1
|
Wang J, Li X, Qiang X, Yin X, Guo L. Analyzing the expression and clinical significance of CENPE in gastric cancer. BMC Med Genomics 2024; 17:119. [PMID: 38702677 PMCID: PMC11067209 DOI: 10.1186/s12920-024-01887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent type of malignant gastrointestinal tumor. Many studies have shown that CENPE acts as an oncogene in some cancers. However, its expression level and clinical value in GC are not clear. METHODS Obtaining clinical data information on gastric adenocarcinoma from TCGA and GEO databases. The gene expression profiling interaction analysis (GEPIA) was used to evaluate the relationship between prognosis and CENPE expression in gastric cancer patients. Utilizing the UALCAN platform, the correlation between CENPE expression and clinical parameters was examined. Functions and signaling pathways of CENPE were analyzed using the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The association between immunological infiltrating cells and CENPE expression was examined using TIMER2.0. Validation was performed by real-time quantitative PCR (qPT-PCR) and immunohistochemical analysis. RESULTS According to the analysis of the GEPIA database, the expression of CENPE is increased in gastric cancer tissues compared to normal tissues. It was also found to have an important relationship with the prognosis of the patient (p<0.05). The prognosis was worse and overall survival was lower in individuals with increased expression of CENPE. In line with the findings of the GEPIA, real-time fluorescence quantitative PCR (qPT-PCR) confirmed that CENPE was overexpressed in gastric cancer cells. Furthermore, It was discovered that H. pylori infection status and tumor grade were related to CENPE expression. Enrichment analysis revealed that CENPE expression was linked to multiple biological functions and tumor-associated pathways. CENPE expression also correlated with immune-infiltrating cells in the gastric cancer microenvironment and was positively connected to NK cells and mast cells. According to immunohistochemical examination, paracancerous tissues had minimal expression of CENPE, but gastric cancer showed significant expression of the protein. CONCLUSIONS According to our findings, CENPE is substantially expressed in GC and may perhaps contribute to its growth. CENPE might be a target for gastric cancer therapy and a predictor of a bad prognosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaofei Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xihui Qiang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xueqing Yin
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Lianyi Guo
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
2
|
Xie W, Zhang L, Shen J, Lai F, Han W, Liu X. Knockdown of CENPM activates cGAS-STING pathway to inhibit ovarian cancer by promoting pyroptosis. BMC Cancer 2024; 24:551. [PMID: 38693472 PMCID: PMC11064423 DOI: 10.1186/s12885-024-12296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVE We aimed to screen novel gene signatures for ovarian cancer (OC) and explore the role of biomarkers in OC via regulating pyroptosis using bioinformatics analysis. METHODS Differentially expressed genes (DEGs) of OC were screened from GSE12470 and GSE16709 datasets. Hub genes were determined from protein-protein interaction networks after bioinformatics analysis. The role of Centromeric protein M (CENPM) in OC was assessed by subcutaneous tumor experiment using hematoxylin-eosin and immunohistochemical staining. Tumor metastasis was evaluated by detecting epithelial-mesenchymal transition-related proteins. The proliferation, migration, and invasion were determined using cell counting kit and transwell assay. Enzyme-linked immunosorbent assay was applied to measure inflammatory factors. The mRNA and protein expression were detected using real-time quantitative PCR and western blot. RESULTS We determined 9 hub genes (KIFC1, PCLAF, CDCA5, KNTC1, MCM3, OIP5, CENPM, KIF15, and ASF1B) with high prediction value for OC. In SKOV3 and A2780 cells, the expression levels of hub genes were significantly up-regulated, compared with normal ovarian cells. CENPM was selected as a key gene. Knockdown of CENPM suppressed proliferation, migration, and invasion of OC cells. Subcutaneous tumor experiment revealed that CENPM knockdown significantly suppressed tumor growth and metastasis. Additionally, pyroptosis was promoted in OC cells and xenograft tumors after CENPM knockdown. Furthermore, CENPM knockdown activated cGAS-STING pathway and the pathway inhibitor reversed the inhibitory effect of CENPM knockdown on viability, migration, and invasion of OC cells. CONCLUSION CENPM was a novel biomarker of OC, and knockdown of CENPM inhibited OC progression by promoting pyroptosis and activating cGAS-STING pathway.
