1
|
Qiu C, Zhang L, Li J. Grilled nux vomica alleviates myasthenia gravis by inhibiting the JAK2/STAT3 signaling pathway: a study in a mice model. Eur J Med Res 2024; 29:507. [PMID: 39434147 PMCID: PMC11492534 DOI: 10.1186/s40001-024-02100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Grilled Nux Vomica (GNV) is a promising traditional Chinese medicine to treat myasthenia gravis (MG), but its effects and mechanisms need further exploration. METHODS Experimental autoimmune MG (EAMG) model was established by muscle-specific kinase (MuSK) induction on C57BL/6 J mice. Mice were treated with GNV and/or ruxolitinib (JAK2 inhibitor) or AG490 (STAT3 inhibitor) for 30 days via gavage after modeling and randomized into 7 groups: control, model, low-dose GNV, middle-dose GNV, high-dose GNV, GNV + ruxolitinib, GNV + AG490. Body weight, muscle strength, clinical score, MuSK level, neuromuscular junction integrity (agrin and acetylcholine receptor [AChR] levels), inflammatory factors (IL-2 and IL-6), and the activation of the JAK2/STAT3 pathway were measured and compared between groups. RESULTS GNV significantly improved body weight and muscle strength, as well as reduced clinical scores, MuSK levels, and inflammatory markers (IL-2 and IL-6) levels compared with untreated EAMG mice. GNV also protected the neuromuscular junction and increased agrin and AChR co-expression in a dose-dependent manner. In addition, GNV attenuated the levels of p-JAK2 and p-STAT3, which are aberrantly upregulated in EAMG mice. After co-treatment with ruxolitinib or AG490, the effect of GNV on body weight, muscle strength, clinical score, MuSK level, neuromuscular junction integrity, levels of inflammatory factors, and JAK2/STAT3 pathway was further amplified in EAMG mice. CONCLUSIONS GNV improves MG by inhibiting the JAK2/STAT3 pathway, which might be an effective therapeutic strategy for MG.
Collapse
Affiliation(s)
- Chao Qiu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54 Youdian Road, Hangzhou, 310006, Zhejiang Province, China
| | - Liping Zhang
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54 Youdian Road, Hangzhou, 310006, Zhejiang Province, China
| | - Jingya Li
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54 Youdian Road, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
2
|
Huang EJC, Wu MH, Wang TJ, Huang TJ, Li YR, Lee CY. Myasthenia Gravis: Novel Findings and Perspectives on Traditional to Regenerative Therapeutic Interventions. Aging Dis 2023; 14:1070-1092. [PMID: 37163445 PMCID: PMC10389825 DOI: 10.14336/ad.2022.1215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/15/2022] [Indexed: 05/12/2023] Open
Abstract
The prevalence of myasthenia gravis (MG), an autoimmune disorder, is increasing among all subsets of the population leading to an elevated economic and social burden. The pathogenesis of MG is characterized by the synthesis of autoantibodies against the acetylcholine receptor (AChR), low-density lipoprotein receptor-related protein 4 (LRP4), or muscle-specific kinase at the neuromuscular junction, thereby leading to muscular weakness and fatigue. Based on clinical and laboratory examinations, the research is focused on distinguishing MG from other autoimmune, genetic diseases of neuromuscular transmission. Technological advancements in machine learning, a subset of artificial intelligence (AI) have been assistive in accurate diagnosis and management. Besides, addressing the clinical needs of MG patients is critical to improving quality of life (QoL) and satisfaction. Lifestyle changes including physical exercise and traditional Chinese medicine/herbs have also been shown to exert an ameliorative impact on MG progression. To achieve enhanced therapeutic efficacy, cholinesterase inhibitors, immunosuppressive drugs, and steroids in addition to plasma exchange therapy are widely recommended. Under surgical intervention, thymectomy is the only feasible alternative to removing thymoma to overcome thymoma-associated MG. Although these conventional and current therapeutic approaches are effective, the associated adverse events and surgical complexity limit their wide application. Moreover, Restivo et al. also, to increase survival and QoL, further recent developments revealed that antibody, gene, and regenerative therapies (such as stem cells and exosomes) are currently being investigated as a safer and more efficacious alternative. Considering these above-mentioned points, we have comprehensively reviewed the recent advances in pathological etiologies of MG including COVID-19, and its therapeutic management.
