1
|
Zhang J, Li L. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Radix Astragali against hypopharyngeal carcinoma. Sci Rep 2024; 14:516. [PMID: 38177197 PMCID: PMC10767094 DOI: 10.1038/s41598-023-50605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
To explore the anti-tumor effects of Radix Astragali on hypopharyngeal carcinoma and its mechanism. We have bioinformatically analyzed the potential targets of Radix Astragali and predicted the molecular mechanism of Radix Astragali treating of hypopharyngeal carcinoma. The binding process of the hub targets that could prolong the survival time of hypopharyngeal cancer patients with Radix Astragali was simulated by molecular docking. The results showed that 17 out of 36 hub targets could effectively improve the 5-year survival rate of hypopharyngeal cancer patients. Radix Astragali acts on hypopharyngeal carcinoma by regulating a signaling network formed by hub targets connecting multiple signaling pathways and is expected to become a drug for treating and prolonging hypopharyngeal carcinoma patients' survival time.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, 122000, China
| | - Lianhe Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, 122000, China.
| |
Collapse
|
2
|
Zhang Y, Wei J, Kong L, Song M, Zhang Y, Xiao X, Cao H, Jin Y. Network pharmacology-based research on the effect of Radix Astragali on osteosarcoma and the underlying mechanism. Sci Rep 2023; 13:22315. [PMID: 38102307 PMCID: PMC10724296 DOI: 10.1038/s41598-023-49597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
To explore the anti-tumor effects of Radix Astragali on osteosarcoma and its mechanism. We analyzed the PPI network of Radix Astragali's potential targets for treating osteosarcoma and got the hub targets. We used KM curves to screen hub targets that could prolong sarcoma patients' survival time. We performed GO and KEGG enrichment analysis of Radix Astragali's potential targets and predicted Radix Astragali's molecular mechanism and function in treating osteosarcoma. The binding process between the hub targets, which could prolong sarcoma patients' survival time, and Radix Astragali was simulated through molecular docking. PPI network analysis of potential therapeutic targets discriminated 25 hub targets. The KM curves of the hub targets showed there were 13 hub targets that were effective in improving the 5-year survival rate of sarcoma patients. GO and KEGG enrichment demonstrated that Radix Astragali regulates multiple signaling pathways of osteosarcoma. Molecular docking results indicated that Radix Astragali could bind freely to the hub target, which could prolong the sarcoma patient's survival time. Radix Astragali act on osteosarcoma by regulating a signaling network formed by hub targets connecting multiple signaling pathways. Radix Astragali has the potential to become a drug for treating osteosarcoma and prolonging the sarcoma patient's survival time.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Junqiang Wei
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Lingwei Kong
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Mingze Song
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Yange Zhang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Xiangyu Xiao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Haiying Cao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Yu Jin
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
3
|
Zhang C, Yang HY, Gao L, Bai MZ, Fu WK, Huang CF, Mi NN, Ma HD, Lu YW, Jiang NZ, Tian L, Cai T, Lin YY, Zheng XX, Gao K, Chen JJ, Meng WB. Lanatoside C decelerates proliferation and induces apoptosis through inhibition of STAT3 and ROS-mediated mitochondrial membrane potential transformation in cholangiocarcinoma. Front Pharmacol 2023; 14:1098915. [PMID: 37397486 PMCID: PMC10308052 DOI: 10.3389/fphar.2023.1098915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: The incidence of cholangiocarcinoma (CCA) has increased worldwide in recent years. Given the poor prognosis associated with the current management approach of CCA, new therapeutic agents are warranted to improve the prognosis of this patient population. Methods: In this study, we extracted five cardiac glycosides (CGs) from natural plants: digoxin, lanatoside A, lanatoside C, lanatoside B, and gitoxin. Follow-up experiments were performed to assess the effect of these five extracts on cholangiocarcinoma cells and compounds with the best efficacy were selected. Lanatoside C (Lan C) was selected as the most potent natural extract for subsequent experiments. We explored the potential mechanism underlying the anticancer activity of Lan C on cholangiocarcinoma cells by flow cytometry, western blot, immunofluorescence, transcriptomics sequencing, network pharmacology and in vivo experiments. Results: We found that Lan C time-dependently inhibited the growth and induced apoptosis of HuCCT-1 and TFK-1 cholangiocarcinoma cells. Besides Lan C increased the reactive oxygen species (ROS) content in cholangiocarcinoma cells, decreased the mitochondrial membrane potential (MMP) and resulted in apoptosis. Besides, Lan C downregulated the protein expression of STAT3, leading to decreased expression of Bcl-2 and Bcl-xl, increased expression of Bax, activation of caspase-3, and initiation of apoptosis. N-acetyl-L-cysteine (NAC) pretreatment reversed the effect of Lan C. In vivo, we found that Lan C inhibited the growth of cholangiocarcinoma xenografts without toxic effects on normal cells. Tumor immunohistochemistry showed that nude mice transplanted with human cholangiocarcinoma cells treated with Lan C exhibited decreased STAT3 expression and increased caspase-9 and caspase-3 expression in tumors, consistent with the in vitro results. Conclusion: In summary, our results substantiates that cardiac glycosides have strong anti-CCA effects. Interestingly the biological activity of Lan C provides a new anticancer candidate for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Chao Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hong-Ying Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Long Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Zhen Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wen-Kang Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chong-Fei Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ning-Ning Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Dong Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ya-Wen Lu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ning-Zu Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Teng Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan-Yan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xing-Xing Zheng
- Department of Ophthalmology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Wen-Bo Meng
