1
|
Kwon H, Joh JY, Hong KU. Human CKAP2L shows a cell cycle-dependent expression pattern and exhibits microtubule-stabilizing properties. FEBS Open Bio 2024; 14:1526-1539. [PMID: 39073037 PMCID: PMC11492392 DOI: 10.1002/2211-5463.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Cytoskeleton-associated protein 2-like (CKAP2L) is a paralogue of cytoskeleton-associated protein 2 (CKAP2). We characterized the expression pattern, subcellular localization, and microtubule-stabilizing properties of human CKAP2L. The levels of both CKAP2L transcript and protein were cell cycle phase-dependent, peaking during the G2/M phase and relatively high in certain human tissues, including testis, intestine, and spleen. CKAP2L protein was detectable in all human cancer cell lines we tested. CKAP2L localized to the mitotic spindle apparatus during mitosis, as reported previously. During interphase, however, CKAP2L localized mainly to the nucleus. Ectopic overexpression of CKAP2L resulted in 'microtubule bundling', and, consequently, an elevated CKAP2L level led to prolonged mitosis. These findings support the mitotic role of CKAP2L during the human cell cycle.
Collapse
Affiliation(s)
- Hyerim Kwon
- School of MedicineSungkyunkwan UniversitySuwonKorea
| | - Jonathan Y. Joh
- Department of Pharmacology & ToxicologyUniversity of Louisville School of MedicineKYUSA
| | - Kyung U. Hong
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMAUSA
| |
Collapse
|
2
|
Tuly KF, Hossen MB, Islam MA, Kibria MK, Alam MS, Harun-Or-Roshid M, Begum AA, Hasan S, Mahumud RA, Mollah MNH. Robust Identification of Differential Gene Expression Patterns from Multiple Transcriptomics Datasets for Early Diagnosis, Prognosis, and Therapies for Breast Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1705. [PMID: 37893423 PMCID: PMC10608013 DOI: 10.3390/medicina59101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Breast cancer (BC) is one of the major causes of cancer-related death in women globally. Proper identification of BC-causing hub genes (HubGs) for prognosis, diagnosis, and therapies at an earlier stage may reduce such death rates. However, most of the previous studies detected HubGs through non-robust statistical approaches that are sensitive to outlying observations. Therefore, the main objectives of this study were to explore BC-causing potential HubGs from robustness viewpoints, highlighting their early prognostic, diagnostic, and therapeutic performance. Materials and Methods: Integrated robust statistics and bioinformatics methods and databases were used to obtain the required results. Results: We robustly identified 46 common differentially expressed genes (cDEGs) between BC and control samples from three microarrays (GSE26910, GSE42568, and GSE65194) and one scRNA-seq (GSE235168) dataset. Then, we identified eight cDEGs (COL11A1, COL10A1, CD36, ACACB, CD24, PLK1, UBE2C, and PDK4) as the BC-causing HubGs by the protein-protein interaction (PPI) network analysis of cDEGs. The performance of BC and survival probability prediction models with the expressions of HubGs from two independent datasets (GSE45827 and GSE54002) and the TCGA (The Cancer Genome Atlas) database showed that our proposed HubGs might be considered as diagnostic and prognostic biomarkers, where two genes, COL11A1 and CD24, exhibit better performance. The expression analysis of HubGs by Box plots with the TCGA database in different stages of BC progression indicated their early diagnosis and prognosis ability. The HubGs set enrichment analysis with GO (Gene ontology) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways disclosed some BC-causing biological processes, molecular functions, and pathways. Finally, we suggested the top-ranked six drug molecules (Suramin, Rifaximin, Telmisartan, Tukysa Tucatinib, Lynparza Olaparib, and TG.02) for the treatment of BC by molecular docking analysis with the proposed HubGs-mediated receptors. Molecular docking analysis results also showed that these drug molecules may inhibit cancer-related post-translational modification (PTM) sites (Succinylation, phosphorylation, and ubiquitination) of hub proteins. Conclusions: This study's findings might be valuable resources for diagnosis, prognosis, and therapies at an earlier stage of BC.
