1
|
Mousavikia SN, Matin MM, Tossi MTB, Azimian H. Unraveling the role of the P2X7 receptor in cancer radioresistance: Molecular insights and therapeutic implications. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119910. [PMID: 39889832 DOI: 10.1016/j.bbamcr.2025.119910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
The P2X7 receptor, a key player in purinergic signaling, is a crucial factor in modulating the response of cancer cells to radiotherapy. The aim of this study was to elucidate the molecular mechanisms by which P2X7 receptor activation contributes to radioresistance in different cancer types. P2X7 receptor signaling influences cellular processes such as DNA damage repair and inflammatory responses, thereby improving tumor survival after radiation exposure. Activation of the P2X7 receptor leads to changes in the tumor microenvironment and promotes an adaptive response that enables cancer cells to resist therapeutic interventions. Therefore, targeting the P2X7 receptor could represent a new therapeutic strategy against cancer. By linking molecular insights with therapeutic implications, this research highlights the P2X7 receptor as a promising target for overcoming radioresistance in cancer therapy and paves the way for novel combination approaches that could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Seyedeh Nasibeh Mousavikia
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Taghi Bahreyni Tossi
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Guo M, Ying Y, Chen Y, Miao X, Yu Z. Asiaticoside inhibits breast cancer progression and tumor angiogenesis via YAP1/VEGFA signal pathway. Heliyon 2024; 10:e37169. [PMID: 39309801 PMCID: PMC11416243 DOI: 10.1016/j.heliyon.2024.e37169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Breast cancer poses a major health risk to millions of females globally. Asiaticoside (AC) is a naturally occurring compound derived from Centella asiatica, a widely used medicinal plant in the oriental countries and has potential antitumor properties. The primary aim of this study was to investigate the anti-cancer effects of synthesized AC at the cellular level and assess its ability to inhibit tumor growth and angiogenesis in breast cancer. Methods The proliferative capacities of MCF-7 and MDA-MB-231 cells were determined using CCK-8 assay. To analyze invasion and migration, Transwell assays were conducted on the same cell lines. Additionally, apoptosis was analyzed in vitro using flow cytometry. Real-time RT-PCR was used to examine mRNA expression, and Western-blotting assay was employed to examine protein expression. Subcutaneous injection of MDA-MB-231 cells into female BALB/c nude mice was followed by treatment with AC to study its anti-tumor effects in vivo. Results AC treatment reduced cell proliferation and triggered apoptosis in MCF-7 and MDA-MB-231 cells. The invasive and pro-angiogenesis ability were also impaired upon AC treatment. AC administration also impeded the tumor growth and tumor-associated angiogenesis of MDA-MB-231 cells in nude mice, which was accompanied by the decreased levels of YAP1 and VEGFA. Conclusion Taken together, our results demonstrated the anti-cancer activity of AC in breast cancer. AC is able to suppress the malignancy of breast cancercells via YAP1/VEGFA signal pathway.
Collapse
Affiliation(s)
- Mengmeng Guo
- General Surgery Department, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No.41, Jianshe Road, Chongchuan District, Nantong, 220000, Jiangsu, China
| | - Yu Ying
- Breast Disease Department, Jiangsu Provincial Hospital of Traditional Chinese Medicine, No. 155, Hanzhong Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Yun Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital, No. 42, Baizi Pavilion, Kunlun Road, Xuanwu District, Nanjing, Jiangsu, China
| | - Xian Miao
- Oncology Department, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No.41, Jianshe Road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Zhenghong Yu
- Rheumatology and Immunology Department, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, No. 278, Central Road, Nanjing City, China
| |
Collapse
|
3
|
Wang J, Wang J. Asiaticoside protected brain injury in hypertensive intracerebral hemorrhage via activation of the PI3K/AKT pathway. J Biochem Mol Toxicol 2024; 38:e23843. [PMID: 39253885 DOI: 10.1002/jbt.23843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
