1
|
Zhao YH, Liang Y, Wang KJ, Jin SN, Yu XM, Zhang Q, Wei JY, Liu H, Fang WG, Zhao WD, Li Y, Chen YH. Endothelial lincRNA-p21 alleviates cerebral ischemia/reperfusion injury by maintaining blood-brain barrier integrity. J Cereb Blood Flow Metab 2024; 44:1532-1550. [PMID: 38661094 PMCID: PMC11418693 DOI: 10.1177/0271678x241248907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Blood-brain barrier (BBB) disruption is increasingly recognized as an early contributor to the pathophysiology of cerebral ischemia/reperfusion (I/R) injury, and is also a key event in triggering secondary damage to the central nervous system. Recently, long non-coding RNA (lncRNA) have been found to be associated with ischemic stroke. However, the roles of lncRNA in BBB homeostasis remain largely unknown. Here, we report that long intergenic non-coding RNA-p21 (lincRNA-p21) was the most significantly down-regulated lncRNA in human brain microvascular endothelial cells (HBMECs) after oxygen and glucose deprivation/reoxygenation (OGD/R) treatment among candidate lncRNA, which were both sensitive to hypoxia and involved in atherosclerosis. Exogenous brain-endothelium-specific overexpression of lincRNA-p21 could alleviate BBB disruption, diminish infarction volume and attenuate motor function deficits in middle cerebral artery occlusion/reperfusion (MCAO/R) mice. Further results showed that lincRNA-p21 was critical to maintain BBB integrity by inhibiting the degradation of junction proteins under MCAO/R and OGD/R conditions. Specifically, lincRNA-p21 could inhibit autophagy-dependent degradation of occludin by activating PI3K/AKT/mTOR signaling pathway. Besides, lincRNA-p21 could inhibit VE-cadherin degradation by binding with miR-101-3p. Together, we identify that lincRNA-p21 is critical for BBB integrity maintenance, and endothelial lincRNA-p21 overexpression could alleviate cerebral I/R injury in mice, pointing to a potential strategy to treat cerebral I/R injury.
Collapse
Affiliation(s)
- Yun-Hua Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Liang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Kang-Ji Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Sheng-Nan Jin
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiao-Meng Yu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qian Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jia-Yi Wei
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Hui Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Wen-Gang Fang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yuan Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Yu J, Wang J, Yang J, Ouyang T, Gao H, Kan H, Yang Y. New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155088. [PMID: 37844377 DOI: 10.1016/j.phymed.2023.155088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Ginkgo biloba leaves (GBLs), as an herbal dietary supplement and a traditional Chinese medicine, have been used in treating diseases for hundred years. Recently, increasing evidence reveals that the extracts and active ingredients of GBLs have anti-cancer (chemo-preventive) properties. However, the molecular mechanism of GBLs in anti-cancer has not been comprehensively summarized. PURPOSE To systematically summarize the literatures for identifying the molecular mechanism of GBLs in cellular, animal models and clinical trials of cancers, as well as for critically evaluating the current evidence of efficacy and safety of GBLs for cancers. METHODS Employing the search terms "Ginkgo biloba" and "cancer" till July 25, 2023, a comprehensive search was carried out in four electronic databases including Scopus, PubMed, Google Scholar and Web of Science. The articles not contained in the databases are performed by manual searches and all the literatures on anti-cancer research and mechanism of action of GBLs was extracted and summarized. The quality of methodology was assessed independently through PRISMA 2020. RESULTS Among 84 records found in the database, 28 were systematic reviews related to GBLs, while the remaining 56 records were related to the anticancer effects of GBLs, which include studies on the anticancer activities and mechanisms of extracts or its components in GBLs at cellular, animal, and clinical levels. During these studies, the top six cancer types associated with GBLs are lung cancer, hepatocellular carcinoma, gastric cancer, breast cancer, colorectal cancer, and cervical cancer. Further analysis reveals that GBLs primarily exert their anticancer effects by stimulating cancer cell apoptosis, inhibiting cell proliferation, invasion and migration of cancers, exhibiting anti-inflammatory and antioxidant properties, and modulating signaling pathways. Besides, the pharmacology, toxicology, and clinical research on the anti-tumor activity of GBLs have also been discussed. CONCLUSIONS This is the first paper to thoroughly investigate the pharmacology effect, toxicology, and the mechanisms of action of GBLs for anti-cancer properties. All the findings will reinforce the need to explore the new usage of GBLs in cancers and offer comprehensive reference data and recommendations for future research on this herbal medicine.