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Zhang Z, Fang J, Sun D, Zheng Y, Liu X, Li H, Hu Y, Liu Y, Zhang M, Liu W, Zhang X, Liu X. Study on the Mechanism of Radix Astragali against Renal Aging Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6987677. [PMID: 36561604 PMCID: PMC9767736 DOI: 10.1155/2022/6987677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Radix Astragali is widely used in the traditional Chinese medicine with the effect of antiaging. The purpose of this study is to explore the main active ingredients and targets of Radix Astragali against renal aging by network pharmacology and further to verify the mechanism of the main active ingredients in vitro. TCMSP, ETCM, and TCMID databases were used to screen active ingredients of Radix Astragali. Targets of active ingredients were predicted using BATMAN-TCM and cross validated using kidney aging-related genes obtained from GeneCards and NCBI database. Pathways enrichment and protein-protein interaction (PPI) analysis were performed on core targets. Additionally, a pharmacological network was constructed based on the active ingredients-targets-pathways. HK-2 cell was treated with D-galactose to generate a cell model of senescence. CCK-8 and β-galactosidase were used to detect the effect of Radix Astragali active components on cell proliferation and aging. ELISA was used to detect the expression of senescence-associated secreted protein (TGF-β and IL-6) in the cell culture supernatant. Western blot was used to detect the expression of key proteins in the SIRT1/p53 pathway. Five active ingredients (Astragaloside I, II, III, IV and choline) were identified from Radix Astragali, and all these active ingredients target a total of 128 genes. Enrichment analysis showed these genes were implicated in 153 KEGG pathways, including the p53, FoxO, and AMPK pathway. 117 proteins and 572 interactions were found in PPI network. TP53 and SIRT1 were two hub genes in PPI network, which interacted with each other. The pharmacological network showed that the five main active ingredients target on some coincident genes, including TP53 and SIRT1. These targeted genes were involved in the p53, FoxO, and AMPK pathway. Proliferation of HK-2 cells was increased by Astragaloside IV treatment compared with that of the D-Gal treatment group. However, the proliferation of the SA-β-gal positive cells were inhibited. The expression of TGF-β and IL-6 in the D-Gal group was higher than that in the normal group, and the treatment of Astragaloside IV could significantly reduce the expression of TGF-β and IL-6. The expression of SIRT1 in the Astragaloside IV group was higher than that in the D-Gal group. However, the expression of p53 and p21 was less in the Astragaloside IV group than that in the D-Gal group. This study suggested that Astragaloside IV is an important active ingredient of Radix Astragali in the treatment of kidney aging via the SITR1-p53 pathway.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Dalin Sun
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yaqin Zheng
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Xinhui Liu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Hui Li
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yaling Hu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yuxiang Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Mingyu Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Wenyuan Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Xuejun Liu
- Department of Geriatrics, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| |
Collapse
|
5
|
Investigation of Anti-Liver Cancer Activity of the Herbal Drug FDY003 Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5765233. [PMID: 36118098 PMCID: PMC9481369 DOI: 10.1155/2022/5765233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83 million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug. FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their chemosensitivity. There were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding targets responsible for the pathological processes in LC. These FDY003 targets were functionally involved in regulating the survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways. Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.
Collapse
|
6
|
Chung G, Kim SK. Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine. Pharmaceutics 2022; 14:pharmaceutics14071407. [PMID: 35890302 PMCID: PMC9319448 DOI: 10.3390/pharmaceutics14071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) often develops in patients with cancer treated with commonly used anti-cancer drugs. The symptoms of CIPN can occur acutely during chemotherapy or emerge after cessation, and often accompany long-lasting intractable pain. This adverse side effect not only affects the quality of life but also limits the use of chemotherapy, leading to a reduction in the survival rate of patients with cancer. Currently, effective treatments for CIPN are limited, and various interventions are being applied by clinicians and patients because of the unmet clinical need. Potential approaches to ameliorate CIPN include traditional Eastern medicine-based methods. Medicinal substances from traditional Eastern medicine have well-established analgesic effects and are generally safe. Furthermore, many substances can also improve other comorbid symptoms in patients. This article aims to provide information regarding traditional Eastern medicine-based plant extracts and natural compounds for CIPN. In this regard, we briefly summarized the development, mechanisms, and changes in the nervous system related to CIPN, and reviewed the substances of traditional Eastern medicine that have been exploited to treat CIPN in preclinical and clinical settings.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
7
|
Choi WG, Choi NR, Park EJ, Kim BJ. A study of the therapeutic mechanism of Jakyakgamcho-Tang about functional dyspepsia through network pharmacology research. Int J Med Sci 2022; 19:1824-1834. [PMID: 36438925 PMCID: PMC9682510 DOI: 10.7150/ijms.77451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Herbal medicines have traditionally been used as an effective digestive medicine. However, compared to the effectiveness of Herbal medicines, the treatment mechanism has not been fully identified. To solve this problem, a system-level treatment mechanism of Jakyakgamcho-Tang (JGT), which is used for the treatment of functional dyspepsia (FD), was identified through a network pharmacology study. The two components, paeoniae radix alba and licorice constituting JGT were analyzed based on broad information on chemical and pharmacological properties, confirming 84 active chemical compounds and 84 FD-related targets. The JGT target confirmed the relationship with the regulation of various biological movements as follows: cellular behaviors of muscle and cytokine, calcium ion concentration and homeostasis, calcium- and cytokine-mediated signalings, drug, inflammatory response, neuronal cells, oxidative stress and response to chemical. And the target is enriched in variety FD-related signaling as follows: MAPK, Toll-like receptor, NOD-like receptor, PI3K-Akt, Apoptosis and TNF signaling pathway. These data give a new approach to identifying the molecular mechanisms underlying the digestive effect of JGT.