Collapse
Affiliation(s)
- Evelyn Jou-Chen Huang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Meng-Huang Wu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-Jen Huang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yan-Rong Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Ching-Yu Lee
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
3
|
Jia H, Cao M, Hao S, Wang J, Wang J. Prediction of prognosis, immune infiltration and immunotherapy response with N6-methyladenosine-related lncRNA clustering patterns in cervical cancer. Sci Rep 2022; 12:17256. [PMID: 36241866 PMCID: PMC9568557 DOI: 10.1038/s41598-022-20162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/09/2022] [Indexed: 01/06/2023] Open
Abstract
LncRNAs and tumor microenvironment (TME) exert an important effect in antitumor immunity. Nonetheless, the role of m6A-related lncRNA clustering patterns in prognosis, TME and immunotherapy of cervical cancer (CC) remains unknown. Here, based on 7 m6A-related prognostic lncRNAs obtained from TCGA-CC dataset, two m6AlncRNA clustering patterns were determined. m6AlncRNA clusterA was characterized by immune cell infiltrates and immune activation. m6AlncRNA clusterB was characterized by enrichment of immune evasion and tumorigenic activation pathways as well as survival and clinical stage disadvantage. Then, principal component analysis algorithms were used to construct m6AlncRNAscore based on prognostic differentially expressed genes between two m6AlncRNA clusters to quantify m6AlncRNA clustering patterns. m6AlncRNAscore was an independent prognostic protective factor. Higher Th2 and Treg cells and enrichment of immunosuppressive pathways were observed in the low-m6AlncRNAscore group, with poorer survival. High-m6AlncRNAscore was characterized by increased infiltration of activated CD8 T cell, enrichment of immune activation pathways, lower IL-10 and TGF-beta1 levels, and higher immunophenscore values, indicating inflamed TME and better anti-tumor immunotherapy efficacy. Quantitative Real-Time Polymerase Chain Reaction was used for detection of m6A-related prognostic lncRNAs. Collectively, we identified two m6AlncRNA clustering patterns which play a nonnegligible role in the prognosis, TME heterogeneity and immunotherapy of CC patients.
Collapse
Affiliation(s)
- Haixia Jia
- Department of Scientific Research, Shanxi Province Cancer Hospital, Taiyuan, Shanxi China
| | - Meiting Cao
- Department of Gynecology, Shanxi Province Cancer Hospital, Taiyuan, Shanxi China
| | - Suhua Hao
- Department of Prevention Care, Shanxi Province Cancer Hospital, Taiyuan, Shanxi China
| | - Jiahao Wang
- grid.263452.40000 0004 1798 4018Department of Epidemiology, School of Public Health, Shanxi Medical University, 56, Xinjian Nan Road, Taiyuan, China
| | - Jintao Wang
- grid.263452.40000 0004 1798 4018Department of Epidemiology, School of Public Health, Shanxi Medical University, 56, Xinjian Nan Road, Taiyuan, China
| |
Collapse
|
4
|
He X, Zhou S, Ji Y, Zhang Y, Lv J, Quan S, Zhang J, Zhao X, Cui W, Li W, Liu P, Zhang L, Shen T, Fang H, Yang J, Zhang Y, Cui X, Zhang Q, Gao F. Sorting nexin 17 increases low-density lipoprotein receptor-related protein 4 membrane expression: A novel mechanism of acetylcholine receptor aggregation in myasthenia gravis. Front Immunol 2022; 13:916098. [PMID: 36311763 PMCID: PMC9601310 DOI: 10.3389/fimmu.2022.916098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Myasthenia gravis (MG) is characterized by autoimmune damage to the postsynaptic membrane of the neuromuscular junction (NMJ) with impaired postsynaptic acetylcholine receptor (AChR) aggregation. Low-density lipoprotein receptor-related protein 4 (LRP4) plays an important role in AChR aggregation at endplate membranes via the Agrin–LRP4–muscle-specific receptor tyrosine kinase (MuSK) cascade. Sorting nexin 17 (SNX17) regulates the degradation and recycling of various internalized membrane proteins. However, whether SNX17 regulates LRP4 remains unclear. Therefore, we examined the regulatory effects of SNX17 on LRP4 and its influence on AChR aggregation in MG. We selected C2C12 myotubes and induced LRP4 internalization via stimulation with anti-LRP4 antibody and confirmed intracellular interaction between SNX17 and LRP4. SNX17 knockdown and overexpression confirmed that SNX17 promoted MuSK phosphorylation and AChR aggregation by increasing cell surface LRP4 expression. By establishing experimental autoimmune MG (EAMG) mouse models, we identified that SNX17 upregulation improved fragmentation of the AChR structure at the NMJ and alleviated leg weakness in EAMG mice. Thus, these results reveal that SNX17 may be a novel target for future MG therapy.