Collapse
Affiliation(s)
- Khanis Farhana Tuly
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Bayazid Hossen
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Ariful Islam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Kaderi Kibria
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
- Department of Statistics, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200, Bangladesh
| | - Md. Shahin Alam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Harun-Or-Roshid
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Anjuman Ara Begum
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Sohel Hasan
- Molecular and Biomedical Health Science Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Rashidul Alam Mahumud
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| |
Collapse
|
3
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
4
|
Zhang K, Zhou J, Wu T, Tian Q, Liu T, Wang W, Zhong H, Chen Z, Xiao X, Wu G. Combined analysis of expression, prognosis and immune infiltration of GINS family genes in human sarcoma. Aging (Albany NY) 2022; 14:5895-5907. [PMID: 35896011 PMCID: PMC9365567 DOI: 10.18632/aging.204191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Objective: This study was undertaken to explore the expression and prognostic value of GINS family in human sarcoma, as well as the association between the expression levels of the GINS family and sarcoma immune infiltration. Results: We discovered that the mRNA expression levels of GINS1, GINS2, GINS3, and GINS4 were all higher in the majority of tumor tissues than in normal samples, of course, including sarcoma. Through the CCLE, all the four members expression were observed in high levels in sarcoma cell lines. In Gene Expression Profiling Analysis (GEPIA) and Kaplan-Meier Plotter, our results indicated that the poor overall survival (OS), disease-free survival (DFS) and relapse free survival (RFS) were tightly associated with the increased expression of GINS genes. In TIMER database, we found that highly expressed GINS was significantly correlated with the low infiltration level of CD4+ T cell and macrophage. Conclusions: The four GINS family members were all the prognostic biomarkers for the prognosis of human sarcoma and can reduce the level of immune cell infiltration in the sarcoma microenvironment. Methods: In terms of the expression levels of mRNA for GINS family members, a particular contrast in various cancers, especially human sarcoma, was conducted through ONCOMINE and GEPIA and CCLE databases. Kaplan-Meier Plotter was used to identify the prognostic value of GINS family in sarcoma. The relationship between the expression level of GINS and the infiltration of immune cells was analyzed in TIMER database.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.,Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tong Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Qunyan Tian
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hua Zhong
- Department of Orthopedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, Guangdong, China
| | - Ziyuan Chen
- Department of Orthopedics, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Xungang Xiao
- Department of Orthopedics, Chenzhou No.1 People's Hospital, Chenzhou 423000, Hunan, China
| | - Gen Wu
- Department of Orthopedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, Guangdong, China
| |
Collapse
|
5
|
Effect of CDCA5 on Proliferation and Metastasis of Triple Negative Breast Cancer Cells under shRNA Interference Technology. JOURNAL OF ONCOLOGY 2022; 2022:9038230. [PMID: 35726220 PMCID: PMC9206565 DOI: 10.1155/2022/9038230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 11/25/2022]
Abstract
Objective It was to explore the effect of cell division cycle associated 5 (CDCA5) under shRNA interference on proliferation and metastasis of triple negative breast cancer (TNBC) cells. Methods MDA-ME-231 and BT549 cells were selected as the research objects. According to the different interference methods and CDCA5 interference sequences, they were divided into the interference group 1MDA-ME-231, the interference group 2MDA-ME-231, the interference group 1BT549, the interference group 2BT549 (using shRNA technology), the control group MDA-ME-231, and the control group BT549 (breast cancer cells under normal culture conditions). MCF10A cells were routinely cultured as the negative control group to analyze the effect of CDCA5 expression on the proliferation and migration of cancer cells. Results The expression of CDCA5 protein in MDA-ME-231 and BT549 cells in control group was significantly higher than that in negative control group (P < 0.05). Compared with the control group, the inhibition rates of CDCA5 expression in 1MDA-ME-231, 2MDA-ME-231, 1BT549, and 2BT549 cells in the interference group were 39.01%, 42.98%, 49.57%, and 60.98%, respectively (P < 0.05). From 12 h, the proliferation level of TNBC cells at different culture time was lower than that of the control group (P < 0.05). Compared with the number of staining cells in the control group, the positive staining cells in 1MDA-ME-231 (61.42%), 2MDA-ME-231 (72.06%), 1BT549 (52.53%), and 2BT549 (59.65%) in the interference group were significantly decreased (P < 0.05). Conclusion The results show that the expression of CDCA5 in TNBC is increased, which plays an important role in the proliferation and migration of cancer cells. shRNA interference technology can knock down the expression of CDCA5 and inhibit its “promoting cancer” effect.