Collapse
Affiliation(s)
- Woo-Gyun Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Na Ri Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun-Jung Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
8
|
Li X, Xiang L, Lin Y, Tang Q, Meng F, Chen W. Computational Analysis Illustrates the Mechanism of Qingfei Paidu Decoction in Blocking the Transition of COVID-19 Patients from Mild to Severe Stage. Curr Gene Ther 2021; 22:277-289. [PMID: 34493195 DOI: 10.2174/1566523221666210907162005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The epidemic of SARS-CoV-2 has made COVID-19 a serious threat to human health around the world. The severe infections of SARS-CoV-2 are usually accompanied by higher mortality. Although the Qingfei Paidu Decoction (QFPDD) has been proved to be effective in blocking the transition of COVID-19 patients from mild to severe stage, its mechanism remains unclear. OBJECTIVE This study aims to explore the mechanism of QFPDD in blocking the transition of COVID-19 patients from mild to severe stage. MATERIALS AND METHODS In the process of screening active ingredients, oral bioavailability (OB) and drug likeness (DL) are key indicators, which can help to screen out pivotal compounds. Therefore, with the criteria of OB≥30% and DL≥0.18 , we searched active ingredients of QFPDD in the Traditional Chinese Medicine Systems Pharmacology (TCMSP, https://tcmspw.com/) by using its 21 herbs as keywords. RESULTS We filtered out 6 pivotal ingredients from QFPDD by using the bioinformatics method, namely quercetin, luteolin, berberine, hederagenin, shionone and kaempferol, which can inhibit the highly expressed genes (i.e. CXCR4, ICAM1, CXCL8, CXCL10, IL6, IL2, CCL2, IL1B, IL4, IFNG) in severe COVID-19 patients. By performing KEGG enrichment analysis, we found seven pathways, namely TNF signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway, NF-kappa B signaling pathway, HIF-1 signaling pathway, JAK-STAT signaling pathway, and Th17 cell differentiation, by which QFPDD could block the transition of COVID-19 patients from mild to severe stage. CONCLUSION QFPDD can prevent the deterioration of COVID-19 in the following mechanisms, i.e. inhibiting SARS-CoV-2 invasion and replication, anti-inflammatory and immune regulation, and repairing body damage. These results will be helpful for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Xianhai Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137. China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu
611137, China
| | - Liu Xiang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137. China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu
611137, China
| | - Yue Lin
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137. China.,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu
611137, China
| | - Qiang Tang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137. China
| | - Fanbo Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137. China
| | - Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137. China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu
611137, China.,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu
611137, China.,School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
9
|
An Investigation of the Molecular Mechanisms Underlying the Analgesic Effect of Jakyak-Gamcho Decoction: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6628641. [PMID: 33343676 PMCID: PMC7732394 DOI: 10.1155/2020/6628641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Herbal drugs have drawn substantial interest as effective analgesic agents; however, their therapeutic mechanisms remain to be fully understood. To address this question, we performed a network pharmacology study to explore the system-level mechanisms that underlie the analgesic activity of Jakyak-Gamcho decoction (JGd; Shaoyao-Gancao-Tang in Chinese and Shakuyaku-Kanzo-To in Japanese), an herbal prescription consisting of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fischer. Based on comprehensive information regarding the pharmacological and chemical properties of the herbal constituents of JGd, we identified 57 active chemical compounds and their 70 pain-associated targets. The JGd targets were determined to be involved in the regulation of diverse biological activities as follows: calcium- and cytokine-mediated signalings, calcium ion concentration and homeostasis, cellular behaviors of muscle and neuronal cells, inflammatory response, and response to chemical, cytokine, drug, and oxidative stress. The targets were further enriched in various pain-associated signalings, including the PI3K-Akt, estrogen, ErbB, neurotrophin, neuroactive ligand-receptor interaction, HIF-1, serotonergic synapse, JAK-STAT, and cAMP pathways. Thus, these data provide a systematic basis to understand the molecular mechanisms underlying the analgesic activity of herbal drugs.
Collapse
|