Collapse
Affiliation(s)
- Wei Xie
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Leiying Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Junjing Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Fengdi Lai
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Wenling Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China.
| | - Xiaoyan Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China.
| |
Collapse
|
3
|
Yang YH, Wei YL, She ZY. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications. Front Mol Biosci 2024; 11:1366113. [PMID: 38560520 PMCID: PMC10978661 DOI: 10.3389/fmolb.2024.1366113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.
Collapse
Affiliation(s)
- Yu-Hao Yang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| |
Collapse
|
4
|
Schatten H. The Impact of Centrosome Pathologies on Ovarian Cancer Development and Progression with a Focus on Centrosomes as Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:37-64. [PMID: 38805124 DOI: 10.1007/978-3-031-58311-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The impact of centrosome abnormalities on cancer cell proliferation has been recognized as early as 1914 (Boveri, Zur Frage der Entstehung maligner Tumoren. Jena: G. Fisher, 1914), but vigorous research on molecular levels has only recently started when it became fully apparent that centrosomes can be targeted for new cancer therapies. While best known for their microtubule-organizing capabilities as MTOC (microtubule organizing center) in interphase and mitosis, centrosomes are now further well known for a variety of different functions, some of which are related to microtubule organization and consequential activities such as cell division, migration, maintenance of cell shape, and vesicle transport powered by motor proteins, while other functions include essential roles in cell cycle regulation, metabolic activities, signal transduction, proteolytic activity, and several others that are now heavily being investigated for their role in diseases and disorders (reviewed in Schatten and Sun, Histochem Cell Biol 150:303-325, 2018; Schatten, Adv Anat Embryol Cell Biol 235:43-50, 2022a; Schatten, Adv Anat Embryol Cell Biol 235:17-35, 2022b).Cancer cell centrosomes differ from centrosomes in noncancer cells in displaying specific abnormalities that include phosphorylation abnormalities, overexpression of specific centrosomal proteins, abnormalities in centriole and centrosome duplication, formation of multipolar spindles that play a role in aneuploidy and genomic instability, and several others that are highlighted in the present review on ovarian cancer. Ovarian cancer cell centrosomes, like those in other cancers, display complex abnormalities that in part are based on the heterogeneity of cells in the cancer tissues resulting from different etiologies of individual cancer cells that will be discussed in more detail in this chapter.Because of the critical role of centrosomes in cancer cell proliferation, several lines of research are being pursued to target centrosomes for therapeutic intervention to inhibit abnormal cancer cell proliferation and control tumor progression. Specific centrosome abnormalities observed in ovarian cancer will be addressed in this chapter with a focus on targeting such aberrations for ovarian cancer-specific therapies.
Collapse
Affiliation(s)
- Heide Schatten
- University of Missouri-Columbia Department of Veterinary Pathobiology, Columbia, MO, USA.