Hypertensive intracerebral hemorrhage (HICH) is a destructive disease with high mortality, incidence, and disability. Asiaticoside (AC) is a triterpenoid derivative that has demonstrated to exert a protective effect on neuron and blood vessel. To investigate the function and potential mechanism of AC on HICH. Human brain microvascular endothelial cells (hBMECs) were treated with 20 U/mL thrombin for 24 h to establish the HICH model in vitro, and AC with the concentration of 1, 2 and 4 µM were used to incubate hBMECs. The effect and potential mechanism of AC on HICH were investigated by using cell counting kit-8, flow cytometry, tube forming assays, vascular permeability experiments and western blot assays. In vivo, rats were injected with 20 µL hemoglobin with a concentration of 150 mg/mL, and then intragastrically administrated with 1.25, 2.5 and 5 mg/kg AC. Behavioral tests, brain water content measurement, hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling assays, and western blot were used to assess the effect and potential mechanism of AC on HICH. AC (at 2 and 4 µM) improved the proliferation, apoptosis, angiogenesis and vascular permeability in thrombin-induced hBMECs (p < 0.05). Besides, AC (2.5 and 5 mg/kg) ameliorated behavioral scores, brain water content, pathological lesion, apoptosis and the expression of vascular permeability-related proteins in rats with HICH (p < 0.05). In addition, AC elevated the expression of PI3K/AKT pathway after HICH both in cell and animal models (p < 0.05). Application of LY294002, an inhibitor of PI3K/AKT pathway, reversed the ameliorative effect of AC on the proliferation, apoptosis, angiogenesis and vascular permeability in thrombin-induced hBMECs (p < 0.05). AC reduced brain damage by increasing the expression of the PI3K/AKT pathway after HICH.
Collapse
Affiliation(s)
- Jicun Wang
- Department of Neurology, The Hospital of Shunyi District Beijing, Beijing, China
| | - Jianxin Wang
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan Provincial Cerebrovascular Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
- Department of Neurosurgery, The Hospital of Shunyi District Beijing, Beijing, China
| |
Collapse
|
4
|
Lin L, Chen Q. Yadanziolide A Inhibits Proliferation and Induces Apoptosis of Hepatocellular Carcinoma via JAK-STAT Pathway: A Preclinical Study. BIOLOGY 2024; 13:528. [PMID: 39056720 PMCID: PMC11274273 DOI: 10.3390/biology13070528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Liver cancer is a significant global health concern, prompting the search for innovative therapeutic solutions. Yadanziolide A (Y-A), a natural derivative of Brucea javanica, has emerged as a promising candidate for cancer treatment; however, its efficacy and underlying mechanisms in liver cancer remain incompletely understood. In this study, we conducted a comprehensive evaluation of Y-A's effects on liver cancer cells using a range of in vitro assays and an orthotopic liver cancer mouse model. Our findings reveal that Y-A exerts dose-dependent cytotoxic effects on liver cancer cells, significantly inhibiting proliferation, migration, and invasion at concentrations ≥ 0.1 μM. Furthermore, Y-A induces apoptosis, as evidenced by increased apoptotic cell populations and apoptosome formation. In vivo studies confirm that Y-A inhibits tumor growth and reduces liver damage in mouse models. Mechanistically, Y-A targets the TNF-α/STAT3 pathway, inhibiting STAT3 and JAK2 phosphorylation, thereby activating apoptotic pathways and suppressing tumor cell growth. These results suggest that Y-A has promising anticancer activity and potential utility in liver cancer therapy.
Collapse
Affiliation(s)
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China;
| |
Collapse
|
5
|
Ye C, Yao Z, Wang Y, Zhang C. Asiaticoside promoted ferroptosis and suppressed immune escape in gastric cancer cells by downregulating the Wnt/β-catenin pathway. Int Immunopharmacol 2024; 134:112175. [PMID: 38733821 DOI: 10.1016/j.intimp.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Our previous study has revealed that asiaticoside (AC) promotes endoplasmic reticulum stress and antagonizes proliferation and migration of gastric cancer (GC) via miR-635/HMGA1 axis. However, the effect and mechanism of AC on other progressions of GC, such as ferroptosis and immune escape, are still unknown. METHODS AGS and HGC27 cells were incubated with 1, 2 and 4 μM of AC for 24 h. Mice xenografted with AGS cells were intragastrically injected with AC. The effect and mechanism of AC on GC were determined by the measurement of the ferrous iron level, the ROS level and the glutathione peroxidase (GSH) content, flow cytometry, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and western blotting assays. RESULTS AC increased the Fe2+ level and the ROS level, but decreased the expression of GPX4 and SLC7A11 and the GSH level. Besides, AC enhanced the percent of CD8+ T cells and the IFN-γ concentration, but reduced the PD-L1 expression and the IL-10 level. Mechanically, AC downregulated the relative levels of β-catenin, active-β-catenin, p-GSK3β/GSK3β, cyclin D1 and c-Myc in GC cells, which were rescued with the application of LiCl (an activator of Wnt/β-catenin pathway) in AGS cells. Moreover, activation of Wnt/β-catenin pathway by LiCl or the β-catenin overexpression inverted the effect of AC on ferroptosis and immune escape in GC cells. In vivo, AC treatment declined the tumor size and weight, the level of GPX4, SLC7A11, PD-L1 and IFN-γ, and the expression of Wnt/β-catenin pathway. CONCLUSION AC enhanced ferroptosis and repressed immune escape by downregulating the Wnt/β-catenin signaling in GC.