Collapse
Affiliation(s)
- Jing Yu
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| | - Jianhua Yang
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Ting Ouyang
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Honglei Gao
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China; Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui 230012, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China; Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui 230012, China.
| |
Collapse
|
3
|
El-Sayed A, Aleya L, Kamel M. Epigenetics and the role of nutraceuticals in health and disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28480-28505. [PMID: 36694069 DOI: 10.1007/s11356-023-25236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In the post-genomic era, the data provided by complete genome sequencing could not answer several fundamental questions about the causes of many noninfectious diseases, diagnostic biomarkers, and novel therapeutic approaches. The rapidly expanding understanding of epigenetic mechanisms, as well as widespread acceptance of their hypothesized role in disease induction, facilitated the development of a number of novel diagnostic markers and therapeutic concepts. Epigenetic aberrations are reversible in nature, which enables the treatment of serious incurable diseases. Therefore, the interest in epigenetic modulatory effects has increased over the last decade, so about 60,000 publications discussing the expression of epigenetics could be detected in the PubMed database. Out of these, 58,442 were published alone in the last 10 years, including 17,672 reviews (69 historical articles), 314 clinical trials, 202 case reports, 197 meta-analyses, 156 letters to the editor, 108 randomized controlled trials, 87 observation studies, 40 book chapters, 22 published lectures, and 2 clinical trial protocols. The remaining publications are either miscellaneous or a mixture of the previously mentioned items. According to the species and gender, the publications included 44,589 human studies (17,106 females, 14,509 males, and the gender is not mentioned in the remaining papers) and 30,253 animal studies. In the present work, the role of epigenetic modulations in health and disease and the influencing factors in epigenetics are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
4
|
Huang Y, Yi Q, Feng J, Xie W, Sun W, Sun W. The role of lincRNA-p21 in regulating the biology of cancer cells. Hum Cell 2022; 35:1640-1649. [PMID: 35969349 DOI: 10.1007/s13577-022-00768-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a type of multifunctional endogenous RNA transcript. The dysregulation of lncRNAs is considered to play a role in the initiation and progression of cancer. One such lncRNA, long intergenic non-coding RNA-p21 (lincRNA-p21), was identified in 2010 as a regulator in the p53 pathway and is gradually being identified to play crucial roles in diverse cellular processes. In this review, we have summarised the diverse regulatory functions of lincRNA-p21. For example, lincRNA-p21 has been reported to function as a protein decoy, act as a competitive endogenous RNA, regulate the transcription, regulate the translation processes and exist in the secreted exosomes. Furthermore, we highlight the emerging roles of lincRNA-p21 in cancer cell regulation. Various types of cancers, including colorectal carcinoma, hepatocellular carcinoma and non-small cell lung carcinoma, aberrantly express lincRNA-p21. However, the current understanding of the roles of lincRNA-p21 in cancer remains limited. Therefore, considering its potential as a valuable therapeutic target or biomarker for cancer, more research should be conducted to understand the role of lincRNA-p21 in cancer and other diseases.
Collapse
Affiliation(s)
- Yan Huang
- Department of Dermatology, Suining First People's Hospital, Suining, 629000, Sichuan, China
| | - Qian Yi
- The Central Laboratory, Affiliated Hospital of Putian University, Putian, China.,Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China. .,The Central Laboratory, Shenzhen Second People' Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
5
|
Effect of Ginkgo Biloba Powder on the Physicochemical Properties and Quality Characteristics of Wheat Dough and Fresh Wet Noodles. Foods 2022; 11:foods11050698. [PMID: 35267331 PMCID: PMC8909626 DOI: 10.3390/foods11050698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Effects of ginkgo biloba powder (GBP) on the chemical, physicochemical properties and quality of dough and fresh wet noodles were investigated. Lower contents of gluten and starch, and higher contents of fibre, amylose and flavonoids in GBP than wheat flour, were detected. Water absorption of dough increased and the development time and stability time of dough were decreased with GBP addition. Meanwhile, the pasting properties results showed that the addition of GBP reduced the aging degree of starch and improved the thermal stability of dough. Scanning electron microscopy results showed that addition of GBP smoothed the surface of raw noodles while increasing the hole size of the cooked noodles. With increased GBP addition (0~40%), the chewiness and extensibility of the fresh wet noodles increased significantly (p < 0.05), and the sensory scores changed, ascending from 0~20% substitution, and then descending from 20~40% substitution. The digestibility and estimated glycemic index (eGI) values of the GBP fresh wet noodles decreased significantly (p < 0.05). In general, 20% GBP addition could improve the chewiness, extensibility, taste and nutrition of fresh wet noodles, and decrease the digestibility and eGI values of noodles. Thus, GBP has potential for application in the noodle industry.