| |
Collapse
|
5
|
Zhang S, Qin O, Xu H, Wu S, Huang W, Song H. A comprehensive analysis of the prognostic and immunotherapeutic characteristics of KIFC1 in pan-cancer and its role in the malignant phenotype of pancreatic cancer. Aging (Albany NY) 2023; 15:14845-14863. [PMID: 38112634 PMCID: PMC10781448 DOI: 10.18632/aging.205311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Kinesin family member C1 (KIFC1) is an essential member of the motor protein family, which is critically involved in various cellular events, such as mitosis, meiosis, and macromolecular transport, but also in carcinogenesis, malignant progression, and tumor recurrence. METHODS The analysis determined the relationship between KIFC1 expression, prognosis significance, immune characteristics landscape, and genetic alterations in pan-cancer with the data extracted from web-based platforms and databases, including but not limited to UCSC, NCBI, GEPIA2, HPA, cBioPortal, SangerBox, UALCAN, GEO and TCGA. Additionally, the expression of KIFC1 in pancreatic cancer tumor tissues and adjacent normal tissues was evaluated through immunohistochemistry. In vitro Edu, colony formation, wound healing, and Transwell assay were done to elucidate the biological functions of KIFC1 in pancreatic cancer cells. RESULTS The analysis revealed that KIFC1 is upregulated in most cancers, and its increased expression is significantly associated with reduced overall survival and disease-free survival in multiple cancer types. Additionally, strong correlations between KIFC1 expression and tumor immunotherapy were observed across various malignancies. Through univariate and multivariate Cox regression analyses using TCGA data, KIFC1 was identified as an independent predictor of prognosis in pancreatic cancer cases. Furthermore, cellular experiments demonstrated that knockdown of KIFC1 resulted in the suppression of cell proliferation, migration, and invasive ability. CONCLUSIONS Our study indicated that KIFC1 harbors the potential to be a prognostic and immunotherapeutic biomarker of tumors, and it can have an impact on the metastasis and the cell cycle of pancreatic cancer cells.
Collapse
Affiliation(s)
- Shihang Zhang
- Department of General Surgery, Dalang Hospital, Dongguan, Guangdong, PR China
| | - Ouyang Qin
- Department of General Surgery, Dalang Hospital, Dongguan, Guangdong, PR China
| | - Huanming Xu
- Department of General Surgery, Dalang Hospital, Dongguan, Guangdong, PR China
| | - Shu Wu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Dongguan Hospital Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, PR China
| | - Wei Huang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital, Dongguan, Guangdong, PR China
| |
Collapse
|
6
|
Du B, Wei L, Wang J, Li Y, Huo J, Wang J, Wang P. KIFC1 promotes proliferation and pseudo-bipolar division of ESCC through the transportation of Aurora B kinase. Aging (Albany NY) 2023; 15:12633-12650. [PMID: 37955677 PMCID: PMC10683620 DOI: 10.18632/aging.205203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) accounts for over 90% of total in China, and the five-year survival rate for patients is less than 30%. Accordingly, the identification of novel, effective early diagnosis markers and therapeutic targets for ESCC is of paramount importance. KIFC1 has been identified as highly expressed in several types of cancer, although its prognostic value is inconsistent, and no research has been conducted specifically on its effect on ESCC. To investigate the expression and function of KIFC1 in ESCC, we conducted immunohistochemical staining on 30 pairs of para-carcinoma tissue and cancerous tissues, revealing a significant increase in KIFC1 expression in ESCC tissues. Using siRNA to knock down KIFC1 significantly reduced the proliferation of EC109 ESCC cells both in vitro and in vivo. Bioinformatics analysis revealed a highly significant positive correlation between KIFC1 overexpression and signaling pathways associated with tumor proliferation pathways. In EC109 cells, overexpression of KIFC1 significantly increased the rate of centrosome amplification and the likelihood of pseudo-bipolar division. Furthermore, the expression of KIFC1 and the rate of centrosome amplification in ESCC tissues were also positively correlated. In order to explore the underline molecular mechanisms, we identified, through proteomics, that KIFC1 binds to the protein Aurora B. The knockdown of KIFC1 significantly reduced the distribution of Aurora B on the metaphase plate and substantially inhibited the phosphorylation of its classical substrate, Histone H3. In conclusion, these findings indicate the potential utility of KIFC1 as both a tumor marker and a promising target for therapeutic interventions.
