1
|
Liu Z, Li F, Li N, Chen Y, Chen Z. MicroRNAs as regulators of cardiac dysfunction in sepsis: pathogenesis and diagnostic potential. Front Cardiovasc Med 2025; 12:1517323. [PMID: 40041174 PMCID: PMC11876399 DOI: 10.3389/fcvm.2025.1517323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Sepsis, a life-threatening condition arising from an uncontrolled immune response to infection, can lead to organ dysfunction, with severe inflammation potentially causing multiple organ failures. Sepsis-induced cardiac dysfunction (SIMD) is a common and severe complication of sepsis, significantly increasing patient mortality. Understanding the pathogenesis of SIMD is crucial for improving treatment, and microRNAs (miRNAs) have emerged as important regulators in this process. Methods A comprehensive literature search was conducted in PubMed, Science Direct, and Embase databases up to September 2024. The search terms included ["miRNA" or "microRNA"] and ["Cardiac" or "Heart"] and ["Sepsis" or "Septic"], with the language limited to English. After initial filtering by the database search engine, Excel software was used to further screen references. Duplicate articles, those without abstracts or full texts, and review/meta-analyses or non-English articles were excluded. Finally, 106 relevant research articles were included for data extraction and analysis. Results The pathogenesis of SIMD is complex and involves mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis and pyroptosis, dysregulation of myocardial calcium homeostasis, myocardial inhibitory factors, autonomic nervous regulation disorders, hemodynamic changes, and myocardial structural alterations. miRNAs play diverse roles in SIMD. They are involved in regulating the above-mentioned pathological processes. Discussion Although significant progress has been made in understanding the role of miRNAs in SIMD, there are still challenges. Some studies on the pathogenesis of SIMD have limitations such as small sample sizes and failure to account for confounding factors. Research on miRNAs also faces issues like inconsistent measurement techniques and unclear miRNA-target gene relationships. Moreover, the translation of miRNA-based research into clinical applications is hindered by problems related to miRNA stability, delivery mechanisms, off-target effects, and long-term safety. In conclusion, miRNAs play a significant role in the pathogenesis of SIMD and have potential as diagnostic biomarkers. Further research is needed to overcome existing challenges and fully exploit the potential of miRNAs in the diagnosis and treatment of SIMD.
Collapse
Affiliation(s)
- Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiyang Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong Chen
- Department of Critical Care Medicine, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
2
|
Kuang Y, Yang J, Sun M, Rui T, Yang Z, Shi M. Depression of LncRNA DANCR alleviates tubular injury in diabetic nephropathy by regulating KLF5 through sponge miR-214-5p. BMC Nephrol 2024; 25:130. [PMID: 38609873 PMCID: PMC11010359 DOI: 10.1186/s12882-024-03562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE Diabetic nephropathy (DN) manifests a critical aspect in the form of renal tubular injury. The current research aimed to determine the function and mechanism of long non-coding ribonucleic acid (LncRNA) differentiation antagonising non-protein coding RNA (DANCR), with a focus on its impact on renal tubular injury. METHODS Quantitative reverse transcription polymerase chain reaction was employed to analyze the RNA levels of DANCR in the serum of patients with DN or human proximal tubular epithelial cells (human kidney 2 [HK2]). The diagnostic significance of DANCR was assessed using a receiver operating characteristic curve. A DN model was established by inducing HK-2 cells with high glucose (HG). Cell proliferation, apoptosis, and the levels of inflammatory factors, reactive oxygen species (ROS), and malondialdehyde (MDA) were detected using the Cell Counting Kit - 8, flow cytometry, and enzyme-linked immunosorbent assay. The interaction between microRNA (miR)-214-5p and DANCR or Krüppel-like factor 5 (KLF5) was investigated using RNA immunoprecipitation and dual-luciferase reporter assays. RESULTS Elevated levels of DANCR were observed in the serum of patients with DN and HG-inducted HK-2 cells (P < 0.05). DANCR levels effectively identified patients with DN from patients with type 2 diabetes mellitus. Silencing of DANCR protected against HG-induced tubular injury by restoring cell proliferation, inhibiting apoptosis, and reducing the secretion of inflammatory factors and oxidative stress production (P < 0.05). DANCR functions as a sponge for miR-214-5p, and the mitigation of DANCR silencing on HG-induced renal tubular injury was partially attenuated with reduced miR-214-5p (P < 0.05). Additionally, KLF5 was identified as the target of miR-214-5p. CONCLUSION DANCR was identified as diagnostic potential for DN and the alleviation of renal tubular injury via the miR-214-5p/KLF5 axis, following DANCR silencing, introduces a novel perspective and approach to mitigating DN.