Collapse
|
6
|
Liu Y, Ding S, Luan Y, Zhu Z, Cai Y, Liu Y. Ginkgo biloba extracts inhibit post-ischemic LTP through attenuating EPSCs in rat hippocampus. Metab Brain Dis 2021; 36:2299-2311. [PMID: 34463942 DOI: 10.1007/s11011-021-00830-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
Ginkgo biloba extract 761 (EGb761), a standardized extract from the Ginkgo biloba leaf, is purported to inhibit NMDA receptor-mediated neuronal excitotoxicity and protect neurons form ischemic injury. However, the specific signal pathway involved in the effects of EGb761 on synaptic plasticity is still in dispute. In this article, effects of EGb761 and its monomer component ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and quercetin on rat hippocampal synaptic plasticity were studied. The evoked Excitatory postsynaptic currents (EPSCs) and miniature EPSCs were recorded on hippocampal slices from SD rats (14-21 days of age) by whole-cell patch-clamp recording and long-term potentiation (LTP) was induced by theta-burst stimulation. Acutely applied EGb761 inhibited the LTP, but bilaterally affect the evoked EPSCs. The evoked EPSCs were increased by incubation of lower concentration of EGb761, then the evoked EPSCs were decreased by incubation of higher concentration of EGb761. EGb761 monomer component GA, GB and GC could also inhibit the TBS-induced LTP and EPSC amplitude but not paired-pulse ratio (PPR). But quercetin, another monomer component of EGb761, led to increase in EPSC amplitude and decrease in PPR. Simultaneously, EGb761 and its monomer component ginkgolides inhibited the post-ischemic LTP (i-LTP) by inhibiting the EPSCs and the AMPA receptor subunit GluA1 expression on postsynaptic membrane. The results indicated that high concentration of EGb761 might inhibit LTP and i-LTP through inhibition effects of GA, GB and GC on AMPA receptors.
Collapse
Affiliation(s)
- Yong Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou, 310053, People's Republic of China.
| | - Supeng Ding
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Yifei Luan
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou, 310053, People's Republic of China
| | - Zhichao Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Yuting Cai
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Yingkui Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou, 310053, People's Republic of China
| |
Collapse
|
7
|
Sheng W, Guo W, Lu F, Liu H, Xia R, Dong F. Upregulation of Linc00284 Promotes Lung Cancer Progression by Regulating the miR-205-3p/c-Met Axis. Front Genet 2021; 12:694571. [PMID: 34616424 PMCID: PMC8488201 DOI: 10.3389/fgene.2021.694571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/16/2021] [Indexed: 01/25/2023] Open
Abstract
Lung cancer (LC) is a malignant tumor with the highest incidence and mortality rates worldwide. Linc00284, a long non-coding RNA, is a newly discovered regulator of LC. This study aimed to explore the role of Linc00284 in LC progression. Gene expression levels were detected by RT-qPCR and/or western blot analysis. Cell migratory and invasive capabilities were measured by wound healing and transwell assays. Subcutaneous xenograft models were constructed to examine tumor growth of LC cells. Data showed that Linc00284 was significantly upregulated in LC tissues compared to adjacent normal lung tissues and predicted poor prognosis in patients with LC. In vitro, Linc00284 was highly expressed in LC cells and was mainly localized in the cytoplasm. Mechanistically, Linc00284 directly bound to miR-205-3p, leading to the upregulation of c-Met expression. A significant negative correlation was observed between Linc00284 and miR-205-3p expression levels, and the Linc00284 level was positively correlated with the c-Met expression. Linc00284/miR-205-3p/c-Met regulatory axis promotes LC cell proliferation, migration, and invasion. Furthermore, the in vivo results indicated that Linc00284 knockdown markedly suppressed tumor growth. Taken together, these data suggest that Linc00284 facilitates LC progression by targeting the miR-205-3p/c-Met axis, which may be a potential target for LC treatment.