Collapse
Affiliation(s)
- Bin Du
- Center of Healthy Aging, Changzhi Medical College, Changzhi 047500, China
| | - Lingyu Wei
- Department of Pathology, Affiliated HePing Hospital of Changzhi Medical College, Changzhi 047500, China
| | - Jia Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi 047500, China
| | - Yanyan Li
- Center of Healthy Aging, Changzhi Medical College, Changzhi 047500, China
| | - Jing Huo
- Department of Pathology, The First Clinical College of Changzhi Medical College, Changzhi 047500, China
| | - Jinsheng Wang
- Department of Biology, Changzhi Medical College, Changzhi 047500, China
| | - Pu Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi 047500, China
| |
Collapse
|
7
|
Du B, Wang J, Zheng J, Huo J, Wang P. Identification of KIFC1 as an independent prognostic marker in renal clear cell carcinoma correlates with tumor proliferation and immune infiltration. Sci Rep 2023; 13:16572. [PMID: 37789080 PMCID: PMC10547834 DOI: 10.1038/s41598-023-43732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Renal clear cell carcinoma (ccRCC) is the world's most common form of cancer. Up to a third will develop metastases; the 5-year survival rate of the patients was only 14%. Practical prognostic markers remain to be discovered. Kinesin-like protein (KIFC1), a critical factor in maintaining the stability of the microtubule system, has significant prognostic value in some tumors. We analyzed the prognostic value, associated signaling pathways, and regulatory mechanisms of KIFC1 in ccRCC through bioinformatics and proteomics. Concretely, both mRNA and protein expression levels of KIFC1 were dramatically upregulated. KIFC1 is an independent prognostic factor for ccRCC. The expression of KIFC1 showed a significant positive correlation (Spearman coefficient > 0.7) with tumor proliferation-related pathways (tumor proliferation, G2/M checkpoint, and DNA replication) and tumor inflammation. Further, intratumoral immune cell analysis revealed that high expression of KIFC1 predicted more infiltration of CD8 + T and CD4 + T cells (p < 0.001). However, there was a significant positive relationship between CD8 + T cells and numerous immune checkpoint genes. CD8 + T cells in tumors from the KIFC1 high expression group were at the dysregulated state. High expression of KIFC1 may predict a poor immunotherapy outcome. By proteomics, we analyzed proteins interacting with KIFC1; spliceosome proteins had the most significant enrichment, indicating the new directions for KIFC1 investigation. In conclusion, our study identified KIFC1 as an independent prognostic factor in renal clear cell carcinoma, and the associated processes involved tumor proliferation and immune infiltration. KIFC1 had a close relationship with spliceosome proteins; it may be a new research direction.
Collapse
Affiliation(s)
- Bin Du
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
- Department of Biology, Changzhi Medical College, Changzhi, 047500, China
| | - Jia Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Jinping Zheng
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Jing Huo
- Department of Biology, Changzhi Medical College, Changzhi, 047500, China
| | - Pu Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China.
| |
Collapse
|
8
|
Fang H, Zhang Y, Lin C, Sun Z, Wen W, Sheng H, Lin J. Primary microcephaly gene CENPE is a novel biomarker and potential therapeutic target for non-WNT/non-SHH medulloblastoma. Front Immunol 2023; 14:1227143. [PMID: 37593739 PMCID: PMC10427915 DOI: 10.3389/fimmu.2023.1227143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Background Non-WNT/non-SHH medulloblastoma (MB) is one of the subtypes with the highest genetic heterogeneity in MB, and its current treatment strategies have unsatisfactory results and significant side effects. As a member of the centromere protein (CENP) family, centromeric protein E (CENPE) is a microtubule plus-end-directed kinetochore protein. Heterozygous mutations in CENPE can leads to primary microcephaly syndrome. It has been reported that CENPE is upregulated in MB, but its role in MB development is still unknown. Methods We downloaded the relevant RNA seq data and matched clinical information from the GEO database. Bioinformatics analysis includes differential gene expression analysis, Kaplan-Meier survival analysis, nomogram analysis, ROC curve analysis, immune cell infiltration analysis, and gene function enrichment analysis. Moreover, the effects of CENPE expression on cell proliferation, cell cycle, and p53 signaling pathway of non-WNT/non-SHH MB were validated using CENPE specific siRNA in vitro experiments. Results Compared with normal tissues, CENPE was highly expressed in MB tissues and served as an independent prognostic factor for survival in non-WNT/non-SHH MB patients. The nomogram analysis and ROC curve further confirmed these findings. At the same time, immune cell infiltration analysis showed that CENPE may participate in the immune response and tumor microenvironment (TME) of non-WNT/non-SHH MB. In addition, gene enrichment analysis showed that CENPE was closely related to the cell cycle and p53 pathway in non-WNT/non-SHH MB. In vitro experimental validation showed that knockdown of CENPE inhibited cell proliferation by activating the p53 signaling pathway and blocking the cell cycle. Conclusion The expression of CENPE in non-WNT/non-SHH MB was positively correlated with poor prognosis. CENPE may affect tumor progression by regulating cell cycle, p53 pathway, and immune infiltration. Hence, CENPE is highly likely a novel biomarker and potential therapeutic target for non-WNT/non-SHH MB.