Collapse
|
6
|
Wang Y, Yao J, Zhu Y, Zhao X, Lv J, Sun F. Knockdown of CDCA5 suppresses malignant progression of breast cancer cells by regulating PDS5A. Mol Med Rep 2022; 25:209. [PMID: 35506437 PMCID: PMC9133959 DOI: 10.3892/mmr.2022.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women. Cell division cycle‑associated 5 (CDCA5) is closely associated with the behavior of various cancer types. The aim of the present study was to explore the effect of CDCA5 on breast cancer. Western blot analysis and reverse transcription‑quantitative PCR were used to detect the expression level of CDCA5 in human normal mammary cells and human breast cancer cell lines. To determine its function in MDA‑MB‑231 cells, CDCA5 was silenced in MDA‑MB‑231 cells by transient short hairpin RNA transfection. Cell Counting Kit‑8 and clonogenicity assays were used to evaluate cell proliferation. Wound healing and Transwell assays were used to detect cell invasion and migration. Western blot analysis was used to detect the protein expressions of Ki67 and PCNA associated with proliferation, MMP2 and MMP9 associated with migration. CDCA5 was found to be markedly increased in breast cancer cell lines. CDCA5 knockdown was able to suppress cell proliferation, invasion and migration. CDCA5 inhibition downregulated PDS5 cohesin‑associated factor A (PDS5A) expression in breast cancer cells. PDS5A overexpression was found to reverse the effect of CDCA5 inhibition on breast cancer cell proliferation and migration. CDCA5 knockdown was shown to suppress the malignant progression of breast cancer cells by regulating PDS5A. The present findings may provide new potential targets for breast cancer therapy.
Collapse
Affiliation(s)
- Yang Wang
- Yun Kang School of Medicine and Health, NanFang College, Guangzhou, Guangdong 510970, P.R. China
| | - Jian Yao
- Yun Kang School of Medicine and Health, NanFang College, Guangzhou, Guangdong 510970, P.R. China
| | - Yulin Zhu
- Yun Kang School of Medicine and Health, NanFang College, Guangzhou, Guangdong 510970, P.R. China
| | - Xuejiao Zhao
- Yun Kang School of Medicine and Health, NanFang College, Guangzhou, Guangdong 510970, P.R. China
| | - Jing Lv
- Yun Kang School of Medicine and Health, NanFang College, Guangzhou, Guangdong 510970, P.R. China
| | - Fulan Sun
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Nantong, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
7
|
Liu L, Zhang Z, Xia X, Lei J. KIF18B promotes breast cancer cell proliferation, migration and invasion by targeting TRIP13 and activating the Wnt/β‑catenin signaling pathway. Oncol Lett 2022; 23:112. [PMID: 35251343 PMCID: PMC8850966 DOI: 10.3892/ol.2022.13232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022] Open
Abstract
Kinesin superfamily member 18B (KIF18B) has previously been reported to be upregulated in breast cancer (BC) and is involved in BC tumorigenesis. Therefore, the present study aimed to investigate the effects and underlying mechanisms of KIF18B in BC. Comprehensive bioinformatics analysis was performed, using data from The Cancer Genome Atlas. KIF18B knockdown and thyroid hormone receptor-interacting protein 13 (TRIP13) overexpression in BC cells were induced via transfection, by using the short hairpin RNA-KIF18B and overexpression-TRIP13 vectors, respectively. Cellular processes, including proliferation, migration and invasion were assessed using colony formation, wound healing and Transwell assays, respectively. mRNA and protein expression levels were determined using reverse transcription-quantitative PCR and western blot analysis, respectively. Protein-protein interactions were determined using co-immunoprecipitation. The results demonstrated that the KIF18B expression levels were upregulated in BC, particularly in triple-negative BC (TNBC) tissues and cell lines. KIF18B knockdown inhibited the proliferation, migration and invasion of HCC-1937 TNBC cells. Furthermore, MMP12 and MMP9 protein expression levels