Collapse
Affiliation(s)
- Yongling Kuang
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China.
| | - Juan Yang
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Meimei Sun
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Tingting Rui
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Zhenhua Yang
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Meihua Shi
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China
| |
Collapse
|
3
|
Zhou S, Cao C, Hu J. Long Non-Coding RNA Small Nucleolar RNA Host Gene 4 Induced by Transcription Factor SP1 Promoted the Progression of Nasopharyngeal Carcinoma Through Modulating microRNA-510-5p/Centromere Protein F Axis. Biochem Genet 2023; 61:1967-1986. [PMID: 36899270 DOI: 10.1007/s10528-023-10351-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Long non-coding RNAs (LncRNAs) are implicated with tumorigenesis and the development of nasopharyngeal carcinoma (NPC). Previous studies suggested that long non-coding RNA small nucleolar RNA host gene 4 (SNHG4) exerted oncogenic roles in various cancers. However, the function and molecular mechanism of SNHG4 in NPC have not been investigated. In our study, it was confirmed that the SNHG4 level was enriched in NPC tissues and cells. Functional assays indicated that SNHG4 depletion inhibited the proliferation and metastasis but promoted apoptosis of NPC cells. Furthermore, we identified miR-510-5p as a downstream gene of SNHG4 in NPC cells and SNHG4 upregulated CENPF expression by binding to miR-510-5p. Moreover, there was a positive (or negative) association between CENPF and SNHG4 (or miR-510-5p) expression in NPC. In addition, rescue experiments verified that CENPF overexpression or miR-510-5p silencing abrogated inhibitory effects on NPC tumorigenesis caused by SNHG4 deficiency. The study demonstrated that SNHG4 promoted NPC progression via miR-510-5p/CENPF axis, providing a novel potential therapeutic target for NPC treatments.
Collapse
Affiliation(s)
- Shao Zhou
- Department of Otorhinolaryngology, The Affiliated People's Hospital of Ningbo University, No. 251 East Baizhang Road, Ningbo, 315000, Zhejiang, China.
| | - Cheng Cao
- Department of Otorhinolaryngology, The Affiliated People's Hospital of Ningbo University, No. 251 East Baizhang Road, Ningbo, 315000, Zhejiang, China
| | - Jiandao Hu
- Department of Otorhinolaryngology, The Affiliated People's Hospital of Ningbo University, No. 251 East Baizhang Road, Ningbo, 315000, Zhejiang, China
| |
Collapse
|
4
|
Chen Q, Jia Z, Qu C. Inhibition of KLF6 reduces the inflammation and apoptosis of type II alveolar epithelial cells in acute lung injury. Allergol Immunopathol (Madr) 2022; 50:138-147. [PMID: 36086974 DOI: 10.15586/aei.v50i5.632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 09/08/2023]
Abstract
BACKGROUND The development of acute lung injury (ALI) into a severe stage leads to acute respiratory distress syndrome (ARDS). The morbidity and mortality of ALI and ARDS are very high. Objective: This study is aimed to explore the effect of Krüppel-like factor 6 (KLF6) on lipopolysaccharide (LPS)-induced type II alveolar epithelial cells in ALI by interacting with cysteine-rich angiogenic inducer 61 (CYR61). MATERIAL AND METHODS ALI mice model and LPS-induced type II alveolar epithelial cells were conducted to simulate ALI in vivo and in vitro. The messenger RNA (mRNA) and protein expression of KLF6 in lung tissues were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Pathological changes in lung tissues were observed by hematoxylin and eosin (H&E) staining. The viability and KLF6 expression of A549 cells treated with different concentrations of LPS were detected by cell counting kit-8 (CCK-8) assay, RT-qPCR, and Western blot analysis. After indicated treatment, the viability and apoptosis of A549 cells were analyzed by CCK-8 and TUNEL assays, and the inflammation factors of A549 cells were detected by Enzyme-linked-immunosorbent serologic assay, RT-qPCR, and Western blot analysis. The combination of KLF6 and CYR61 was determined by chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase reporter assay. RESULTS KLF6 expression was increased in lung tissues of ALI mice and LPS-induced A549 cells. Interference with KLF6 improved the viability, reduced the inflammatory damage, and promoted the apoptosis of LPS-induced A549 cells. In addition, KLF6 could bind to CYR61. Interference with KLF6 could decrease CYR61 expression in LPS-induced A549 cells. LPS also enhanced the TLR4/MYD88 signaling pathway, which was reversed by KLF6 interference. The above phenomena in LPS-induced A549 cells transfected with Si-KLF6 could be reversed by overexpression of CYR61. CONCLUSION Inhibition of KLF6 promoted the viability and reduced the inflammation and apoptosis of LPS-induced A549 cells, which was reversed by CYR61.