Collapse
Affiliation(s)
- Huangyi Fang
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Wenzhou Medical University, Wenzhou, China
- Department of Surgery, The First People’s Hospital of Jiashan, Jiaxing, China
| | | | - Zhenkai Sun
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Wen
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Hao WW, Xu F. KIFC3 promotes proliferation, migration and invasion of esophageal squamous cell carcinoma cells by activating EMT and β-catenin signaling. World J Gastrointest Oncol 2022; 14:1239-1251. [PMID: 36051093 PMCID: PMC9305573 DOI: 10.4251/wjgo.v14.i7.1239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies. A total of 45 kinesin superfamily proteins (KIFs) have been identified in humans, among which several family members have demonstrated varied functions in tumor pathobiology via different mechanisms, including regulation of cell cycle progression and metastasis. KIFC3 has microtubule motor activity and is involved in cancer cell invasion and migration, as well as survival. However, the role of KIFC3 in ESCC is still unknown.
AIM To evaluate the role of KIFC3 in ESCC and the underlying mechanisms.
METHODS Expression of KIFC3 was evaluated in ESCC tissues and adjacent normal esophageal tissues. The prognostic value of KIFC3 was analyzed using Kaplan–Meier Plotter. Colony formation, EdU assays, cell cycle analysis, Transwell assay, immunofluorescence, and western blotting were performed in ESCC cell lines after transfection with pLVX-Puro-KIFC3-shRNA- and pLVX-Puro-KIFC3-expressing lentiviruses. A xenograft tumor model in nude mice was used to evaluate the role of KIFC3 in tumorigenesis. Inhibitor of β-catenin, XAV-939, was used to clarify the mechanism of KIFC3 in ESCC. To analyze the differences between groups, t test and nonparametric tests were used. P < 0.05 was considered statistically significant.
RESULTS Immunohistochemical staining indicated that KIFC3 was upregulated in ESCC tissues compared with adjacent normal tissues. Kaplan–Meier Plotter revealed that overexpressed KIFC3 was associated with poor prognosis in ESCC patients. Colony formation and EdU assay showed that KIFC3 overexpression promoted cell proliferation, while KIFC3 knockdown inhibited cell proliferation in ESCC cell lines. In addition, cell cycle analysis showed that KIFC3 overexpression promoted cell cycle progression. KIFC3 knockdown suppressed ESCC tumorigenesis in vivo. Transwell assay and western blotting revealed that KIFC3 overexpression promoted cell migration and invasion, as well as epithelial–mesenchymal transition (EMT), while KIFC3 knockdown showed the opposite results. Mechanistically, KIFC3 overexpression promoted β-catenin signaling in KYSE450 cells; however, the role of KIFC3 was abolished by XAV-939, the inhibitor of β-catenin signaling.
CONCLUSION KIFC3 was overexpressed in ESCC and was associated with poor prognosis. Furthermore, KIFC3 promoted proliferation, migration and invasion of ESCC via β-catenin signaling and EMT.