Collapse
Affiliation(s)
- Chenmin Ye
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhichao Yao
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yaoyao Wang
- Department of Internal Medicine, Wenzhou Lucheng District People's Hospital, Wenzhou, Zhejiang, PR China
| | - Chao Zhang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
6
|
Zhang Y, Han Y, Dong J, Li F, Sun Y. Asiaticoside Down-Regulates HIF-1α to Inhibit Proliferation, Migration, and Angiogenesis in Thyroid Cancer Cells. Balkan Med J 2024; 41:23-29. [PMID: 38044598 PMCID: PMC10767772 DOI: 10.4274/balkanmedj.galenos.2023.2023-7-123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Background Thyroid cancer (TC), the most prevalent endocrine malignancy, has been subjected to various treatment methods. However, the efficacy of asiaticoside (AC) for treating TC remains uncertain. Aims To explore the impact of AC on TC and determine its potential mechanisms of action. Study Design In vitro and in vivo cell line study. Methods We evaluated the effects of AC on human TC cell lines, namely TPC-1 and FTC-133. Both in vitro and in vivo experimental validations were conducted. Results AC significantly diminished the viability and proliferation of TC cells based on the CCK-8 assay and Edu staining findings. Migration and invasion assays revealed that AC effectively curtailed the migration and invasiveness of TC cells. The tube formation assay demonstrated that AC substantially impeded TC cell-induced angiogenesis. Western blot assay revealed that AC significantly reduced the expression levels of TRAF6, HIF-1α, and VEGFA, indicating that AC could potentially exert its anticancer effect by inhibiting the TRAF6/HIF1α pathway. Our in vivo experiments, which involved administering AC to BALB/c nude mice injected with TPC-1 cells, demonstrated significant inhibition of tumor growth and reduction in the expression of Ki-67, TRAF6, HIF-1α, and VEGFA. Conclusion Our study highlights the significant inhibitory effect of AC on TC, offering fresh insights and potential drug candidates for TC treatment.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifan Han
- Department of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianda Dong
- Department of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feilei Li
- Department of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yihan Sun
- Department of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Tian Y, Lei Y, Wang Y, Lai J, Wang J, Xia F. Mechanism of multidrug resistance to chemotherapy mediated by P‑glycoprotein (Review). Int J Oncol 2023; 63:119. [PMID: 37654171 PMCID: PMC10546381 DOI: 10.3892/ijo.2023.5567] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023] Open
Abstract
Multidrug resistance (MDR) seriously limits the clinical application of chemotherapy. A mechanism underlying MDR is the overexpression of efflux transporters associated with chemotherapeutic drugs. P‑glycoprotein (P‑gp) is an ATP‑binding cassette (ABC) transporter, which promotes MDR by pumping out chemotherapeutic drugs and reducing their intracellular concentration. To date, overexpression of P‑gp has been detected in various types of chemoresistant cancer and inhibiting P‑gp‑related MDR has been suggested. The present review summarizes the mechanisms underlying MDR mediated by P‑gp in different tumors and evaluated the related signaling pathways, with the aim of improving understanding of the current status of P‑gp‑mediated chemotherapeutic resistance. This review focuses on the main mechanisms of inhibiting P‑gp‑mediated MDR, with the aim of providing a reference for the study of reversing P‑gp‑mediated MDR. The first mechanism involves decreasing the efflux activity of P‑gp by altering its conformation or hindering P‑gp‑chemotherapeutic drug binding. The second inhibitory mechanism involves inhibiting P‑gp expression to reduce efflux. The third inhibitory mechanism involves knocking out the ABCB1 gene. Potential strategies that can inhibit P‑gp include certain natural products, synthetic compounds and biological techniques. It is important to screen lead compounds or candidate techniques for P‑gp inhibition, and to identify inhibitors by targeting the relevant signaling pathways to overcome P‑gp‑mediated MDR.