were decreased by KIF18B knockdown. TRIP13 expression was also demonstrated to be upregulated in BC, particularly in TNBC tissues and cell lines. TRIP13 expression levels positively correlated with those of KIF18B in BC tissues and cells, and further analysis verified that TRIP13 and KIF14B were able to directly bind to each other. However, TRIP13 overexpression abolished the effects of KIF18B knockdown on HCC-1937 cells. Furthermore, KIF18B knockdown decreased β-catenin, c-Myc and cyclin D1 protein expression levels; however, TRIP13 overexpression resulted in the recovery of all respective protein expression levels. On the whole, the present study demonstrates that KIF18B promotes BC malignant events, including the proliferation, migration and invasion of TNBC cells. These results indicate that KIF18B may play an oncogenic role in BC by upregulating TRIP13 expression, thereby activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Lan Liu
- Department of Mammary Glands, Baoji Maternal and Child Health Hospital, Baoji, Shaanxi 721000, P.R. China
| | - Zhaofeng Zhang
- Department of Mammary Glands, Baoji Maternal and Child Health Hospital, Baoji, Shaanxi 721000, P.R. China
| | - Xiulin Xia
- Department of Mammary Glands, Baoji Maternal and Child Health Hospital, Baoji, Shaanxi 721000, P.R. China
| | - Jing Lei
- Department of Women's Healthcare, Baoji Maternal and Child Health Hospital, Baoji, Shaanxi 721000, P.R. China
| |
Collapse
|
8
|
Zhong Y, Zhuang Z, Mo P, Lin M, Gong J, Huang J, Mo H, Lu Y, Huang M. Overexpression of SKA3 correlates with poor prognosis in female early breast cancer. PeerJ 2022; 9:e12506. [PMID: 34993016 PMCID: PMC8675262 DOI: 10.7717/peerj.12506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Spindle and kinetochore associated complex subunit 3 (SKA3) plays an important role in tumorigenesis and the progression of various tumors. But the relationship between SKA3 and early breast cancer remains unclear. The study aimed to explore the prognostic significance of SKA3 in breast cancer. METHODS In the study, SKA3 expression was initially assessed using the Oncomine database and The Cancer Genome Atlas database (TCGA). Then, we presented validation results for RT-qPCR (quantitative reverse transcription PCR) and ELISA (enzyme-linked immunosorbent assay). The relationship between clinical characteristics and SKA3 expression was assessed by Chi-square test and Fisher's exact test. Kaplan-Meier method and Cox regression analysis were conducted to evaluate the prognostic value of SKA3. Gene set enrichment analysis (GSEA) was performed to screen biological pathways using the TCGA dataset. Besides, single sample gene set enrichment analysis (ssGSEA) was utilized to identify immune infiltration cells about SKA3. RESULTS SKA3 mRNA was expressed at high levels in breast cancer tissues compared with normal tissues. Chi-square test and Fisher's exact test showed SKA3 expression was related to age, tumor (T) classification, node (N) classification, tumor-node-metastasis (TNM) stage, estrogen receptor (ER), progesterone receptor (PR), molecular subtype, and race. RT-qPCR results showed that SKA3 expression was overexpressed in ER, PR status, and molecular subtype in Chinese people. Kaplan-Meier curves implicated that high SKA3 expression was related to a poor prognosis in female early breast cancer patients. Cox regression models showed that high SKA3 expression could be used as an independent risk factor for female early breast cancer. Four signaling pathways were enriched in the high SKA3 expression group, including mTORC1 signaling pathway, MYC targets v1, mitotic spindle, estrogen response early. Besides, the SKA3 expression level was associate with infiltrating levels of activated CD4 T cells and eosinophils in breast cancer. CONCLUSION High SKA3 expression correlates with poor prognosis and immune infiltrates in breast cancer. SKA3 may become a biomarker for the prognosis of breast cancer.