Collapse
Affiliation(s)
- Xiaoxiao He
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuxian Zhou
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Ying Ji
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingna Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jie Lv
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shangkun Quan
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xue Zhao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Weike Cui
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenbo Li
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Liu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Linyuan Zhang
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Shen
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hua Fang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junhong Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinzheng Cui
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qingyong Zhang
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Gao,
| |
Collapse
|
5
|
Study on the Potential Mechanism of Semen Strychni against Myasthenia Gravis Based on Network Pharmacology and Molecular Docking with Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3056802. [PMID: 36217431 PMCID: PMC9547686 DOI: 10.1155/2022/3056802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022]
Abstract
Background Semen Strychni (SS) is an effective Chinese medicine formula for treating myasthenia gravis (MG) in clinics. Nonetheless, its molecular mechanism is largely unknown. Objective Using network pharmacology, molecular docking, and experimental validation, we aim to identify the therapeutic effect of SS on MG and its underlying mechanism. Methods The main ingredients of SS and their targets and potential disease targets for MG were extracted from public databases. The protein-protein interaction (PPI) network was constructed using the STRING 11.0 database, and Cytoscape was used to identify the hub targets. In addition, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to identify molecular biological processes and signaling pathways. Then, AutoDock Via conducted molecular docking. The experimental autoimmune myasthenia gravis (EAMG) model in female Lewis rats, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to confirm the effect and mechanism of SS on MG. Results The following active compounds and hub targets were identified by screening and analyzing: isobrucine, vomicine, (S)-stylopine, strychnine, brucine-N-oxide, brucine and AKT1, MAPK1, MAPK14, CHRM1, ACHE, and CHRNA4. KEGG enrichment analyses indicated that the cholinergic synapse and neuroactive ligand-receptor interaction signaling pathway may be necessary. The results of molecular docking revealed that the main active ingredients bind well to the hub targets. In vivo experiments proved that SS could improve the weight loss and Lennon scores in the EAMG model. Experiments in molecular biology showed that SS could treat MG by affecting the cholinergic synapse through the respective antibody, receptor, and key enzymes in the cholinergic pathway. Conclusion This study provided a preliminary overview of the active constituents, primary targets, and potential pathways of SS against MG. SS ameliorated EAMG by regulating the cholinergic synaptic junction.
Collapse
|
6
|
Systems Pharmacology and Molecular Docking Reveals the Mechanisms of Nux Vomica for the Prevention of Myasthenia Gravis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9043822. [PMID: 35795289 PMCID: PMC9251099 DOI: 10.1155/2022/9043822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022]
Abstract
Background Myasthenia gravis (MG) is a rare autoimmune disease with clinical symptoms of fluctuating muscle weakness. Due to the side effects of current therapies, there is an urgent need for a new medication for MG treatment. Nux vomica is a traditional Chinese medicine used in various diseases. However, the mechanism of action of Nux vomica against MG remains unclear. Methods Network pharmacology was used to explore the underlying mechanisms of Nux vomica in MG treatment, which was validated using molecular docking and in vivo experiments in mice. Results Twelve bioactive compounds and 72 targets in Nux vomica were screened. Seventy-nine myasthenia-related targets were obtained from the GENECARD and DisGeNET databases. PPI networks of Nux vomica- and myasthenia-related targets were constructed using Bisogenet, and these two networks were subsequently merged into an intersection to establish a core-target PPI network that consisted of 204 nodes and 4,668 edges. KEGG enrichment analysis indicated that 132 pathways were enriched in 204 core targets. In addition, we obtained 50 docking pairs via molecular docking. In vivo experiments revealed that Nux vomica can improve the symptoms of MG. Conclusion Nux vomica is involved in the pathogenesis of MG through the “multicomponent-target-pathway” mechanism.