Collapse
Affiliation(s)
- Yichen Tian
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yongrong Lei
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yani Wang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Jiejuan Lai
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
8
|
Horaira MA, Islam MA, Kibria MK, Alam MJ, Kabir SR, Mollah MNH. Bioinformatics screening of colorectal-cancer causing molecular signatures through gene expression profiles to discover therapeutic targets and candidate agents. BMC Med Genomics 2023; 16:64. [PMID: 36991484 PMCID: PMC10053149 DOI: 10.1186/s12920-023-01488-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Detection of appropriate receptor proteins and drug agents are equally important in the case of drug discovery and development for any disease. In this study, an attempt was made to explore colorectal cancer (CRC) causing molecular signatures as receptors and drug agents as inhibitors by using integrated statistics and bioinformatics approaches. METHODS To identify the important genes that are involved in the initiation and progression of CRC, four microarray datasets (GSE9348, GSE110224, GSE23878, and GSE35279) and an RNA_Seq profiles (GSE50760) were downloaded from the Gene Expression Omnibus database. The datasets were analyzed by a statistical r-package of LIMMA to identify common differentially expressed genes (cDEGs). The key genes (KGs) of cDEGs were detected by using the five topological measures in the protein-protein interaction network analysis. Then we performed in-silico validation for CRC-causing KGs by using different web-tools and independent databases. We also disclosed the transcriptional and post-transcriptional regulatory factors of KGs by interaction network analysis of KGs with transcription factors (TFs) and micro-RNAs. Finally, we suggested our proposed KGs-guided computationally more effective candidate drug molecules compared to other published drugs by cross-validation with the state-of-the-art alternatives of top-ranked independent receptor proteins. RESULTS We identified 50 common differentially expressed genes (cDEGs) from five gene expression profile datasets, where 31 cDEGs were downregulated, and the rest 19 were up-regulated. Then we identified 11 cDEGs (CXCL8, CEMIP, MMP7, CA4, ADH1C, GUCA2A, GUCA2B, ZG16, CLCA4, MS4A12 and CLDN1) as the KGs. Different pertinent bioinformatic analyses (box plot, survival probability curves, DNA methylation, correlation with immune infiltration levels, diseases-KGs interaction, GO and KEGG pathways) based on independent databases directly or indirectly showed that these KGs are significantly associated with CRC progression. We also detected four TFs proteins (FOXC1, YY1, GATA2 and NFKB) and eight microRNAs (hsa-mir-16-5p, hsa-mir-195-5p, hsa-mir-203a-3p, hsa-mir-34a-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-429, and hsa-mir-335-5p) as the key transcriptional and post-transcriptional regulators of KGs. Finally, our proposed 15 molecular signatures including 11 KGs and 4 key TFs-proteins guided 9 small molecules (Cyclosporin A, Manzamine A, Cardidigin, Staurosporine, Benzo[A]Pyrene, Sitosterol, Nocardiopsis Sp, Troglitazone, and Riccardin D) were recommended as the top-ranked candidate therapeutic agents for the treatment against CRC. CONCLUSION The findings of this study recommended that our proposed target proteins and agents might be considered as the potential diagnostic, prognostic and therapeutic signatures for CRC.