Collapse
Affiliation(s)
- Yue Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China.,College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiju Mo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mandi Lin
- Galactophore Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqian Gong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiarong Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiyan Mo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuyun Lu
- Galactophore Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mei Huang
- Galactophore Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
CKAP2L, as an Independent Risk Factor, Closely Related to the Prognosis of Glioma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5486131. [PMID: 34631884 PMCID: PMC8494202 DOI: 10.1155/2021/5486131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
Recent studies have found that cytoskeleton-associated protein 2 like (CKAP2L), an important oncogene, is involved in the biological behavior of many malignant tumors, but its function in the malignant course of glioma has not been confirmed. The main purpose of this study was to clarify the relationship between prognostic clinical characteristics of glioma patients and CKAP2L expression using data collected from the GEPIA, HPA, CGGA, TCGA, and GEO databases. CKAP2L expression was significantly increased in glioma. Further, Kaplan-Meier plots revealed that increased expression of CKAP2L was associated with shorter survival time of glioma patients in datasets retrieved from multiple databases. Cox regression analysis indicated that CKAP2L can serve as an independent risk factor but also has relatively reliable diagnostic value for the prognosis of glioma patients. The results of gene set enrichment analysis suggested that CKAP2L may play a regulatory role through the cell cycle, homologous recombination, and N-glycan biosynthesis cell signaling pathways. Several drugs with potential inhibitory effects on CKAP2L were identified in the CMap database that may have therapeutic effects on glioma. Finally, knockdown of CKAP2L inhibited the proliferation and invasion of cells by reducing the expression level of cell cycle-related proteins. This is the first study to demonstrate that high CKAP2L expression leads to poor prognosis in glioma patients, providing a novel target for diagnosis and treatment of glioma.
Collapse
|
10
|
Jiang J, Liu T, He X, Ma W, Wang J, Zhou Q, Li M, Yu S. Silencing of KIF18B restricts proliferation and invasion and enhances the chemosensitivity of breast cancer via modulating Akt/GSK-3β/β-catenin pathway. Biofactors 2021; 47:754-767. [PMID: 34058791 DOI: 10.1002/biof.1757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Kinesin family member 18B (KIF18B) is a new tumor-associated protein that contributes to the carcinogenesis of multiple malignancies. However, the detailed relevance of KIF18B in breast cancer has not been fully elucidated. This work aimed was to evaluate a possible relationship between KIF18B and breast cancer progression. Our findings show KIF18B is increased in breast cancer and demonstrate that high KIF18B level predicts a reduced survival rate. Cellular functional studies revealed that knockdown of KIF18B markedly reduces the proliferation, invasion, and epithelial-mesenchymal transition of breast cancer cells and enhances their chemosensitivity toward doxorubicin. Further studies showed that KIF18B modulates the level of phospho-Akt, phospho-glycogen synthase kinase-3β, and β-catenin. Notably, suppression of Akt abolished KIF18B-overexpression-induced increases in activation of Wnt/β-catenin pathway. In addition, re-expression of β-catenin reversed KIF18B-silencing-induced cancer-promoting effect. In vivo animal experiments elucidated that knockdown of KIF18B significantly weakened the tumorigenicity of breast cancer cells. Taken together, data of this study illustrate that KIF18B exerts a potential cancer-promoting function in breast cancer via enhancement of Wnt/β-catenin pathway through modulation of the Akt/GSK-3β axis.