Collapse
|
7
|
Wang Q, Liu Y, Kuang S, Li R, Weng N, Zhou Z. miR-181a Ameliorates the Progression of Myasthenia Gravis by Regulating TRIM9. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1303375. [PMID: 34925522 PMCID: PMC8677396 DOI: 10.1155/2021/1303375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
Abstract
Abnormally activated CD4+ T cells are considered to be an important factor in the pathogenesis of myasthenia gravis (MG). In the pathogenesis of MG, the imbalance of proinflammatory cytokines and immune cells maintains the imbalance of immune response and inflammatory microenvironment. Studies have shown that miRNA is involved in the pathogenesis of MG. In our experiment, we extracted peripheral blood mononuclear cells (PBMCs) from MG patients and detected the expression of miR-181a and TRIM9 in PBMCs by qRT-PCR. In vitro experiments were conducted to explore the regulatory mechanism of miR-181a on target genes and its influence on inflammatory factors related to MG disease. Experimental autoimmune myasthenia gravis (EAMG) model mice are established, and the effects of miR-181a on EAMG symptoms and inflammatory factors are explored through in vivo experiments. According to a total of 40 EAMG mice that were successfully modeled, all EAMG mice showed symptoms of muscle weakness; their diet was reduced; their weight gain was slow; and even weight loss occurred. In MG patients and EAMG mice, the expression of miR-181a was low and TRIM9 was highly expressed. Bioinformatics website and dual-luciferase report analysis of miR-181a had a targeting relationship with TRIM9, and miR-181a could target the expression of TRIM9. After upregulating miR-181a or interfering with TRIM9, serum miR-181a in EAMG mice was significantly upregulated; TRIM9 was significantly downregulated; its clinical symptoms were reduced; and the expression of inflammatory factors was reduced. The study finally learned that miR-181a can reduce the level of MG inflammatory factors by targeting the expression of TRIM9 and has the effect of improving the symptoms of MG.
Collapse
Affiliation(s)
- Qiang Wang
- The Second Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou, China
| | - Yunquan Liu
- The Second Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou, China
| | - Shixiang Kuang
- The Second Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou, China
| | - Ruozhao Li
- The Second Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou, China
| | - Ning Weng
- The Second Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou, China
| | - Zhichao Zhou
- Department of Neurology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji 311800, Zhejiang, China
| |
Collapse
|
8
|
Jiao W, Hu F, Li J, Song J, Liang J, Li L, Song Y, Chen Z, Li Q, Ke L. Qiangji Jianli Decoction promotes mitochondrial biogenesis in skeletal muscle of myasthenia gravis rats via AMPK/PGC-1α signaling pathway. Biomed Pharmacother 2020; 129:110482. [PMID: 32768964 DOI: 10.1016/j.biopha.2020.110482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/29/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
The Qiangji Jianli Decoction (QJJLD) is an effective Chinese medicine formula for treating Myasthenia gravis (MG) in the clinic. QJJLD has been proven to regulate mitochondrial fusion and fission of skeletal muscle in myasthenia gravis. In this study, we investigated whether QJJLD plays a therapeutic role in regulating mitochondrial biogenesis in MG and explored the underlying mechanism. Rats were experimentally induced to establish autoimmune myasthenia gravis (EAMG) by subcutaneous immunization with R97-116 peptides. The treatment groups were administered three different dosages of QJJLD respectively. After the intervention of QJJLD, the pathological changes of gastrocnemius muscle in MG rats were significantly improved; SOD, GSH-Px, Na+-K+ ATPase and Ca2+-Mg2+ ATPase activities were increased; and MDA content was decreased in the gastrocnemius muscle. Moreover, AMPK, p38MAPK, PGC-1α, NRF-1, Tfam and COX IV mRNA and protein expression levels were also reversed by QJJLD. These results implied that QJJLD may provide a potential therapeutic strategy through promoting mitochondrial biogenesis to alleviate MG via activating the AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Wei Jiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Fangyu Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jinqiu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jingwei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jian Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Lanqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Zhiwei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Qing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Lingling Ke
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| |
Collapse
|