Collapse
Affiliation(s)
- Md Abu Horaira
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Ariful Islam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Kaderi Kibria
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Jahangir Alam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
9
|
Asiaticoside Increases Caspase-9 Activity in MCF-7 Cells and Inhibits TNF-α and IL-6 Expression in Nude Mouse Xenografts via the NF-κB Pathway. Molecules 2023; 28:molecules28052101. [PMID: 36903346 PMCID: PMC10003851 DOI: 10.3390/molecules28052101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Background: We hypothesized that the antitumor effects of asiaticoside on breast cancer are driven by its ability to decrease the expression of tumor inflammation-promoting genes and increase apoptotic signaling. In this study, we aimed to better understand the mechanisms of action of asiaticoside as a chemical modulator or as a chemopreventive agent in breast cancer. Methods: MCF-7 cells were cultured and treated with 0, 20, 40, and 80 μM asiaticoside for 48 h. Fluorometric caspase-9, apoptosis, and gene expression analyses were conducted. For the xenograft experiments, we divided nude mice into the following 5 groups (10 animals per group): group I, control mice; group II, untreated tumor-bearing nude mice; group III, tumor-bearing nude mice treated with asiaticoside at weeks 1-2 and 4-7 and injected with MCF-7 cells at week 3; group IV, tumor-bearing nude mice injected with MCF-7 cells at week 3 and treated with asiaticoside beginning at week 6; and group V, nude mice treated with asiaticoside, as a drug control. After treatment, weight measurements were performed weekly. Tumor growth was determined and analyzed using histology and DNA and RNA isolation. Results: In MCF-7 cells, we found that asiaticoside increased caspase-9 activity. In the xenograft experiment, we found that TNF-α and IL-6 expression decreased (p < 0.001) via the NF-κB pathway. Conclusion: Overall, our data suggest that asiaticoside produces promising effects on tumor growth, progression, and tumor-associated inflammation in MCF-7 cells as well as a nude mouse MCF-7 tumor xenograft model.
Collapse
|
10
|
Xiao X, Zhang Q. Asiaticoside conveys an antifibrotic effect by inhibiting activation of hepatic stellate cells via the Jagged-1/Notch-1 pathway. J Nat Med 2023; 77:128-136. [PMID: 36169781 DOI: 10.1007/s11418-022-01653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/15/2022] [Indexed: 01/06/2023]
Abstract
The aim of this study was to investigate the underlying protective mechanisms of asiaticoside (AS) against liver fibrosis (LF) both in vivo and in vitro. A rat model with carbon tetrachloride (CCl4)-induced liver fibrosis is employed to verify the effect and mechanism of AS on the process of liver fibrosis in vivo experiment. Hematoxylin/eosin and sirius red staining was conducted to assess the severity of liver injury and fibrosis. Further, the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), glutamyl transferase (GGT), and total bilirubin (TBil) were measured. In addition, LX2 cells were cultured for vitro experiment to investigate the influence of AS on hepatic stellate cells (HSCs). Overproduction of α-smooth muscle actin and type I collagen is characteristic of LF and HSCs, as determined by immunohistochemical and Western blot analyses. The expression levels of molecules associated with the Notch signaling pathway (i.e., Notch-1, Jagged-1, and Delta-like-4) were assessed by Western blot analysis. The results revealed that AS attenuated LF, as defined by reduced deposition of collagen, expression of α-smooth muscle actin and collagen type 1, and expression of biochemical parameters (alanine aminotransferase, aspartate aminotransferase, and hydroxyproline). Notably, AS suppressed the expression levels of Notch-1, Jagged-1, and Delta-like-4 in activated HSCs and LF. Collectively, these results demonstrate that AS prevented the progression of LF by modulating the Notch signaling pathway, indicating that AS has potential therapeutic effects against LF.
Collapse
Affiliation(s)
- Xianhong Xiao
- Department of Infectious Disease, The People's Hospital of Yuhuan, The Yuhuan Branch of the First Affiliated Hospital With Wenzhou Medical University, 18 Changle Road, Yucheng Street, Yuhuan, 317600, Zhejiang, China.