Collapse
Affiliation(s)
- Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Ting Liu
- Department of Ultrasound, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Xin He
- Department of Ultrasound, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Wenqi Ma
- Department of Ultrasound, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Juan Wang
- Department of Ultrasound, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Miao Li
- Department of Ultrasound, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Shanshan Yu
- Department of Ultrasound, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Identification of hub genes in colorectal cancer based on weighted gene co-expression network analysis and clinical data from The Cancer Genome Atlas. Biosci Rep 2021; 41:229248. [PMID: 34308980 PMCID: PMC8314434 DOI: 10.1042/bsr20211280] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors worldwide and is associated with high mortality. Here we performed bioinformatics analysis, which we validated using immunohistochemistry in order to search for hub genes that might serve as biomarkers or therapeutic targets in CRC. Based on data from The Cancer Genome Atlas (TCGA), we identified 4832 genes differentially expressed between CRC and normal samples (1562 up-regulated and 3270 down-regulated in CRC). Gene ontology (GO) analysis showed that up-regulated genes were enriched mainly in organelle fission, cell cycle regulation, and DNA replication; down-regulated genes were enriched primarily in the regulation of ion transmembrane transport and ion homeostasis. Weighted gene co-expression network analysis (WGCNA) identified eight gene modules that were associated with clinical characteristics of CRC patients, including brown and blue modules that were associated with cancer onset. Analysis of the latter two hub modules revealed the following six hub genes: adhesion G protein-coupled receptor B3 (BAI3, also known as ADGRB3), cyclin F (CCNF), cytoskeleton-associated protein 2 like (CKAP2L), diaphanous-related formin 3 (DIAPH3), oxysterol binding protein-like 3 (OSBPL3), and RERG-like protein (RERGL). Expression levels of these hub genes were associated with prognosis, based on Kaplan–Meier survival analysis of data from the Gene Expression Profiling Interactive Analysis database. Immunohistochemistry of CRC tumor tissues confirmed that OSBPL3 is up-regulated in CRC. Our findings suggest that CCNF, DIAPH3, OSBPL3, and RERGL may be useful as therapeutic targets against CRC. BAI3 and CKAP2L may be novel biomarkers of the disease.
Collapse
|
12
|
Fan L, Hou J, Qin G. Prediction of Disease Genes Based on Stage-Specific Gene Regulatory Networks in Breast Cancer. Front Genet 2021; 12:717557. [PMID: 34335705 PMCID: PMC8321251 DOI: 10.3389/fgene.2021.717557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women, which seriously endangers women’s health. Great advances have been made over the last decades, however, most studies predict driver genes of breast cancer using biological experiments and/or computational methods, regardless of stage information. In this study, we propose a computational framework to predict the disease genes of breast cancer based on stage-specific gene regulatory networks. Firstly, we screen out differentially expressed genes and hypomethylated/hypermethylated genes by comparing tumor samples with corresponding normal samples. Secondly, we construct three stage-specific gene regulatory networks by integrating RNA-seq profiles and TF-target pairs, and apply WGCNA to detect modules from these networks. Subsequently, we perform network topological analysis and gene set enrichment analysis. Finally, the key genes of specific modules for each stage are screened as candidate disease genes. We obtain seven stage-specific modules, and identify 20, 12, and 22 key genes for three stages, respectively. Furthermore, 55%, 83%, and 64% of the genes are associated with breast cancer, for example E2F2, E2F8, TPX2, BUB1, and CKAP2L. So it may be of great importance for further verification by cancer experts.
Collapse
Affiliation(s)
- Linzhuo Fan
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Jinhong Hou
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Guimin Qin
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
13
|
Huang H, Xu L, Ding Y, Qin J, Huang C, Li X, Tang Y, Qian G, Lv H. Bioinformatics identification of hub genes and signaling pathways regulated by intravenous immunoglobulin treatment in acute Kawasaki disease. Exp Ther Med 2021; 22:784. [PMID: 34055083 PMCID: PMC8145699 DOI: 10.3892/etm.2021.10216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
Kawasaki disease (KD) is an acute, self-limiting form of vasculitis commonly encountered in infants and young children. Intravenous immunoglobulin (IVIG) is the primary drug used for the treatment of KD, which may significantly reduce the occurrence of coronary artery lesions. However, the specific molecular profile changes of KD caused by IVIG treatment have remained elusive and require further research. The present study was designed to identify key genes, pathways and immune cells affected by IVIG treatment using multiple bioinformatics analysis methods. The results suggested that myeloid cells and neutrophils were affected by IVIG treatment. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified that hematopoietic cell lineages and osteoclast differentiation may have an important role in the mechanism of action of IVIG treatment. Immune cell analysis indicated that the levels of monocytes, M1 macrophages, neutrophils and platelets were markedly changed in patients with KD after vs. prior to IVIG treatment. The key upregulated genes, including ZW10 interacting kinetochore protein, GINS complex subunit 1 and microRNA-30b-3p in whole blood cells of patients with KD following treatment with IVIG indicated that these IVIG-targeted molecules may have important roles in KD. In addition, these genes were further examined by literature review and indicated to be involved in cell proliferation, apoptosis and virus-related immune response in patients with KD. Therefore, the present results may provide novel insight into the mechanisms of action of IVIG treatment for KD.