Collapse
Affiliation(s)
- Wang Sheng
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Weixi Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Fang Lu
- Pulmonary and Critical Care Medicine (PCCM), The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongming Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Rongmu Xia
- School of Medicine, Xiamen University, Xiamen, China
| | - Feng Dong
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Song YQ, He RJ, Pu D, Guan XQ, Shi JH, Li YG, Hou J, Jia SN, Qin WW, Fang SQ, Ge GB. Discovery and Characterization of the Biflavones From Ginkgo biloba as Highly Specific and Potent Inhibitors Against Human Carboxylesterase 2. Front Pharmacol 2021; 12:655659. [PMID: 34084136 PMCID: PMC8167799 DOI: 10.3389/fphar.2021.655659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Human carboxylesterase 2 (CES2), one of the most abundant hydrolases distributed in the small intestine, has been validated as a key therapeutic target to ameliorate the intestinal toxicity caused by irinotecan. This study aims to discover efficacious CES2 inhibitors from natural products and to characterize the inhibition potentials and inhibitory mechanisms of the newly identified CES2 inhibitors. Following high-throughput screening and evaluation of the inhibition potency of more than 100 natural products against CES2, it was found that the biflavones isolated from Ginkgo biloba displayed extremely potent CES2 inhibition activities and high specificity over CES1 (>1000-fold). Further investigation showed that ginkgetin, bilobetin, sciadopitysin and isoginkgetin potently inhibited CES2-catalyzed hydrolysis of various substrates, including the CES2 substrate-drug irinotecan. Notably, the inhibition potentials of four biflavones against CES2 were more potent than that of loperamide, a marketed anti-diarrhea agent used for alleviating irinotecan-induced intestinal toxicity. Inhibition kinetic analyses demonstrated that ginkgetin, bilobetin, sciadopitysin and isoginkgetin potently inhibited CES2-catalyzed fluorescein diacetate hydrolysis via a reversible and mixed inhibition manner, with K i values of less than 100 nM. Ensemble docking and molecular dynamics revealed that these biflavones could tightly and stably bind on the catalytic cavity of CES2 via hydrogen bonding and π-π stacking interactions, while the interactions with CES1 were awfully poor. Collectively, this study reports that the biflavones isolated from Ginkgo biloba are potent and highly specific CES2 inhibitors, which offers several promising lead compounds for developing novel anti-diarrhea agent to alleviate irinotecan-induced diarrhea.
Collapse
Affiliation(s)
- Yun-Qing Song
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong-Jing He
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Pu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Qing Guan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-Hui Shi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yao-Guang Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jie Hou
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shou-Ning Jia
- Qinghai Hospital of Traditional Chinese Medicine, Xining, China
| | - Wei-Wei Qin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacy & Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Sheng-Quan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Bo Ge
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Shen D, Shi H, Wu C, Fan G, Li T. Evaluation of proximate composition, flavonoids, and antioxidant capacity of ginkgo seeds fermented with different rice wine starters. J Food Sci 2020; 85:4351-4358. [PMID: 33174232 DOI: 10.1111/1750-3841.15516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022]
Abstract
Ginkgo seeds are distinguished as source of highly promising food and traditional Chinese herbal for thousands of years. It is well known for the significant curative effects on some diseases, such as cough and asthma. The current work aimed to study the proximate composition, phytochemical content, and antioxidant capacity of ginkgo seeds fermented by 17 varieties of rice wine starters. Solid state fermentation was used to improve the nutrition of ginkgo seeds. Correlation analysis showed that there was a significant correlation between the flavonoids, approximate composition, and antioxidant activity in fermented ginkgo seeds. Through principal component analysis (PCA), Yp rice wine starter was found as the most suitable for ginkgo seeds fermentation. After fermentation of Yp rice wine starter, the content of quercetin increased by 188.1%, the content of reducing sugars and peptides increased by 16 and 24 times, respectively, and the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl free radicals increased from 4.69 to 12.43 mg TE/g. The solid-state fermentation of ginkgo seeds could be efficiently applied to food industrial production, and fermentation significantly increased the antioxidant activity and flavonoid content of ginkgo seeds, as well as improved their nutrition. PRACTICAL APPLICATION: Traditionally, rice wine starter was used for brewing wine, only some folk use rice wine starter for food production. In this paper, ginkgo seeds are selected for fermentation, which not only solves the problem of ginkgo seeds surplus, but also provides a reliable technical route for industry. It provides reference for the application of rice wine starter in food in the future.