Collapse
Affiliation(s)
- Qingbin Chen
- Department of Anesthesiology, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Zhen Jia
- Department of Anesthesiology, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Changjing Qu
- Department of Critical Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China;
| |
Collapse
|
5
|
Zhou Y, Wang Y, Li Q, Dong K, Chen C, Mao E, Jiang W. Downregulation of lncRNA NEAT1 alleviates sepsis-induced acute kidney injury. Cent Eur J Immunol 2022; 47:8-19. [PMID: 35600150 PMCID: PMC9115601 DOI: 10.5114/ceji.2022.115628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis-induced acute kidney injury (AKI) is one of the important causes of increased mortality in sepsis patients. Long non-coding RNA (lncRNA) is believed to play a vital function in the progression of AKI. However, the mechanism of nuclear enriched abundant transcript 1 (NEAT1) has not been fully elucidated. NEAT1 was overexpressed and miR-22-3p was underexpressed in sepsis patients and lipopolysaccharide (LPS)-induced AKI cell models. Knockdown of NEAT1 could promote viability and suppress apoptosis and the inflammatory response in LPS-induced HK2 cells. MiR-22-3p could be sponged by NEAT1, and its inhibitor reversed the inhibition effect of NEAT1 silencing on LPS-induced HK2 cell injury. CXCL12 could be targeted by miR-22-3p, and its overexpression reversed the suppression effect of miR-22-3p on LPS-induced HK2 cell injury. Silenced NEAT1 could restrain the activity of the NF-κB signaling pathway, and miR-22-3p inhibitor or CXCL12 overexpression could reverse this effect. In addition, NEAT1 knockdown alleviated the inflammation response of cecal ligation and puncture (CLP) mouse models. In summary, our data showed that NEAT1 promoted LPS-induced HK2 cell injury via regulating the miR-22-3p/CXCL12/NF-κB signaling pathway, suggesting that NEAT1 knockdown might be a potential pathway for alleviating sepsis-induced AKI.
Collapse
Affiliation(s)
- Yuhua Zhou
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yihui Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingtian Li
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Chinese Center for Tropical Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ke Dong
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Chinese Center for Tropical Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunyan Chen
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Chinese Center for Tropical Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weisong Jiang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
6
|
Chen Y, Jing H, Tang S, Liu P, Cheng Y, Fan Y, Chen H, Zhou J. Non-Coding RNAs in Sepsis-Associated Acute Kidney Injury. Front Physiol 2022; 13:830924. [PMID: 35464083 PMCID: PMC9024145 DOI: 10.3389/fphys.2022.830924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Sepsis is a systemic inflammatory response caused by a severe infection that leads to multiple organ damage, including acute kidney injury (AKI). In intensive care units (ICU), the morbidity and mortality associated with sepsis-associated AKI (SA-AKI) are gradually increasing due to lack of effective and early detection, as well as proper treatment. Non-coding RNAs (ncRNAs) exert a regulatory function in gene transcription, RNA processing, post-transcriptional translation, and epigenetic regulation of gene expression. Evidence indicated that miRNAs are involved in inflammation and programmed cell death during the development of sepsis-associated AKI (SA-AKI). Moreover, lncRNAs and circRNAs appear to be an essential regulatory mechanism in SA-AKI. In this review, we summarized the molecular mechanism of ncRNAs in SA-AKI and discussed their potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ye Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Youling Fan
- Department of Anesthesiology, The First People’s Hospital of Kashgar, Xinjiang, China
- Department of Anesthesiology, The Second People’s Hospital of Panyu, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jun Zhou,
| |
Collapse
|
7
|