Collapse
Affiliation(s)
- Hongbiao Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Lei Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Yueyue Ding
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Jie Qin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Chengcheng Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Xuan Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Yunjia Tang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
14
|
Dey L, Mukhopadhyay A. A systems biology approach for identifying key genes and pathways of gastric cancer using microarray data. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Zeng T, Guan Y, Li YK, Wu Q, Tang XJ, Zeng X, Ling H, Zou J. The DNA replication regulator MCM6: An emerging cancer biomarker and target. Clin Chim Acta 2021; 517:92-98. [PMID: 33609557 DOI: 10.1016/j.cca.2021.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023]
Abstract
MCM6 is a significant DNA replication regulator that plays a crucial role in sustaining the cell cycle. In many cancer cells, MCM6 expression is enhanced. For example, persistently increased expression of MCM6 promotes the formation, development and progression of hepatocellular carcinoma (HCC). Up- and down-regulation studies have indicated that MCM6 regulates cell cycle, proliferation, metastasis, immune response and the maintenance of the DNA replication system. MCM6 can also regulate downstream signaling such as MEK/ERK thus promoting carcinogenesis. Accordingly, MCM6 may represent a sensitive and specific biomarker to predict adverse progression and poor outcome. Furthermore, inhibition of MCM6 may be an effective cancer treatment. The present review summarizes the latest results on the inactivating and activating functions of MCM6, underlining its function in carcinogenesis. Further studies of the carcinogenic functions of MCM6 may provide novel insight into cancer biology and shed light on new approaches for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Yang Guan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330000, PR China
| | - Yu-Kun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qing Wu
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, PR China
| | - Xiao-Jun Tang
- Department of Spinal Surgery, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Zeng
- Department of Histology and Embryology, Chongqing Three Gorges Medical College, Wanzhou, Chongqing 404000, PR China
| | - Hui Ling
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
16
|
Liu H, Qu Y, Zhou H, Zheng Z, Zhao J, Zhang J. Bioinformatic analysis of potential hub genes in gastric adenocarcinoma. Sci Prog 2021; 104:368504211004260. [PMID: 33788653 PMCID: PMC10454997 DOI: 10.1177/00368504211004260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastric adenocarcinoma is the most common histologic type of gastric cancer; however, the pathogenic mechanisms remain unclear. To improve mechanistic understanding and identify new treatment targets or diagnostic biomarkers, we used bioinformatic tools to predict the hub genes related to the process of gastric adenocarcinoma development from public datasets, and explored their prognostic significance. We screened differentially expressed genes between gastric adenocarcinoma and normal gastric tissues in Gene Expression Omnibus datasets (GSE79973, GSE118916, and GSE29998) using the GEO2R tool, and their functions were annotated with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analyses in the DAVID database. Hub genes were identified based on the protein-protein network constructed in the STRING database with Cytoscape software. A total of 10 hub genes were selected for further analysis, and their expression patterns in gastric adenocarcinoma patients were investigated using the Oncomine GEPIA database. The expression levels of ATP4A, CA9, FGA, ALDH1A1, and GHRL were reduced, whereas those of TIMP1, SPP1, CXCL8, THY1, and COL1A1 were increased in gastric adenocarcinoma. The Kaplan-Meier online plotter tool showed associations of all hub genes except for CA9 with prognosis in gastric adenocarcinoma patients; CXCL8 and ALDH1A1 were positively correlated with survival, and the other genes were negatively correlated with survival. These 10 hub genes may be involved in important processes in gastric adenocarcinoma development, providing new directions for research to clarify the role of these genes and offer insight for improved treatment.