Collapse
Affiliation(s)
- Wei-Wei Hao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
10
|
Kinesin Family Member C1 (KIFC1/HSET): A Potential Actionable Biomarker of Early Stage Breast Tumorigenesis and Progression of High-Risk Lesions. J Pers Med 2021; 11:jpm11121361. [PMID: 34945833 PMCID: PMC8708236 DOI: 10.3390/jpm11121361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
The enigma of why some premalignant or pre-invasive breast lesions transform and progress while others do not remains poorly understood. Currently, no radiologic or molecular biomarkers exist in the clinic that can successfully risk-stratify high-risk lesions for malignant transformation or tumor progression as well as serve as a minimally cytotoxic actionable target for at-risk subpopulations. Breast carcinogenesis involves a series of key molecular deregulatory events that prompt normal cells to bypass tumor-suppressive senescence barriers. Kinesin family member C1 (KIFC1/HSET), which confers survival of cancer cells burdened with extra centrosomes, has been observed in premalignant and pre-invasive lesions, and its expression has been shown to correlate with increasing neoplastic progression. Additionally, KIFC1 has been associated with aggressive breast tumor molecular subtypes, such as basal-like and triple-negative breast cancers. However, the role of KIFC1 in malignant transformation and its potential as a predictive biomarker of neoplastic progression remain elusive. Herein, we review compelling evidence suggesting the involvement of KIFC1 in enabling pre-neoplastic cells to bypass senescence barriers necessary to become immortalized and malignant. We also discuss evidence inferring that KIFC1 levels may be higher in premalignant lesions with a greater inclination to transform and acquire aggressive tumor intrinsic subtypes. Collectively, this evidence provides a strong impetus for further investigation into KIFC1 as a potential risk-stratifying biomarker and minimally cytotoxic actionable target for high-risk patient subpopulations.
Collapse
|
11
|
KIFC1 promotes aerobic glycolysis in endometrial cancer cells by regulating the c-myc pathway. J Bioenerg Biomembr 2021; 53:703-713. [PMID: 34729671 DOI: 10.1007/s10863-021-09924-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/29/2021] [Indexed: 10/19/2022]
Abstract
Endometrial cancer (EC) is a common gynecological malignant tumor worldwide. It is imperative to study pathogenesis and therapeutic targets for improving the prognosis of EC. The present study aimed to explore the function and mechanism of kinesin family member C1 (KIFC1) in EC. EC tumor and adjacent normal tissues were collected from 68 pairs of patients. The expression of KIFC1 in tissues and EC cells was analyzed by immunohistochemistry, qRT-PCR or western blot. MTT assay was used to test the cell viability. Flow cytometry was used to determine apoptosis and the cell cycle. Glucose uptake, lactate production, ATP contents and lactate dehydrogenase (LDH) activity were evaluated by a glucose metabolism kit. The expression of HMGA1, c-myc and glycolytic genes was assessed using western blot or qRT-PCR. A mouse xenograft model was established in BALB/c mice to detect tumor growth in vivo. KIFC1 was significantly upregulated in EC tumor tissues compared to adjacent normal control tissues. The upregulated expression of KIFC1 was correlated with poor prognosis in patients. Lentiviral-mediated overexpression of KIFC1 observably enhanced cell viability and reduced the apoptotic rate of Ishikawa and HEC-1B cells. Cell cycle progression was also expedited in the KIFC1 vector group. Moreover, overexpression of KIFC1 elevated glucose uptake, lactate production, ATP contents and LDH activity. However, knockdown of KIFC1 by short hairpin RNA (shRNA) showed the reverse effect on cellular functions. In addition, the expression of c-myc, GLUT1, LDHA and HK2 was increased by the KIFC1 vector. Moreover, HMGA1 regulated the expression of c-myc and glycolytic genes. Upregulated HMGA1 could rescue the effect of KIFC1 knockdown on cellular functions and the expression of glycolytic genes. Finally, KIFC1 knockdown inhibits tumor growth in vivo. The upregulation of KIFC1 was correlated with poor prognosis in EC. KIFC1 promoted aerobic glycolysis in endometrial cancer cells by regulating the HMGA1/c-myc pathway. KIFC1 may be a potential target for the diagnosis and therapy of EC.
Collapse
|