Yang L, Wang B, Ma L, Fu P. An Update of Long-Noncoding RNAs in Acute Kidney Injury. Front Physiol 2022; 13:849403. [PMID: 35350698 PMCID: PMC8957988 DOI: 10.3389/fphys.2022.849403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a global public health concern with high morbidity, mortality, and medical costs. Despite advances in medicine, effective therapeutic regimens for AKI remain limited. Long non-coding RNAs (lncRNAs) are a subtype of non-coding RNAs, which longer than 200 nucleotides and perform extremely diverse functions in biological processes. Recently, lncRNAs have emerged as promising biomarkers and key mediators to AKI. Meanwhile, existing research reveals that the aberrant expression of lncRNAs has been linked to major pathological processes in AKI, including the inflammatory response, cell proliferation, and apoptosis, via forming the lncRNA/microRNA/target gene regulatory axis. Following a comprehensive and systematic search of the available literature, 87 relevant papers spanning the years 2005 to 2021 were identified. This review aims to provide and update an overview of lncRNAs in AKI, and further shed light on their potential utility as AKI biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lina Yang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Wang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Wu X, Wang Z, Wang J, Tian X, Cao G, Gu Y, Shao F, Yan T. Exosomes Secreted by Mesenchymal Stem Cells Induce Immune Tolerance to Mouse Kidney Transplantation via Transporting LncRNA DANCR. Inflammation 2022; 45:460-475. [PMID: 34596768 DOI: 10.1007/s10753-021-01561-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem cells induce kidney transplant tolerance by increasing regulatory T (Treg) cells. Bone marrow mesenchymal stem cell exosomes (BMMSC-Ex) promote Treg cell differentiation. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) is expressed in BMMSCs and can be encapsulated in exosomes. We aimed to explore the role of DANCR in BMMSC-Ex in immune tolerance after kidney transplantation and related mechanism. The isogenic/allograft kidney transplantation mouse model was established, and levels of serum creatinine (SCr) were determined. Hematoxylin-eosin staining was conducted to detect the inflammation, and immunohistochemistry was performed to detect the infiltration of CD4+ T cells. Levels of IFN-γ, IL-17, and IL-2 were examined by ELISA. Flow cytometry was conducted to determine Treg cells. In the allograft group, the inflammatory response was severe, CD4+ T cell infiltration, SCr levels, and plasma rejection-related factors were up-regulated, while injection of BMMSC-Ex reversed the results. BMMSC-Ex increased Treg cells in kidney transplantation mice. Interference with DANCR reversed the promoting effect of BMMSC-Ex on Treg cell differentiation. DANCR bound to SIRT1, promoted ubiquitination and accelerated its degradation. The injection of BMMSC-Ex (after interference with DANCR) promoted SIRT1 levels, inflammatory response, CD4+ T cell infiltration, SCr levels, and plasma rejection related factors' expression, while Treg cells were decreased. LncRNA DANCR in BMMSC-Ex promoted Treg cell differentiation and induced immune tolerance of kidney transplantation by down-regulating SIRT1 expression in CD4+ T cells.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Zhiwei Wang
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Junpeng Wang
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Xiangyong Tian
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Guanghui Cao
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
9
|
Hei B, Yue C, Sun Y. Long Noncoding RNA ZFAS1 Protects HK-2 Cells against Sepsis-Induced Injury through Targeting the miR3723p/PPAR α Axis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7768963. [PMID: 35035856 PMCID: PMC8759900 DOI: 10.1155/2022/7768963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022]
Abstract
In septic acute kidney injury, one of the main purposes of long noncoding RNA (lncRNA) ZFAS1 is still unclear. This study is intended to analyze the effects of lncRNA ZFAS1 on the septic AKI in the HK-2 cell line. Materials and Methods. In order to construct an in vitro model of septic AKI, HK-2 cells have been treated with lipopolysaccharides. CCK-8 assay has been utilized to check the viability of HK-2 cells. The contents of inflammatory cytokines (that includes IL-1β, TNF-α, and IL-6) have been marked with enzyme-linked immune sorbent assay (ELISA). Cell apoptosis was assessed by TUNEL staining. To detect the expression of lncRNA ZFAS1 and microRNA-372-3p, quantitative reverse-transcription PCR has been used. And to confirm the connection among genes, luciferase reporter assay has been applied. Results. Overexpression of ZFAS1 alleviated LPS-induced HK-2 cell injury. ZFAS1 positively regulated expression of α receptor activated by peroxisome proliferation (PPARα) through competitive linkage with miR-372-3p. In addition, over expression of miR-372-3p counteracted the protective effect of upward regulation of ZFAS1 on LPS-induced HK-2 cell damage, which could be reversed by over expression of PPARα. Conclusion. It is concluded that, in LPS-induced HK-2 cell injury, ZFAS1 has a protective role via modulating the miR-372-3p/PPARα axis, suggesting the potential of ZFAS1 as a protective target for septic AKI.