| | - Qiang Zhang
- Department of Infectious Disease, The People's Hospital of Yuhuan, The Yuhuan Branch of the First Affiliated Hospital With Wenzhou Medical University, 18 Changle Road, Yucheng Street, Yuhuan, 317600, Zhejiang, China
| |
Collapse
|
11
|
Huang X, Jia Z, Li X, Hu Z, Yu X, Xia J. Asiaticoside
hampers epithelial–mesenchymal transition by promoting PPARG expression and suppressing P2RX7‐mediated TGF‐β/Smad signaling in triple‐negative breast cancer. Phytother Res 2022; 37:1771-1786. [PMID: 36444395 DOI: 10.1002/ptr.7692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022]
Abstract
Triple-negative breast cancer (TNBC) accounts for 10-20% of all human ductal adenocarcinomas and has a poor prognosis relative to other subtypes because of its high propensity to develop metastases. Here, the anticancer effects of asiaticoside (AC) against TNBC and the possible underlying mechanism were examined. We found that AC inhibited the TGF-β1 expression and the SMAD2/3 phosphorylation in TNBC cells, thereby impairing the TGF-β/SMAD signaling. AC inhibited the migration, invasion, and epithelial-mesenchymal transition (EMT) of TNBC cells by suppressing the TGF-β/SMAD signaling. Meanwhile, AC inhibited the lung metastasis of TNBC cells in vivo and the expression of p-SMAD2/3 and vimentin, and increased the expression of E-cadherin and ZO-1 in the lung. Peroxisome proliferator activated receptor gamma (PPARG) was identified as a potential target of AC. AC increased PPARG expression, while PPARG knockdown attenuated the therapeutic effect of AC. AC-mediated PPARG overexpression suppressed the transcription of P2X purinoceptor 7 (P2RX7). The restoration of P2RX7 reversed the therapeutic effect of AC. These results suggested that AC blocked P2RX7-mediated TGF-β/SMAD signaling by increasing PPARG expression, thereby suppressing EMT in TNBC.
Collapse
Affiliation(s)
- Xuemei Huang
- Department of Oncology and Hematology The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University Luzhou China
| | - Zhiqin Jia
- Department of Obstetrics and Gynecology The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University Luzhou China
| | - Xiangyue Li
- Department of Obstetrics and Gynecology The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University Luzhou China
| | - Zhilan Hu
- Department of Obstetrics and Gynecology The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University Luzhou China
| | - Xiaolan Yu
- Department of Obstetrics and Gynecology The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University Luzhou China
| | - Jiyi Xia
- Dazhou Vocational College of Chinese Medicine Dazhou China
- Medical Engineering & Medical Informatics Integration and Transformational Medicine Key LaboRatory of Luzhou City Luzhou China
| |
Collapse
|
12
|
Asiaticoside Suppresses Gastric Cancer Progression and Induces Endoplasmic Reticulum Stress through the miR-635/HMGA1 Axis. J Immunol Res 2022; 2022:1917585. [PMID: 35692504 PMCID: PMC9184171 DOI: 10.1155/2022/1917585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Gastric cancer is a prevalent malignant tumor with high morbidity and poor prognosis. Asiaticoside (AC) has antitumor effects, while its role in gastric cancer is elusive. Thus, this study investigated the effect of AC on gastric cancer progression. Methods Cell viability and migration were determined using the CCK-8 and Transwell migration assay. Endoplasmic reticulum stress was detected through measuring the expressions of GRP78, Chop, and hnRNPA1 by Western blot. The luciferase assay confirmed the relationship between miR-635 and High Mobility Group AT-Hook 1 (HMGA1). The effect of AC on tumor growth was evaluated by establishing a xenograft tumor. The survival rate of mice was analyzed by Kaplan-Meier analysis. Results AC suppressed gastric cancer cell viability and restrained cell migration. AC inhibited the expressions of the cell proliferation marker PCNA and EMT-related marker N-cadherin and increased E-cadherin expression. AC elevated the levels of GRP78 and Chop and suppressed the level of hnRNPA1. In addition, AC restrained gastric cancer proliferation and migration ability and induced endoplasmic reticulum stress by upregulating miR-635 expression. Furthermore, HMGA1 was proven to be a target of miR-635. AC constrained gastric cancer cell proliferation and migration and promoted endoplasmic reticulum stress by regulating HMGA1. Moreover, AC suppressed in vivo tumor growth and improved the survival time of mice. Additionally, AC elevated the expressions of miR-635, E-cadherin, GRP78, and Chop and inhibited Ki-67, HMGA1, N-cadherin, and hnRNPA1 expressions in tumor tissues of mice. Conclusion AC suppressed gastric cancer progression and induced endoplasmic reticulum stress via the miR-635/HMGA1 axis, providing a valuable drug against gastric cancer.