Collapse
Affiliation(s)
- Dongbei Shen
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P.R. China
| | - Hongjun Shi
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P.R. China
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P.R. China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, P.R. China
| | - Gongjian Fan
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P.R. China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, P.R. China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P.R. China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
10
|
Feodorova Y, Tomova T, Minchev D, Turiyski V, Draganov M, Argirova M. Cytotoxic effect of Ginkgo biloba kernel extract on HCT116 and A2058 cancer cell lines. Heliyon 2020; 6:e04941. [PMID: 33005784 PMCID: PMC7509470 DOI: 10.1016/j.heliyon.2020.e04941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
While the pharmacology of Ginkgo biloba leaf extract has been studied extensively, little is known about the pharmacological potential of Ginkgo biloba seeds, although they contain similar active ingredients that are responsible for the therapeutic effects of the leaf extract. In this study we used 70%-methanol Ginkgo biloba kernel extract, quantified its bioactive constituents and tested their cytotoxic effect on two cancer cell lines, A2058 and HCT116, and the non-tumor cell line McCoy-Plovdiv. We studied the biological effect of the extract by real-time analysis in the xCELLigence system, WST-1 assay and LIVE/DEAD viability assay. We show that the extract significantly perturbed the viability of cancer cells in a concentration- and time-dependent manner. In contrast, non-cancerous McCoy-Plovdiv cells sustained their proliferation potential even at high concentrations of the extract. Therefore, we propose that the active constituents of the Ginkgo biloba endosperm extract may interact additively or synergistically to protect against cancer.
Collapse
Affiliation(s)
- Yana Feodorova
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria.,Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Teodora Tomova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Danail Minchev
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria.,Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Valentin Turiyski
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Marian Draganov
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Mariana Argirova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| |
Collapse
|
11
|
Born LJ, Harmon JW, Jay SM. Therapeutic potential of extracellular vesicle-associated long noncoding RNA. Bioeng Transl Med 2020; 5:e10172. [PMID: 33005738 PMCID: PMC7510462 DOI: 10.1002/btm2.10172] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Both extracellular vesicles (EVs) and long noncoding RNAs (lncRNAs) have been increasingly investigated as biomarkers, pathophysiological mediators, and potential therapeutics. While these two entities have often been studied separately, there are increasing reports of EV-associated lncRNA activity in processes such as oncogenesis as well as tissue repair and regeneration. Given the powerful nature and emerging translational impact of other noncoding RNAs such as microRNA (miRNA) and small interfering RNA, lncRNA therapeutics may represent a new frontier. While EVs are natural vehicles that transport and protect lncRNAs physiologically, they can also be engineered for enhanced cargo loading and therapeutic properties. In this review, we will summarize the activity of lncRNAs relevant to both tissue repair and cancer treatment and discuss the role of EVs in enabling the potential of lncRNA therapeutics.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - John W. Harmon
- Department of Surgery and Hendrix Burn/Wound LaboratoryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Steven M. Jay
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Program in Molecular and Cell BiologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
12
|
Kong MY, Li LY, Lou YM, Chi HY, Wu JJ. Chinese herbal medicines for prevention and treatment of colorectal cancer: From molecular mechanisms to potential clinical applications. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:369-384. [PMID: 32758397 DOI: 10.1016/j.joim.2020.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Worldwide, colorectal cancer (CRC) is one of the most common malignant tumors, leading to immense social and economic burdens. Currently, the main treatments for CRC include surgery, chemotherapy, radiotherapy and immunotherapy. Despite advances in the diagnosis and treatment of CRC, the prognosis for CRC patients remains poor. Furthermore, the occurrence of side effects and toxicities severely limits the clinical use of these therapies. Therefore, alternative medications with high efficacy but few side effects are needed. An increasing number of modern pharmacological studies and clinical trials have supported the effectiveness of Chinese herbal medicines (CHMs) for the prevention and treatment of CRC. CHMs may be able to effectively reduce the risk of CRC, alleviate the adverse reactions caused by chemotherapy, and prolong the survival time of patients with advanced CRC. Studies of molecular mechanisms have provided deeper insight into the roles of molecules from CHMs in treating CRC. This paper summarizes the current understanding of the use of CHMs for the prevention and treatment of CRC, the main molecular mechanisms involved in these processes, the role of CHMs in modulating chemotherapy-induced adverse reactions, and CHM's potential role in epigenetic regulation of CRC. The current study provides beneficial information on the use of CHMs for the prevention and treatment of CRC in the clinic, and suggests novel directions for new drug discovery against CRC.
Collapse
Affiliation(s)
- Mu-Yan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Le-Yan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Yan-Mei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Hong-Yu Chi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Jin-Jun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China.
| |
Collapse
|