Collapse
Affiliation(s)
- Bingchang Hei
- Intensive Care Unit, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, Heilongjiang, China
| | - Caifang Yue
- Department of Critical Care Medicine, No. 1 Hospital Attached to Jiamusi University in Heilongjiang Province, ICU, Jiamusi 154002, Heilongjiang, China
| | - Yao Sun
- Department of Neurology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin 150088, Heilongjiang, China
| |
Collapse
|
10
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Arefian N. Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis. Front Immunol 2021; 12:798713. [PMID: 34956235 PMCID: PMC8695688 DOI: 10.3389/fimmu.2021.798713] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Normohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Xu HP, Ma XY, Yang C. Circular RNA TLK1 Promotes Sepsis-Associated Acute Kidney Injury by Regulating Inflammation and Oxidative Stress Through miR-106a-5p/HMGB1 Axis. Front Mol Biosci 2021; 8:660269. [PMID: 34250012 PMCID: PMC8266998 DOI: 10.3389/fmolb.2021.660269] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is an inflammatory disorder and leads to severe acute kidney injury (AKI). Circular RNAs (circRNAs) have been identified as a critical type of regulatory noncoding RNAs (ncRNAs) that present the important functions in various diseases. In this study, we identified a novel circRNA circTLK1 in the regulation of sepsis-induced AKI. We observed that circTLK1 expression was elevated in the cecal ligation and puncture (CLP) rat model compared with that in the control rats. The urine levels of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (Kim-1) and the serum levels of creatinine (sCr) and blood urea nitrogen (BUN) were increased by the CLP treatment in the rats but were blocked by the circTLK1 shRNA. The circTLK1 shRNA reduced the CLP-induced kidney injury in the rats. The circTLK1 knockdown repressed oxidation stress, inflammation, and apoptosis in the sepsis-related AKI rat model. Moreover, lipopolysaccharide (LPS) treatment increased the production of TNF-α, IL-1β, and IL-6 in the HK-2 cells, while the circTLK1 shRNA could attenuate the enhancement in the cells. Bax and cleaved caspase-3 expression was upregulated, but Bcl-2 expression was downregulated by the LPS in the HK-2 cells, in which circTLK1 depletion reversed this effect in the cells. The depletion of circTLK1 attenuated the LPS-induced apoptosis in the HK-2 cells. CircTLK1 enhanced HMGB1 expression by sponging miR-106a-5p in the HK-2 cells, and miR-106a-5p and HMGB1 were involved in circTLK1-meidated injury of LPS-treated cells. Therefore, we concluded that circTLK1 contributed to sepsis-associated AKI by regulating inflammation and oxidative stress through the miR-106a-5p/HMGB1 axis. CircTLK1 and miR-106a-5p may be employed as the potential targets for the treatment of AKI.
Collapse
Affiliation(s)
- Hai-Ping Xu
- Department of Nephrology II, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Ying Ma
- Department of Nephrology II, Cangzhou Central Hospital, Cangzhou, China
| | - Chen Yang
- Department of Nephrology II, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
12
|
Non-Coding RNAs in Kidney Diseases: The Long and Short of Them. Int J Mol Sci 2021; 22:ijms22116077. [PMID: 34199920 PMCID: PMC8200121 DOI: 10.3390/ijms22116077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Recent progress in genomic research has highlighted the genome to be much more transcribed than expected. The formerly so-called junk DNA encodes a miscellaneous group of largely unknown RNA transcripts, which contain the long non-coding RNAs (lncRNAs) family. lncRNAs are instrumental in gene regulation. Moreover, understanding their biological roles in the physiopathology of many diseases, including renal, is a new challenge. lncRNAs regulate the effects of microRNAs (miRNA) on mRNA expression. Understanding the complex crosstalk between lncRNA–miRNA–mRNA is one of the main challenges of modern molecular biology. This review aims to summarize the role of lncRNA on kidney diseases, the molecular mechanisms involved, and their function as emerging prognostic biomarkers for both acute and chronic kidney diseases. Finally, we will also outline new therapeutic opportunities to diminish renal injury by targeting lncRNA with antisense oligonucleotides.