Collapse
|
13
|
Tang M, Huang Y, Liang X, Tao Y, He N, Li Z, Guo J, Gui S. Sorafenib-Loaded PLGA-TPGS Nanosystems Enhance Hepatocellular Carcinoma Therapy Through Reversing P-Glycoprotein-Mediated Multidrug Resistance. AAPS PharmSciTech 2022; 23:130. [PMID: 35487999 DOI: 10.1208/s12249-022-02214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Multidrug resistance (MDR) is a key determinant for hepatocellular carcinoma chemotherapy failure. P-glycoprotein is one of the main causes of MDR by causing drug efflux in tumor cells. In order to solve this thorny problem, we prepared a sorafenib-loaded polylactic acid-glycolic acid (PLGA) - D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) nanoparticles (SPTNs). SPTNs were successfully synthesized through an ultrasonic emulsion solvent evaporation method with a favourable encapsulation efficiency of 90.35%. SPTNs were almost spherical in shape with uniform particle size (215.70 ± 0.36 nm), narrow polydispersity index (0.27 ± 0.02) and negative surface charge (-26.01 ± 0.65 mV). In the cellular uptake assay, the intracellular coumarin-6 (C6) fluorescence of TPGS component-based PLGA nanoparticles (C6-PTNs) was 1.63-fold higher relative to that of PVA component-based PLGA nanoparticles (C6-PVNs). The half-maximal inhibitory concentration and apoptosis ratio of SPTNs against HepG2/MDR cells were 3.90 μM and 75.62%, respectively, which were notably higher than free SF and sorafenib-PLGA-PVA nanoparticles (SPVNs). The anti-drug efflux activities of SPTNs were assessed by the intracellular trafficking assay using verapamil as a P-gp inhibitor. SPTNs could effectively inhibit the drug efflux in tumor cells detected by flow cytometry, and suppressed relative MDR1 gene as well as P-glycoprotein expression in tumor cells. Attributed to the MDR reversion effect of SPTNs, the in vivo antitumor efficacy experiment showed that SPTNs significantly inhibited the tumor growth of HepG2/MDR xenograft-bearing nude mice, and obviously reduced the toxicity against liver and kidney compared with SF treatment. In summary, SPTNs, as highly efficient and safe antitumor nano delivery systems, showed promising potential for hepatocellular carcinoma therapy through reversing P-glycoprotein-mediated MDR. Graphical Abstract.
Collapse
|
14
|
Tang S, Xie X, Wang M, Yang L, Wei W. Protective effects of asiaticoside on renal ischemia reperfusion injury in vivo and in vitro. Bioengineered 2022; 13:10235-10243. [PMID: 35435108 PMCID: PMC9161827 DOI: 10.1080/21655979.2022.2061302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ischemia/reperfusion injury (I/R) is the main causes of acute kidney injury (AKI), which is a global health concern. Evidence suggests that asiaticoside plays vital roles on anti-inflammatory and, anti-kidney fibrosis effects, and promotes tissue repair. However, the effects of asiaticoside on AKI caused by ischemia-reperfusion have not been well defined. Herein, we explored the protective effect of asiaticoside on renal ischemia-reperfusion injury (IRI) using in vivo and in vitro studies, and elucidated the potential mechanism of asiaticoside-mediated repair. Results showed that asiaticoside attenuated the levels of blood urea nitrogen (BUN) and serum creatinine (Scr) in the IRI model. Meanwhile, asiaticoside reduced the secretion of IL-6, IL-1β and TNF-α, but increased IL-10 secretion in a dose-dependent manner. Treating Raw264.7 cells with lipopolysaccharide (LPS) induced an inflammatory response, but the LPS-induced effects were attenuated after administering asiaticoside. Furthermore, asiaticoside significantly inhibited the expression of inducible Nitric Oxide Synthase (iNOS) and promoted the expression of Arginase1 induced by LPS, which are the polarization marker proteins. In conclusion, this study shows that asiaticoside possesses protective action in AKI after ischemia-reperfusion, due to the inhibition of inflammatory mediators and promoting transformation of macrophages from M1 type to M2 type.
Collapse
Affiliation(s)
| | | | - Ming Wang
- Department of Nephrology, Affiliated Hangzhou First People’s Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, People’s Republic of China,310000
| | - Lili Yang
- Department of Nephrology, Affiliated Hangzhou First People’s Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, People’s Republic of China,310000
| | - Wei Wei
- Department of Nephrology, Affiliated Hangzhou First People’s Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, People’s Republic of China,310000
| |
Collapse
|