components of Rehmannia glutinosa, Exhibit Anticonvulsant Effects Probably via GABA A Receptor Regulation. Biomol Ther (Seoul) 2020; 28:137-144. [PMID: 31739380 PMCID: PMC7059811 DOI: 10.4062/biomolther.2019.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/25/2022] Open
Abstract
Epilepsy is a brain disorder that affects millions of people worldwide and is usually managed using currently available antiepileptic drugs, which result in adverse effects and are ineffective in approximately 20–25% of patients. Thus, there is growing interest in the development of new antiepileptic drugs with fewer side effects. In a previous study, we showed that a Rehmannia glutinosa (RG) water extract has protective effects against electroshock- and pentylenetetrazol (PTZ)-induced seizures, with fewer side effects. In this study, the objective was to identify the RG components that are responsible for its anticonvulsant effects. Initially, a number of RG components (aucubin, acteoside, catalpol, and mannitol) were screened, and the anticonvulsant effects of different doses of catalpol, mannitol, and their combination on electroshock- and chemically (PTZ or strychnine)-induced seizures in mice, were further assessed. Gamma-aminobutyric acid (GABA) receptor binding assay and electroencephalography (EEG) analysis were conducted to identify the potential underlying drug mechanism. Additionally, treated mice were tested using open-field and rotarod tests. Catalpol, mannitol, and their combination increased threshold against electroshock-induced seizures, and decreased the percentage of seizure responses induced by PTZ, a GABA antagonist. GABA receptor binding assay results revealed that catalpol and mannitol are associated with GABA receptor activity, and EEG analysis provided evidence that catalpol and mannitol have anticonvulsant effects against PTZ-induced seizures. In summary, our results indicate that catalpol and mannitol have anticonvulsant properties, and may mediate the protective effects of RG against seizures.
Collapse
Affiliation(s)
- Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Srijan Acharya
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Arvie Abiero
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Yong Soo Lee
- Department of Pharmacology, College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|