Collapse
|
13
|
Wang W, Yang N, Wen R, Liu CF, Zhang TN. Long Noncoding RNA: Regulatory Mechanisms and Therapeutic Potential in Sepsis. Front Cell Infect Microbiol 2021; 11:563126. [PMID: 34055659 PMCID: PMC8149942 DOI: 10.3389/fcimb.2021.563126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is characterized by a hyperinflammatory state accompanied by immunosuppression. Long noncoding RNAs (lncRNAs) are noncoding RNAs longer than 200 nucleotides and have important roles in mediating various biological processes. Recently, lncRNAs were found to exert both promotive and inhibitory immune functions in sepsis, thus participating in sepsis regulation. Additionally, several studies have revealed that lncRNAs are involved in sepsis-induced organ dysfunctions, including cardiovascular dysfunction, acute lung injury, and acute kidney injury. Considering the lack of effective biomarkers for early identification and specific treatment for sepsis, lncRNAs may be promising biomarkers and even targets for sepsis therapies. This review systematically highlights the recent advances regarding the roles of lncRNAs in sepsis and sheds light on their use as potential biomarkers and treatment targets for sepsis.
Collapse
Affiliation(s)
| | | | | | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Ma T, Jia H, Ji P, He Y, Chen L. Identification of the candidate lncRNA biomarkers for acute kidney injury: a systematic review and meta-analysis. Expert Rev Mol Diagn 2021; 21:77-89. [PMID: 33612038 DOI: 10.1080/14737159.2021.1873131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: This meta-analysis aims to summarize the studies of lncRNAs dysregulation in individual acute kidney injury (AKI) and identify the potential lncRNA biomarkers of AKI.Research design and methods: We systematically searched four databases to identify the lncRNA expression studies of AKI in animal models and patients. The lncRNAs expression data were extracted from 38 included studies, and lncRNA vote-counting strategy was applied to identify significant lncRNA biomarkers. The predicted targets of lncRNA biomarkers were obtained by searching Co-LncRNA, RBPmap, and LncBase v.2. Further, GO enrichment analysis and KEGG pathway analysis were performed.Results: We recognized a significant lncRNA signature of 21 up-regulated and 11 down-regulated lncRNAs, among which TapSAKI, XIST, MALAT1, CASC2, and HOXA-AS2 were dysregulated both in AKI rodent models and patients. About 28.0% of these lncRNAs mainly exist in the nucleus, which was also the most enriched GO cellular components term. The most relevant GO terms in biological process and molecular function associated with these lncRNAs were splicing, processing, and binding of mRNA.Conclusions: The present meta-analysis identified 31 significant dysregulated lncRNAs from 38 studies. TapSAKI, XIST, MALAT1, CASC2, and HOXA-AS2 were considered as the potential predictive biomarkers and therapeutic targets of AKI.
Collapse
Affiliation(s)
- Tiantian Ma
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hongshuai Jia
- Department of Pediatric Urology, Capital Institute of Pediatrics, Beijing, China
| | - Peili Ji
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yangzhige He
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Limeng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Wang Z, Wang L, Cao C, Jin H, Zhang Y, Liu Y, Gao Y, Liang X, Li G, Shou S. Heparin Attenuates Histone-Mediated Cytotoxicity in Septic Acute Kidney Injury. Front Med (Lausanne) 2020; 7:586652. [PMID: 33344474 PMCID: PMC7738632 DOI: 10.3389/fmed.2020.586652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Histones are considered potential risk factors that contribute to the development of septic acute kidney injury (SAKI) by inducing apoptosis and inflammation. This study aimed to explore the protective effects of heparin on septic acute kidney injury through the neutralization of extracellular histones (EH) and to uncover the underlying mechanism. C57BL mice (16 each) were randomly divided into the sham group, the sepsis group (established by cecal ligation and puncture operation, CLP), and the heparin intervention group. Mice in the heparin intervention group received a subcutaneous injection of unfractionated heparin (0.03 IU/g) 4 h after CLP. At 6 h after the operation, nine mice from each group were sacrificed by the removal of the eyeballs to harvest blood samples; the upper half of the right kidney was used as the study sample. Mice renal tubular epithelial cells cultivated in six-well plates were equally divided into five groups. We cultured cells treated with either histone (40 U), histone (40 U) + heparin (25 IU/ml), histone(40U) + lipopolysaccharides (LPS; 10 μg/ml), or histone (40 U) + LPS (10 μg/ml) + heparin (25 IU/ml) for 