Collapse
Affiliation(s)
- Hao Liu
- General Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yidan Qu
- Rheumatology and Immunology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hao Zhou
- General Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ziwen Zheng
- General Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Junjiang Zhao
- General Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jian Zhang
- General Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
17
|
Denkiewicz-Kruk M, Jedrychowska M, Endo S, Araki H, Jonczyk P, Dmowski M, Fijalkowska IJ. Recombination and Pol ζ Rescue Defective DNA Replication upon Impaired CMG Helicase-Pol ε Interaction. Int J Mol Sci 2020; 21:ijms21249484. [PMID: 33322195 PMCID: PMC7762974 DOI: 10.3390/ijms21249484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022] Open
Abstract
The CMG complex (Cdc45, Mcm2–7, GINS (Psf1, 2, 3, and Sld5)) is crucial for both DNA replication initiation and fork progression. The CMG helicase interaction with the leading strand DNA polymerase epsilon (Pol ε) is essential for the preferential loading of Pol ε onto the leading strand, the stimulation of the polymerase, and the modulation of helicase activity. Here, we analyze the consequences of impaired interaction between Pol ε and GINS in Saccharomyces cerevisiae cells with the psf1-100 mutation. This significantly affects DNA replication activity measured in vitro, while in vivo, the psf1-100 mutation reduces replication fidelity by increasing slippage of Pol ε, which manifests as an elevated number of frameshifts. It also increases the occurrence of single-stranded DNA (ssDNA) gaps and the demand for homologous recombination. The psf1-100 mutant shows elevated recombination rates and synthetic lethality with rad52Δ. Additionally, we observe increased participation of DNA polymerase zeta (Pol ζ) in DNA synthesis. We conclude that the impaired interaction between GINS and Pol ε requires enhanced involvement of error-prone Pol ζ, and increased participation of recombination as a rescue mechanism for recovery of impaired replication forks.
Collapse
Affiliation(s)
- Milena Denkiewicz-Kruk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.D.-K.); (M.J.); (P.J.)
| | - Malgorzata Jedrychowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.D.-K.); (M.J.); (P.J.)
| | - Shizuko Endo
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; (S.E.); (H.A.)
| | - Hiroyuki Araki
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; (S.E.); (H.A.)
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.D.-K.); (M.J.); (P.J.)
| | - Michal Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.D.-K.); (M.J.); (P.J.)
- Correspondence: (M.D.); (I.J.F.); Tel.: +48-22-5921128 (M.D.); +48-22-5921113 (I.J.F.)
| | - Iwona J. Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.D.-K.); (M.J.); (P.J.)
- Correspondence: (M.D.); (I.J.F.); Tel.: +48-22-5921128 (M.D.); +48-22-5921113 (I.J.F.)
| |
Collapse
|
18
|
Han C, Jin L, Ma X, Hao Q, Lin H, Zhang Z. Identification of the hub genes RUNX2 and FN1 in gastric cancer. Open Med (Wars) 2020; 15:403-412. [PMID: 33313404 PMCID: PMC7706133 DOI: 10.1515/med-2020-0405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study identified key genes in gastric cancer (GC) based on the mRNA microarray GSE19826 from the Gene Expression Omnibus (GEO) database and preliminarily explored the relationships among the key genes. Methods Differentially expressed genes (DEGs) were obtained using the GEO2R tool. The functions and pathway enrichment of the DEGs were analyzed using the Enrichr database. Protein–protein interactions (PPIs) were established by STRING. A lentiviral vector was constructed to silence RUNX2 expression in MGC-803 cells. The expression levels of RUNX2 and FN1 were measured. The influences of RUNX2 and FN1 on overall survival (OS) were determined using the Kaplan–Meier plotter online tool. Results In total, 69 upregulated and 65 downregulated genes were identified. Based on the PPI network of the DEGs, 20 genes were considered hub genes. RUNX2 silencing significantly downregulated the FN1 expression in MGC-803 cells. High expression of RUNX2 and low expression of FN1 were associated with long survival time in diffuse, poorly differentiated, and lymph node-positive GC. Conclusion High RUNX2 and FN1 expression were associated with poor OS in patients with GC. RUNX2 can negatively regulate the secretion of FN1, and both genes may serve as promising targets for GC treatment.
Collapse
Affiliation(s)
- Chao Han
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lei Jin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xuemei Ma
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qin Hao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huajun Lin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|