6 h. For the histone + heparin group and the histone + LPS + heparin group, histone (and LPS) were treated with heparin simultaneously. Mice in the heparin intervention group showed decreased levels of EH4, neutrophil gelatinase-associated lipocalin (NAGL), kidney injury molecule-1 (KIM-1), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 in the blood serum, longer average 72-h survival rate, significantly decreased kidney tissue edema, and a clearer glomerular structure coupled with decreased protein and mRNA expression levels of kidney apoptosis-related proteins (cleaved Caspase-3/Caspase-3 and Bax/Bcl-2) compared with those in the sepsis group at 6 h after CLP (P < 0.05). Meanwhile, cells in the heparin intervention group exhibited lower expression levels of serum EH4 and inflammatory cytokines, a lower apoptosis rate, and decreased expression of apoptosis-related proteins, both at protein and mRNA levels, than those in the histone-stimulated group at 6 h after stimulation (P < 0.05). Heparin may alleviate apoptosis and inflammation through the neutralization of histones, thus playing a protective role against septic acute kidney injury.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijun Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Cao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
16
|
Meydan C, Madrer N, Soreq H. The Neat Dance of COVID-19: NEAT1, DANCR, and Co-Modulated Cholinergic RNAs Link to Inflammation. Front Immunol 2020; 11:590870. [PMID: 33163005 PMCID: PMC7581732 DOI: 10.3389/fimmu.2020.590870] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic exerts inflammation-related parasympathetic complications and post-infection manifestations with major inter-individual variability. To seek the corresponding transcriptomic origins for the impact of COVID-19 infection and its aftermath consequences, we sought the relevance of long and short non-coding RNAs (ncRNAs) for susceptibility to COVID-19 infection. We selected inflammation-prone men and women of diverse ages among the cohort of Genome Tissue expression (GTEx) by mining RNA-seq datasets from their lung, and blood tissues, followed by quantitative qRT-PCR, bioinformatics-based network analyses and thorough statistics compared to brain cell culture and infection tests with COVID-19 and H1N1 viruses. In lung tissues from 57 inflammation-prone, but not other GTEx donors, we discovered sharp declines of the lung pathology-associated ncRNA DANCR and the nuclear paraspeckles forming neuroprotective ncRNA NEAT1. Accompanying increases in the acetylcholine-regulating transcripts capable of controlling inflammation co-appeared in SARS-CoV-2 infected but not H1N1 influenza infected lung cells. The lung cells-characteristic DANCR and NEAT1 association with inflammation-controlling transcripts could not be observed in blood cells, weakened with age and presented sex-dependent links in GTEx lung RNA-seq dataset. Supporting active involvement in the inflammatory risks accompanying COVID-19, DANCR's decline associated with decrease of the COVID-19-related cellular transcript ACE2 and with sex-related increases in coding transcripts potentiating acetylcholine signaling. Furthermore, transcription factors (TFs) in lung, brain and cultured infected cells created networks with the candidate transcripts, indicating tissue-specific expression patterns. Supporting links of post-infection inflammatory and cognitive damages with cholinergic mal-functioning, man and woman-originated cultured cholinergic neurons presented differentiation-related increases of DANCR and NEAT1 targeting microRNAs. Briefly, changes in ncRNAs and TFs from inflammation-prone human lung tissues, SARS-CoV-2-infected lung cells and man and woman-derived differentiated cholinergic neurons reflected the inflammatory pathobiology related to COVID-19. By shifting ncRNA differences into comparative diagnostic and therapeutic profiles, our RNA-sequencing based Resource can identify ncRNA regulating candidates for COVID-19 and its associated immediate and predicted long-term inflammation and neurological complications, and sex-related therapeutics thereof. Our findings encourage diagnostics of involved tissue, and further investigation of NEAT1-inducing statins and anti-cholinergic medications in the COVID-19 context.
Collapse
Affiliation(s)
- Chanan Meydan
- Department of Internal Medicine, Mayanei Hayeshua Medical Center, Bnei Brak, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Central District, Leumit Health Services, Tel Aviv, Israel
| | - Nimrod Madrer
- The Department of Biological Chemistry and The Edmond and Lilly Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Department of Biological Chemistry and The Edmond and Lilly Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|